
HAL Id: hal-01869009
https://hal.science/hal-01869009v2

Submitted on 20 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for triple-word arithmetic
Nicolas Fabiano, Jean-Michel Muller, Joris Picot

To cite this version:
Nicolas Fabiano, Jean-Michel Muller, Joris Picot. Algorithms for triple-word arithmetic. IEEE Trans-
actions on Computers, 2019, 68 (11), pp.1573-1583. �10.1109/TC.2019.2918451�. �hal-01869009v2�

https://hal.science/hal-01869009v2
https://hal.archives-ouvertes.fr

1

Algorithms for triple-word arithmetic
Nicolas Fabiano and Jean-Michel Muller and Joris Picot

Abstract—Triple-word arithmetic consists in representing high-precision numbers as the unevaluated sum of three floating-point numbers
(with “nonoverlapping” constraints that are explicited in the paper). We introduce and analyze various algorithms for manipulating
triple-word numbers: rounding a triple-word number to a floating-point number, adding, multiplying, dividing, and computing square-roots
of triple-word numbers, etc. We compare our algorithms, implemented in the Campary library, with other solutions of comparable
accuracy. It turns out that our new algorithms are significantly faster than what one would obtain by just using the usual floating-point
expansion algorithms in the special case of expansions of length 3.

F

1 INTRODUCTION AND NOTATION

Double-word and Triple-word arithmetics consist in
representing a real number as the unevaluated sum of
two and three floating-point numbers, respectively. They
are frequently called “double double” and “triple double”,
because in practice the underlying format being used is
the binary64/double precision format of the IEEE 754
Standard for Floating-Point Arithmetic [7], [21].

A generalization of these arithmetics is the notion of
floating-point expansion [26], [29], [10], where a high-
precision number is represented as the unevaluated sum
of 𝑛 floating-point numbers.

Such arithmetics are useful. Numerical computations
sometimes require a precision significantly higher than
the one offered by the basic floating-point formats.
Double-word, triple-word (or even quadruple-word)
arithmetics have been used for implementing BLAS [18],
[20], [30], for Semidefinite programming [22]. Bailey,
Barrio and Borwein [1] give several timely examples
in mathematical physics and dynamics where preci-
sions higher than double precision/binary64 are needed.
Another example is when evaluating transcendental
functions with correct rounding: it is almost impossible
to guarantee last-bit accuracy in the final result if all
intermediate calculations are done in the target preci-
sion. For instance, the CRLibm library [3] of correctly
rounded elementary functions uses double-word and
triple-word [14], [15] operations in the last steps of the
evaluation of approximating polynomials. The reason
is simple: results on the table maker’s dilemma [16]
show that returning a correctly rounded exponential or
logarithm requires approximating the considered function
with roughly twice the target precision, which in turn
requires doing intermediate calculations with significantly

∙ N. Fabiano is with École Normale Supérieure, 45 Rue d’Ulm, 75005 Paris,
France. E-mail: nicolabiano22@yahoo.fr

∙ J.-M. Muller is with Univ. Lyon, CNRS, EnsL, Inria, UCBL, LIP, F-69342,
LYON Cedex 07, France.
E-mail: jean-michel.muller@ens-lyon.fr

∙ J. Picot is with Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342,
LYON Cedex 07, France.
E-mail: joris.picot@ens-lyon.fr

more than twice the target precision. The Metalibm
Lutetia library,1 also uses double-word and triple-word
arithmetics.

Compared to double-word or triple-word arithmetic,
arbitrary precision libraries such as GNU-MPFR [5]
have the advantage of being versatile, but may involve
a significant penalty in terms of speed and memory
consumption if one only requires computations accurate
within around 150 bits in a few critical parts of a
numerical program.

Algorithms for double-word arithmetic have been
presented in [17], [9]. The purpose of this paper is to
introduce and analyze efficient algorithms for performing
the arithmetic operations in triple-word arithmetic. Our
goal is to obtain algorithms that are faster than the ones
we could obtain simply by using floating-point expansion
algorithms in the particular case 𝑛 = 3, for a comparable
accuracy.

In the following, we assume a radix-2, precision-𝑝
floating-point (FP) arithmetic system, with unlimited
exponent range and correct rounding. As a consequence,
our results will apply to “real-world” binary floating-
point arithmetic, such as the one specified by the IEEE
754-2008 Standard, provided that underflow and overflow
do not occur. We also assume the availability of an
FMA (fused multiply-add) instruction. Such an instruction
evaluates expressions of the form 𝑎𝑏+ 𝑐 with one final
rounding only.

