Monitoring and sampling methodology of source control systems for environmental assessment in Lyon, Nantes and Paris

To cite this version:

HAL Id: hal-01869855
https://hal.archives-ouvertes.fr/hal-01869855
Submitted on 6 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Monitoring and sampling methodology of source control systems for environmental assessment in Lyon, Nantes and Paris.

R Garnier*, H Castebrunet*, A Fardel**,***, K Flanagan****, M-C Gromaire****, D Ramier*****,**, F Rodriguez***,**, S Barraud*

* Laboratoire DEEP, INSA Lyon, 34 Avenue des Arts, 69621 Villeurbanne CEDEX
robin.garnier@insa-lyon.fr helene.casterbrunet@insa-lyon.fr sylvie.barraud@insa-lyon.fr
** CSTB, Aquasim, 11 rue Henri Picherit, 44300 Nantes
alexandre.fardel@cstb.fr
*** LEE IFSTTAR, Route de Bouaye, CS4 - 44344 Bouguenais cedex
fabrice.rodriguez@ifsttar.fr
**** LEESU, Ecole des Ponts Paris Tech, 6-8 avenue Blaise Pascal, F-77455 Champs sur Marne
kelsey.flanagan@enpc.fr marie-christine.gromaire@enpc.fr
***** CEREMA, Direction Ilé-de-France, 12 rue Teisserenc de Bort, 78192 Trappes
david.ramier@cerema.fr

Abstract: Stormwater control measures (SCM) are nowadays widespread and municipalities encourage their implementation in order to reduce runoff volumes and loads of micropollutants (MP), such as PAHs and metals. However, very few studies have highlighted their removal efficiency regarding less known MP such as pesticides, PBDEs, alklyphenols, etc. Several research projects in France were undertaken in order to better understand the capacity of SCMs to handle these emerging micropolllutants and prescribe tools and guidelines to improve their design and construction. Three of these projects, MATRIOCHKAS (Nantes), MICROMEGAS (Lyon) and ROULÉPUR (Paris), decided to work together in order to cover the largest possible range of systems and contexts of use. The current paper presents the monitoring and sampling procedures for several different source control experimental sites across France.

Keywords: micropollutant; monitoring; source control; stormwater control measures

Reducing the impact of runoff water (flows and pollution) on receiving water bodies is currently one of the greatest challenges in the urban drainage research field. Since the promulgation of the Water Framework Directive (WDF 2000), many studies have been conducted, in Europe and across the world, to highlight and quantify the contamination due to micropolllutants (MP) such as heavy metals and hydrocarbons (e.g. Ellis et al. 2005). More recently, other studies have detected and quantified emerging chemicals, such as alklyphenols, pesticides, phthalates, Bisphenol A, PCBs and PBDEs, in runoff water (e.g., Birch 2012, Gasperi et al. 2014).

More and more, French municipalities encourage the implementation of stormwater control measures (SCM), and more particularly source control systems based on on-site infiltration, known to reduce water flows and heavy metal and hydrocarbon contamination (e.g. Silva et al. 2010, Hatt et al. 2009). However, insufficient knowledge of in-situ systems and their efficiency regarding MP contributes to the general lack of confidence in their true ecological potential. Moreover, as the global environmental performance of these SCMs is not well-known, combined with a poor maintenance consideration, urban planners continue to recommend end of pipe centralized systems.

In this context, the French government, through the French Agency of Biodiversity, decided to finance several projects aiming to highlight and quantify a large range of micropolllutants in stormwater runoff treated using source control systems. Three of these projects decided to work jointly to assess and quantify the MP removal
efficiency of many different types of source control systems: MATRIOCHKAS in the city of Nantes, MICROMEGAS in Lyon and ROULÉPUR in Paris (see Figure 1).

Across the seventeen sites (see Table 1), covering a wide range of existing source control systems and many different contexts of use, the three projects face similar issues intrinsic to in-situ data acquisition for both i) flow monitoring and ii) water sampling. Source control systems receive small flowrates, due to the small size of their catchment; consequently, usual monitoring technologies can't be implemented without huge uncertainties in the acquired data. New monitoring devices and sampling procedures have to be specifically designed and implemented on each site to address the high variability in fluxes as well as local constraints (see “situational constraints” column in Table 1).

