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An alternative new technique for the determination of efficient optical monitoring strategy of optical interference 
filters is presented. This technique relies on the analysis of optical monitoring signals for different optical 
monitoring wavelengths and the comparison of these signals with some pre-defined criteria in order to generate 
potential spectral path compatible with a dedicated trigger point monitoring technique. Trinary mappings are then 
generated in order to determine possible optical monitoring strategies. This technique is finally implemented on 
various filter designs and experimentally validated. 

OCIS codes: (310.0310) Thin films; (310.4165) Multilayer design; (310.1620) Interference coatings.  
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1. Introduction Optical interference filters offer a very broad range of optical functions for the control of the spectral properties of light. With the last 15-year improvement of both the design techniques and the manufacturing systems, it is now very common to fabricate very complex filters with very large number of layers and totally aperiodic structures [1]. In order to secure low errors on the thickness of each of the layers of the stack, it is best to combine stable deposition systems as provided by sputtering technique and in-situ optical monitoring [2,3]. By combining different algorithms based on optical criteria such as turning point monitoring (determination of the moment the derivative of the optical monitoring signals cancels) or trigger point monitoring (determination of pre-defined optical monitoring signal levels) it is possible to accurately stop the deposition of each of the layers [4]. More advanced versions of trigger point monitoring can be used, they are known Percentage Of Extremum Monitoring (POEM) [4] or optical monitoring by swing [5] and consist in taking into account the amplitudes of the previous extrema of the optical monitoring signal to correct for the trigger point monitoring value. However, while such techniques can accurately determine the moment a deposition has to be stopped, the accuracy highly depends on the selected optical monitoring wavelength. The choice of the optimal optical monitoring wavelength is therefore a critical step that will directly affect the final performances of the filter. Indeed, with some classical [4,6] or very complex filters [7], the error can quickly diverge and result in large 

discrepancies if the optical monitoring wavelengths are not properly selected. While it is obvious that this critical problem has drawn large interest in the optical thin-film community, there have been quite a small amount of works published. Indeed, it is obvious that there have been a wide range of progresses in the domain. This is clearly illustrated by the increased complexity and the lower discrepancy of the fabricated filters [8]. However, most of the efforts have been carried out by industrials resulting in a limited spreading of the results and limited scientific work on the topic. We are aware of only a few academic studies on the topic. Several papers have been published by R. Willey, but mostly on some very specific filters and without generalization of the methods to filters with arbitrary structures [4,8-10]. A. Zoeller has also widely contributed to the domain, in particular in the improvement of optical monitoring systems [11] or virtual deposition process [10-12]. Finally, the main general investigations have been carried out by A. Tikhonravov and M. Trubetskov. For example, in ref. [13] they provide a full investigation on how to find the best possible monitoring wavelengths in the case of a full Level Cut monitoring. For a given multilayer stack, they provide a monitoring spreadsheet that contains the sequence of monitoring wavelengths and their corresponding termination level. For the creation of such a spreadsheet they propose to follow different steps in order to perform a constrained optimization with several limited criteria: 
• The number of different monitoring wavelengths is limited up to 5. Hence, depending on the spectral region attainable with a given monitoring system and the maximum allowed number of optical 
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very limited. This is for example the case for the matching layer that are placed between two Fabry-Perot cavities in order to make then coherent. For these layers, when depositing a matching layer with a refractive index close to the one of the substrate, as the admittance of the stack is equal to the one of a bare substrate, the signal dynamic is close to zero at the central wavelength of the filter. In order to disregard the wavelengths that would exhibit such low signal dynamics, we defined a new criterion: transmittance change between the lowest and the highest measured transmittance of a layer must be larger than 5%. Using this criterion it is possible to generate two different regions: 
• allowed regions where transmittance change is larger than 5%, 
• forbidden regions where transmittance change is smaller than 5%. 

E. Criterion 5: Transmittance value at the trigger point The fifth criterion is related to the transmittance level at trigger point. In order to secure as high as possible signal to noise ratio, one wants to avoid to have low transmission at trigger point. We therefore defined a criterion: transmittance must be larger than 10%. Using this criterion it is possible to generate two different regions: 
• allowed regions where transmittance larger than 10%, 
• forbidden regions where transmittance is smaller than 10%. 