The notation 𝑎
⃒⃒
𝑏 means “𝑎 divides 𝑏”. The notation

RN(𝑡) stands for 𝑡 rounded to the nearest FP number,
ties-to-even, and RU(𝑡) (resp. RD(𝑡)) stands for 𝑡 rounded
towards +∞ (resp. −∞). We will use three classical
functions of the floating-point literature: ulp (unit in the
last place [12], [21]), ufp (unit in the first place [28]) and
uls (unit in the last significant place). They can be defined
as follows. If 𝑥 ̸= 0 is a real number, then:

∙ ufp(𝑥) = 2⌊log2 |𝑥|⌋;
∙ ulp(𝑥) = ufp(𝑥) · 2−𝑝+1;
∙ uls(𝑥) is the largest power of 2 that divides 𝑥, i.e.,

the largest 2𝑘 (𝑘 ∈ Z) such that 𝑥/2𝑘 is an integer.
When 𝑥 is a FP number, ufp(𝑥) is the weight of its most

1. See http://www.metalibm.org/lutetia.html

2

significant bit, ulp(𝑥) is the weight of its least significant
bit, and uls(𝑥) is the weight of its rightmost nonzero
bit. For instance, assuming binary64/double precision
arithmetic (𝑝 = 53), if

𝑥 = −1.011012 × 2364

then ufp(𝑥) = 2364, ulp(𝑥) = 2312, and uls(𝑥) = 2359.
The number 𝑢 = 2−𝑝 = 1

2ulp(1) denotes the roundoff
error unit. When an arithmetic operation 𝑎∇𝑏 is per-
formed, where 𝑎 and 𝑏 are FP numbers, what is effectively
computed is RN(𝑎∇𝑏), and if 𝑡 is a real number and
𝑇 = RN(𝑡), then

|𝑡− 𝑇 | ≤ 𝑢

1 + 𝑢
· |𝑡| ≤ 𝑢 · |𝑡| and |𝑡− 𝑇 | ≤ 𝑢 · |𝑇 |,

and more precisely

|𝑡− 𝑇 | ≤ 1

2
ulp(𝑡) ≤ 1

2
ulp(𝑇).

The algorithms presented in this paper (as well as
the usual algorithms that manipulate double-words or
general expansions) use as basic blocks the classical
algorithms Fast2Sum (Algorithm 1), 2Sum (Algorithm 2),
and 2Prod (Algorithm 3) given below. Roughly speaking
(more detail below), Algorithms 1 and 2 compute the
error of a FP addition, and Algorithm 3 computes the
error of a FP multiplication.

Algorithm 1 – Fast2Sum(𝑎, 𝑏). (3 operations) [4].
Require: ∃ integers 𝑘𝑎 ≥ 𝑘𝑏,𝑀𝑎,𝑀𝑏 (with |𝑀𝑎|, |𝑀𝑏| ≤
2𝑝 − 1), s.t. 𝑎 = 𝑀𝑎 · 2𝑘𝑎 and 𝑏 = 𝑀𝑏 · 2𝑘𝑏 .

Ensure: 𝑠+ 𝑒 = 𝑎+ 𝑏
𝑠← RN(𝑎+ 𝑏)
𝑧 ← RN(𝑠− 𝑎)
𝑒← RN(𝑏− 𝑧)
return (𝑠, 𝑒)

If there exist integers 𝑘𝑎 ≥ 𝑘𝑏,𝑀𝑎,𝑀𝑏 (with
|𝑀𝑎|, |𝑀𝑏| ≤ 2𝑝 − 1), s.t. 𝑎 = 𝑀𝑎 · 2𝑘𝑎 and 𝑏 = 𝑀𝑏 · 2𝑘𝑏

(which holds if |𝑎| ≥ |𝑏|) then values 𝑠 and 𝑒 computed
by Algorithm 1 satisfy 𝑠+ 𝑒 = 𝑎+ 𝑏. Hence, 𝑒 is the error
of the FP addition 𝑠← RN(𝑎+ 𝑏).