Depending on the systems, various instrumentations have been implemented to monitor runoff flows. The devices acquire data using tipping bucket flowmeters, electromagnetic flowmeters, water level/speed laws, weirs… (see “flow monitoring” column in Table 1). However, each one of these devices is developed and implemented according to many specific constraints such as space restriction, expected flow ranges and conditions required for water collection.

Most of the micropollutants studied by the projects (more than 50 in total for the three projects) are found at trace concentrations (a few ng/L). All micropollutants analyses must thus be run in specific labs meeting several detection and quantification needs. Analytical requirements, such as water sample volume and quality, and the determination of biases and uncertainties associated with the instrumentation introduce further constraints regarding sampling procedures and devices.

The paper will present the specificities of the SCMs studied and will suggest recommendation and illustration to adapt the monitoring to small system, small catchment and associated local characteristics (e.g. What can be assimilated to an “Inlet” or an “Oulet” for a source control system?). Such monitoring is dedicated to runoff flow and micropollutants loads under high variability of events (How a harvestable rain event is defined in terms of flow and/or sampling?).

REFERENCES

Birch H. 2012 Monitoring of priority pollutants in dynamic stormwater discharges from urban areas. PhD thesis, Department of Environmental Engineering, Technical University of Denmark (DTU), Copenhagen, Denmark.