F. Criterion 6: Number of extrema during the deposition of a 
single layer The number of extrema that are crossed during the deposition of every single layers is also an important factor to take into account [17,18]. Indeed, even if it is not mandatory to cross some extrema for every single layer of a multilayer stack if the same wavelength is used throughout the whole deposition process, it is generally very beneficial as trigger point monitoring by swing (or POEM) algorithm recalculates trigger points based on the errors of amplitude of the measured signal at each extremum. In this case, partial phase compensation is performed. But such a criterion becomes of high interest as soon as multi-wavelengths optical monitoring is applied. When optical monitoring wavelength is changed, the error compensation as performed by trigger point monitoring by swing (or POEM) becomes not as easy to implement as signal modulation can vary a lot from one monitoring wavelength to another. If the signal of the first layer to be monitored with a new wavelength does not crosses an extremum, POEM will act as a simple trigger point monitoring technique and intensity errors associated with the errors on the previous layers will not be compensated. However, if the signal of the first layer to be monitored with a new wavelength crosses one extremum, and better two extrema, trigger point monitoring by swing (or POEM) procedure will allow an efficient compensation of the errors on previous layers by recalculating a new trigger point using the values of these extrema. Auto-compensation mechanism on the phase at the new monitored wavelength will be possible, and this correction will be effective for the following layers that will be monitored at the same wavelength. In conclusion, it is particularly useful to change optical monitoring wavelength, every time it is possible, if one or two extrema are crossed in the monitoring of the first layer after this change. Using this criterion it is possible to generate two different regions: 

• trigger point monitoring-optimized regions where the optical monitoring signal crosses two extrema, 
• regular regions where the optical monitoring signal crosses zero or a single extremum. 

Using this criterion, it is then straightforward to define regions where the change of optical monitoring wavelength would benefit from trigger point monitoring using swing (or POEM) error compensation. 
G. Description of the approach For each of these criteria, we have generated independent regions that are trigger point monitoring-compatible and other that are not. However, it is obvious that each of these criteria are important for trigger point monitoring such as it is important to take in account all of then simultaneously. To do so, we calculated a score where: 

• Score of zero corresponds the case at least one of the five first criteria is not met. In this case optimal trigger point monitoring conditions are not combined for this layer and the associated monitoring wavelength should not be considered. These regions will be represented by grey rectangles. 
• Score of one corresponds the case all five first criteria are met simultaneously. In this case optimal trigger point monitoring conditions are all combined for this layer and the associated monitoring wavelength can be considered. These regions will be represented by blue rectangles. 
• Score of two corresponds the case all five first criteria are met simultaneously and the sixth criterion is also met. In this case optimal trigger point monitoring conditions are all combined for this layer and the associated monitoring wavelength can be considered. In addition, these regions are optimal regions for a change of the monitoring wavelength and will be represented by green rectangles. Using these six criteria, it is then possible to generate trinary mappings for every new design that will provide an interesting visual input for the determination of an efficient optical monitoring strategy. 

3. Illustration of the approach on various examples 

A. The quarter-wave mirror As a first example, we analyzed the trinary mapping technique on an 11-layer mirror centered at 600 nm composed with quarterwave layers at 600 nm with refractive indices of 2.35 and 1.46 deposited on a glass substrate with refractive index of 1.52 and with formula: 
 