Algorithm 2 – 2Sum(𝑎, 𝑏). (6 operations) [19], [13].
Ensure: 𝑠+ 𝑒 = 𝑎+ 𝑏

𝑠← RN(𝑎+ 𝑏)
𝑎′ ← RN(𝑠− 𝑏)
𝑏′ ← RN(𝑠− 𝑎′)
𝛿𝑎 ← RN(𝑎− 𝑎′)
𝛿𝑏 ← RN(𝑏− 𝑏′)
𝑒← RN(𝛿𝑎 + 𝛿𝑏)
return (𝑠, 𝑒)

Algorithm 2 requires twice as many operations as
Algorithm 1, but its output variables always satisfy
𝑠+ 𝑒 = 𝑎+ 𝑏: no knowedge of the respective magnitudes
of |𝑎| and |𝑏| is needed.

Algorithm 3 – 2Prod(𝑎, 𝑏). (2 operations) [11], [23], [21])
Ensure: 𝜋 + 𝑒 = 𝑎 · 𝑏

𝜋 ← RN(𝑎 · 𝑏)
𝑒← RN(𝑎 · 𝑏− 𝜋) (FMA)
return (𝜋, 𝑒)

The values 𝜋 and 𝑒 computed by Algorithm 3 satisfy
𝜋 + 𝑒 = 𝑎𝑏. Algorithm 3 uses an FMA instruction (for
computing RN(𝑎 · 𝑏− 𝜋)).

Sometimes, we know in advance the value of 𝑠 or 𝜋. In
that case, 𝑒 can be computed saving the first operation,
with algorithms denoted in the following by for instance
2Sum2(𝑠)(𝑥, 𝑦).

When one defines a number as the unevaluated sum
of two, three or more FP numbers, one has to explain to
which extent they can “overlap”: after all the sum of the
three double-precision/binary64 numbers 1, 2, and 4 is
just a three-bit number, expressing it as the sum of three
FP numbers does not make it more accurate. Several
definitions appear in the literature. The first needed in
this paper is Priest’s definition:

Definition 1. The sequence (𝑥𝑖) is P-nonoverlapping (with
Priest’s definition [27]) when ∀𝑖, |𝑥𝑖+1| < ulp(𝑥𝑖).

We also introduce the following definition, more re-
strictive than Shewchuk’s definition [29]:

Definition 2. The sequence (𝑥𝑖) is F-nonoverlapping (with
Fabiano’s definition) when ∀𝑖, |𝑥𝑖+1| ≤ 1

2uls(𝑥𝑖).

Definition 3. For any definition of nonoverlapping, a sequence
(𝑥𝑖) is said nonoverlapping wIZ (with possible interleaving
zeros) when we have a set 𝐼0 such that ∀𝑖 ∈ 𝐼0, 𝑥𝑖 = 0, and
(𝑥𝑖)𝑖/∈𝐼0 is nonoverlapping.

We can now formally define the double-word and
triple-word numbers:

Definition 4. We call double-word number (DW) a pair
(𝑥0, 𝑥1) of FP numbers such that 𝑥0 = RN(𝑥0 + 𝑥1).

Definition 5. We call triple-word number (TW) a triplet
(𝑥0, 𝑥1, 𝑥2) of FP numbers that is P-nonoverlapping.

Note the deliberate difference between Definitions 4
and 5. To obtain a definition similar to Definition 4, one
could define a triple-word number as a 3-uple (𝑥0, 𝑥1, 𝑥2)
of floating-point numbers such that 𝑥0 = RN(𝑥0+𝑥1+𝑥2)
and 𝑥1 = RN(𝑥1 + 𝑥2). Such a requirement would be
much stronger than Definition 5, resulting in practice in
more complex and less efficient algorithms.

The definition of general expansions in [25] is based
on ulp-nonoverlapping (∀𝑖, |𝑥𝑖+1| ≤ ulp(𝑥𝑖)), which is
slightly less restrictive than the one we chose for TW.
Therefore algorithms proven for general expansions may
not be correct for TW.

The paper is organized as follows. Section 2 presents
some other basic blocks that will be used in the rest of
the paper, and some original results related to them.
Section 3 proves that the classical algorithm to turn

3

an arbitrary sequence into an expansion works for TW.
Section 4 presents an algorithm to correctly round a
TW to a FP number, and proves its correctness. Section
5 does the same as section 3 for the sum of two TW.
Section 6 presents two versions of an original algorithm
for computing the product of two TW, proves their
correctness and gives tight error bounds. Sections 7 to 10
provide a similar analysis, in the case of the product of a
DW by a TW, the reciprocal of a TW, the quotient of two
TW, and the square root of a TW, respectively. Section
11 compares our results to the ones known for general
𝑛-word expansions, with 𝑛 = 3.