Figure 1 Map of France with locations of the three projects and examples of experimental sites.
<table>
<thead>
<tr>
<th>Project</th>
<th>Site</th>
<th>Type</th>
<th>Catchment surface (m²)</th>
<th>Catchment uses</th>
<th>Flow monitoring</th>
<th>Sampling procedure</th>
<th>Performance characterization</th>
<th>Situational constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIOCHKAS</td>
<td>La Ville au Blanc</td>
<td>Wet basin</td>
<td>300000</td>
<td>Road with low traffic & commercial areas</td>
<td>Water level + speed in pipes</td>
<td>Flow proportional automatic sampling</td>
<td>In/Out comparison</td>
<td>Low water level; unwanted backwater</td>
</tr>
<tr>
<td>MATRIOCHKAS</td>
<td>803 - Chézine</td>
<td>Dry basin</td>
<td>50000</td>
<td>Road with heavy traffic</td>
<td>Water level + speed in pipes</td>
<td>Flow proportional automatic sampling</td>
<td>In/Out comparison</td>
<td>Excessive slope</td>
</tr>
<tr>
<td>MATRIOCHKAS</td>
<td>Bottiere Chesnaisie</td>
<td>Infiltration swale</td>
<td>17000</td>
<td>Residential housing</td>
<td>Water level in pipes</td>
<td>Flow proportional manual sampling</td>
<td>In/Out comparison</td>
<td>Space constraints</td>
</tr>
<tr>
<td>MATRIOCHKAS</td>
<td>Nantes 1</td>
<td>Pilot swale</td>
<td>-</td>
<td>Artificial runoff</td>
<td>20 ml tipping bucket + electromagnetic flowmeter</td>
<td>Flow proportional automatic sampling</td>
<td>In/Surface out comparison</td>
<td>-</td>
</tr>
<tr>
<td>MATRIOCHKAS</td>
<td>Nantes 2</td>
<td>Pilot infiltration swale</td>
<td>-</td>
<td>Artificial runoff</td>
<td>20 ml tipping bucket + electromagnetic flowmeter</td>
<td>Flow proportional automatic sampling</td>
<td>In/Surface out comparison</td>
<td>-</td>
</tr>
<tr>
<td>MICROMEGAS</td>
<td>Ecolab 1</td>
<td>Infiltration swale</td>
<td>290</td>
<td>Parking lots</td>
<td>100ml tipping bucket + electromagnetic flowmeter</td>
<td>Flow proportional automatic sampling</td>
<td>Conventional asphalt / Source control outlet comparison</td>
<td>Space constraints; flows covering a wide range</td>
</tr>
<tr>
<td>MICROMEGAS</td>
<td>Ecolab 2</td>
<td>Infiltration trench</td>
<td>240</td>
<td>Parking lots</td>
<td>100ml tipping bucket + electromagnetic flowmeter</td>
<td>Flow proportional automatic sampling</td>
<td>Conventional asphalt / Source control outlet comparison</td>
<td>Space constraints; flows covering a wide range</td>
</tr>
<tr>
<td>MICROMEGAS</td>
<td>Ecolab 3</td>
<td>Porous pavement with reservoir structure</td>
<td>90</td>
<td>Parking lots</td>
<td>100ml tipping bucket + electromagnetic flowmeter</td>
<td>Flow proportional automatic sampling</td>
<td>Conventional asphalt / Source control outlet comparison</td>
<td>No power supply; space constraints; flows covering a wide range</td>
</tr>
<tr>
<td>MICROMEGAS</td>
<td>Ecolab 4</td>
<td>Asphalt runoff</td>
<td>50</td>
<td>Parking lots</td>
<td>100ml tipping bucket + electromagnetic flowmeter</td>
<td>Flow proportional automatic sampling</td>
<td>Conventional asphalt / Source control outlet comparison</td>
<td>No power supply; space constraints; flows covering a wide range</td>
</tr>
<tr>
<td>MICROMEGAS</td>
<td>Chassieu</td>
<td>Dry basin</td>
<td>1850 000</td>
<td>Commercial suburbs</td>
<td>Water level + speed in pipes</td>
<td>Flow proportional automatic sampling</td>
<td>In/Out comparison</td>
<td>-</td>
</tr>
<tr>
<td>ROULEPUR</td>
<td>Compans 1</td>
<td>Vegetative filter strip</td>
<td>507</td>
<td>Road with heavy traffic</td>
<td>Drain outlet; 1L Tipping bucket</td>
<td>Passive sampling of known % of the flow (drain) + Surface runoff sampling with a gutter</td>
<td>In/Out comparison</td>
<td>Irregular inlet</td>
</tr>
<tr>
<td>ROULEPUR</td>
<td>Compans 2</td>
<td>Biofiltration swale</td>
<td>327</td>
<td>Road with heavy traffic</td>
<td>Drain outlet; 1L Tipping bucket, Overflow: water level + triangular weir</td>
<td>Passive sampling of known % of the flow</td>
<td>In/Out comparison</td>
<td>Irregular inlet ; flooding</td>
</tr>
<tr>
<td>ROULEPUR</td>
<td>Compans 3</td>
<td>Asphalt runoff</td>
<td>945</td>
<td>Road with heavy traffic</td>
<td>1L Tipping bucket</td>
<td>Flow proportional automatic sampling</td>
<td>In/Out comparison</td>
<td>Flows covering a wide range; sedimentation</td>
</tr>
<tr>
<td>ROULEPUR</td>
<td>Paris</td>
<td>Stoppol prototype</td>
<td>1040</td>
<td>Road with heavy traffic</td>
<td>5L tipping bucket + ultrasonic flowmeter + water level</td>
<td>Flow proportional automatic sampling</td>
<td>In/Out comparison</td>
<td>Obstacles; flooding; water level in the device must not be changed by the flowmeter; flows covering a wide range;</td>
</tr>
<tr>
<td>ROULEPUR</td>
<td>Rosny-sous-Bois</td>
<td>Planted sand filters</td>
<td>3410</td>
<td>Road with medium traffic</td>
<td>Inflow: Electromagnetic flowmeter/ water level; Outlet: water level + triangular weir</td>
<td>Flow proportional automatic sampling</td>
<td>In/Out comparison</td>
<td>Important sedimentation; no power supply; space constraints at the outlet</td>
</tr>
<tr>
<td>ROULEPUR</td>
<td>Villeneuve-le-Roi 1</td>
<td>Pervious vegetated parking lot structure</td>
<td>640</td>
<td>Parking lots</td>
<td>4L tipping bucket</td>
<td>Flow proportional automatic sampling</td>
<td>In/Out comparison</td>
<td>Not enough space in measurement chambers; flooding of the chamber</td>
</tr>
<tr>
<td>ROULEPUR</td>
<td>Villeneuve-le-Roi 2</td>
<td>Asphalt runoff</td>
<td>730</td>
<td>Parking lots</td>
<td>Water level + triangular weir</td>
<td>Flow proportional automatic sampling</td>
<td>In/Out comparison</td>
<td>-</td>
</tr>
</tbody>
</table>