Glass │ (HL)5 H │ Air. (
2) This example is particularly interesting to start with as classical Turning Point Monitoring at the central wavelength of a mirror is generally limited to low reflecting mirrors and finding an efficient trigger point monitoring wavelength is mandatory to produce high performance dielectric quarter wave mirrors. While this problem is not new, we provide here a comprehensive description on how to achieve an efficient optical monitoring strategy that will result in the lowest deviation from theory. In Figure 4, we plotted the evolution of trinary mapping of the mirror versus monitoring wavelength (horizontal axis) and layer number (vertical axis). These graphs read from bottom to top, i.e. from first to last layer of the stack and one looks for vertical paths that are all blue or green. One can see that as expected, 600 nm is not a wavelength that can be used for trigger point monitoring of a quarter-wave layer-based structure. Then, it appears that there are two windows that are trigger point monitoring-compatible that appear as blue or green continuous vertical lines. A first region on the short-wavelength edge of the mirror between 475 and 525 nm and a second region on the long-wavelength edge of the mirror between 710 and 765 nm. With this technique, we have been able to eliminate 70% of the spectral regions that are not trigger point 
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 Figure 9 Comparison of the final layer phase root mean square deviation (ϕRMSD) at 7th layer and the trigger point monitoring-compatible spectral regions as defined by trinary mappings. However, we see that these two techniques did not permit to determine one single strategy but more a spectral range to select a monitoring wavelength. One can show that almost whatever the wavelength used in this range, good theory/experiment will be achieved. However, by running virtual deposition process for all the wavelength in this range, the strategy consisting in monitoring layers [1-8] at 488 nm can be shown to result in the lowest phase root mean square deviation and the spectral performances the closest to the theoretical one. 
4. Experimental validations We experimentally validated the determined strategies by depositing the thin film components using a Plasma Assisted Reactive Magnetron Sputtering (PARMS, Bühler HELIOS machine) combined with a Bühler OMS 5000 optical monitoring system. Each of the studied components were fabricated, except for the Fabry-Perot filter as the OMS 5000 did not allow easily switching from trigger point monitoring to turning point monitoring. For each of the components, the strategy was slightly adapted in order to account for refractive index dispersion of the HELIOS machine (Nb2O5 and SiO2), but the determined wavelength did not deviate by more than a few nanometers compared to the one determined in section 3 without dispersion as the considered refractive indices are close to the one of the HELIOS machine. Finally, all samples were characterized using a Perkin Elmer Lambda 1050 spectrophotometer. We plotted in Figure 10 an overlay between theoretical and experimental performances. 

 

 Figure 10 Comparison the theoretical and experimental transmission/reflection in case of a) a mirror, b) a multicavity bandpass filter and c) an antireflection coating. Regarding the mirror, one can see that trigger point monitoring-monitored mirror shows almost no measurable deviation from the theoretical profile, confirming that selecting a wavelength on the short-wavelength side of the main reflection lobe is an efficient strategy. Regarding the multi-cavity bandpass filter, one can see a good theoretical/experimental agreement both close to the bandpass and over a broader spectral range. The central wavelength is shifted by ~0.5 nm and the main discrepancies in broadband domain are associated with the limited resolution of the spectrophotometer (here 1 nm) to maximize the signal-to-noise ratio. This result confirms that while Willey proposed to optically monitor most of the filter at 600 nm (except for some layers that need to be quartz-crystal monitored), a slight adjustment by a few nanometers of the monitoring wavelength allows accurate all-optical monitoring of this kind of filter. Finally, one can see that we have been able to fabricate an antireflection coating with residual reflection within the [550-650] nm spectral range not exceeding 0.02%, confirming that the all-optical strategy is valid and efficient. Over a broad spectral range, the two curves match very well proving that we are very close to theoretical performances. In the low reflection zone, one can see that the discrepancy is lower than one order of magnitude. It can be due to limited sensitivity and precision of the spectrophotometer or very small errors that should not exceed 0.2 nm for each layer. In conclusion, this experimental demonstration shows that the proposed strategy is also compatible with all-optical monitoring of this type of optical function.   
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5. Conclusions We have developed a new approach for the determination of efficient all-optical monitoring strategy for the manufacturing of thin film optical components. It is based on the generation of a trinary mappings that allow defining a range of possible wavelengths that are trigger point monitoring-compatible. These mappings that do not rely on virtual deposition process, but on an analysis of the optical monitoring signals obtained for all monitoring wavelengths, using some criteria and applying some limits to determine whether a wavelength can be used for the optical monitoring of its thickness or not. This method does not provide the best optical monitoring strategy, but a range of possible one. This technique can then be combined with a technique based on phase root mean square deviation analysis at a single representative wavelength (ϕRMSD). The wavelength that allows minimizing ϕRMSD is then selected an optimal optical monitoring wavelength. By combining these two techniques, it is then possible to find an efficient optical monitoring strategy. This approach was illustrated on different examples including mirror, bandpass filters and antireflection coatings. For each of them we determined a single all optical monitoring strategy that was validated using virtual depositions process. It is finally worth noting that all these results were experimentally validated by implementing these strategies on plasma Assisted Reactive Magnetron Sputtering machines.  
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