2 OTHER BASIC BLOCKS

The Algorithms on TW presented in this paper use as
basic blocks the 2Sum, Fast2Sum and 2Prod algorithms
presented in the previous section, as well as the following,
less classical, VecSum and VecSumErrBranch algorithms.
Many properties of these algorithms have been proven
elsewhere [26], [24], [2], but in this paper, we will need
specific properties, presented below.

2.1 VecSum
The VecSum algorithm (Algorithm 4) first appears as a
part of Priest’s normalization algorithm [26]. The name
“VecSum” was coined by Ogita et al [24]. The aim of
this algorithm is to turn a sequence that is “slightly”
nonoverlapping into one that is “more” nonoverlapping,
with no error. It is illustrated Fig. 1.

Algorithm 4 – VecSum(𝑥0, . . . , 𝑥𝑛−1). (6𝑛−6 operations)
Ensure: 𝑒0 + · · ·+ 𝑒𝑛−1 = 𝑥0 + · · ·+ 𝑥𝑛−1

𝑠𝑛−1 ← 𝑥𝑛−1

for 𝑖 = 𝑛− 2 to 0 do
𝑠𝑖, 𝑒𝑖+1 ← 2Sum(𝑥𝑖, 𝑠𝑖+1)

end for
𝑒0 ← 𝑠0
return (𝑒0, 𝑒1, . . . , 𝑒𝑛−1)

2Sum 2Sum 2Sum

𝑥0 𝑥1

𝑒0 𝑒1 𝑒2

𝑥𝑛−2

𝑥𝑛−1

𝑒𝑛−1

𝑠𝑛−2𝑠2𝑠1
· · ·

Fig. 1. The VecSum Algorithm [26], [24].

There are several theorems related to this algorithm,
that use different definitions of nonoverlapping. In what
follows, we will use the following original result:

Theorem 1. Assume, after removing possible interleaving
zeros, that we can write in a non-necessarily canonical way (i.e.,

we do not necessarily have |𝑀𝑖| ≥ 2𝑝−1) 𝑥𝑖 = 𝑀𝑖2
𝑘𝑖−𝑝+1,

|𝑀𝑖| < 2𝑝, such that ∀𝑖 ≤ 𝑛− 2, 𝑘𝑖−1 ≥ 𝑘𝑖 + 1, and 𝑘𝑛−2 ≥
𝑘𝑛−1. Then VecSum(𝑥0, . . . , 𝑥𝑛−1) is F-nonoverlapping wIZ
with the same sum.

In this case, Fast2Sum can be used instead of 2Sum, so that
VecSum only costs 3𝑛− 3 operations.

Proof: Interleaving zeros in the input simply give
some interleaving zeros in the output without changing
the non-zero terms, so that we can suppose that we have
removed them.

Firstly, ∀𝑖, |𝑠𝑖| ≤ (2− 2𝑢)2𝑘𝑖−1 .
Indeed, if by induction |𝑠𝑖+1| ≤ (2−2𝑢)2𝑘𝑖 , given |𝑥𝑖| ≤

(2−2𝑢)2𝑘𝑖 we get |𝑠𝑖+1|+|𝑥𝑖| ≤ (4−4𝑢)2𝑘𝑖 ≤ (2−2𝑢)2𝑘𝑖−1

so |𝑠𝑖| ≤ (2− 2𝑢)2𝑘𝑖−1 .
This gives |𝑒𝑖| ≤ 2𝑢2𝑘𝑖−1 , and justifies Fast2Sum being

used.
We suppose that |𝑒𝑖| > 1

2uls(𝑒𝑖′) with 𝑖′ < 𝑖. We also
suppose without loss of generality that uls(𝑒𝑖′) = 𝑢. We
easily get by induction that for all 𝑖, if 2𝑘

⃒⃒
𝑠𝑖, 𝑥𝑖−1, . . . , 𝑥0,

then 2𝑘
⃒⃒
𝑒𝑖, . . . , 𝑒0. Yet |𝑒𝑖| ≤ 1

2ulp(𝑠𝑖−1) so |𝑠𝑖−1| ≥ 1 so
𝑠𝑖−1 is a multiple of 2𝑢. Given we want a 𝑒𝑖′ non-multiple
of 2𝑢, that must be the case for one of the 𝑥𝑗 , 𝑗 ≤ 𝑖−2. In
particular, we have 2𝑘𝑗 ≤ 1

2 , hence 2𝑘𝑖−2 ≤ 1
2 , so 2𝑘𝑖−1 ≤ 1

4 ,
which contradicts |𝑒𝑖| ≤ 2𝑢2𝑘𝑖−1 .

The conditions on the input of Theorem 1 are complex,
so we will use the following corollary:

Corollary 1. Assume that we have 𝐼 ⊂ [[1, 𝑛− 2]] with no 2
consecutive indices such that

∀𝑖 ∈ [[0, 𝑛− 2]], 𝑖 /∈ 𝐼,ufp(𝑥𝑖+1) ≤
1

2
ufp(𝑥𝑖),

and

∀𝑖 ∈ 𝐼,ufp(𝑥𝑖+1) ≤ 2𝑝−2uls(𝑥𝑖) and ufp(𝑥𝑖+1) ≤
1

4
ufp(𝑥𝑖−1)

Then VecSum(𝑥0, . . . , 𝑥𝑛−1) is F-nonoverlapping with the
same sum. In this case, Fast2Sum can be used instead of 2Sum,
so that Algorithm 4 only costs 3𝑛− 3 operations.

Proof: For 𝑖 /∈ 𝐼 , we take 𝑘𝑖 = 𝑒𝑥𝑖
the canonical

exponent, and for 𝑖 ∈ 𝐼 , we take 𝑘𝑖 = max(𝑘𝑖+1 + 1, 𝑒𝑥𝑖
).

This is possible because: 2𝑘𝑖+1−𝑝+2
⃒⃒
𝑥𝑖 and 2𝑒𝑥𝑖

−𝑝+1
⃒⃒
𝑥𝑖,

which imply 2𝑘𝑖−𝑝+1
⃒⃒
𝑥𝑖, and |𝑥𝑖| ≤ 2 · 2𝑒𝑥𝑖 , which imply

|𝑥𝑖| ≤ 2 · 2𝑘𝑖 .

For 𝑖, 𝑖 + 1 /∈ 𝐼 , we have 𝑘𝑖+1 ≤ 𝑘𝑖 − 1. For 𝑖 ∈ 𝐼 , we
have on one hand 𝑘𝑖+1 ≤ 𝑘𝑖 − 1, and on the other hand
𝑒𝑥𝑖
≤ 𝑘𝑖−1 − 1 and 𝑘𝑖+1 ≤ 𝑘𝑖−1 − 2 so 𝑘𝑖 ≤ 𝑘𝑖−1 − 1.

2.2 VecSumErrBranch
VecSumErrBranch (Algorithm 5 below) has similarities
with Algorithm 4, but sums are computed starting from
the larger terms, and some tests help avoiding to return
too many zero terms. It is illustrated Fig. 2. It can be traced
back to a part of Hida, Li and Bailey’s normalization
algorithm for “quad-double” numbers [6], which itself is
a variant of Priest’s normalization algorithm [26].

4

Algorithm 5 – VSEB(𝑒0, . . . , 𝑒𝑛−1). (6𝑛− 6 operations &
𝑛− 2 tests)
Ensure: 𝑦0 + · · ·+ 𝑦𝑛−1 = 𝑒0 + · · ·+ 𝑒𝑛−1

𝑗 ← 0
𝜖0 ← 𝑒0
for 𝑖 = 0 to 𝑛− 3 do
(𝑟𝑖, 𝜖

𝑡
𝑖+1)← 2Sum(𝜖𝑖, 𝑒𝑖+1)

if 𝜖𝑡𝑖+1 ̸= 0 then
𝑦𝑗 ← 𝑟𝑖
𝜖𝑖+1 ← 𝜖𝑡𝑖+1

incr 𝑗
else
𝜖𝑖+1 ← 𝑟𝑖

end if
end for
𝑦𝑗 , 𝑦𝑗+1 ← 2Sum(𝜖𝑛−2, 𝑒𝑛−1)
𝑦𝑗+2, . . . , 𝑦𝑛−1 ← 0
return (𝑦0, 𝑦1, . . . , 𝑦𝑛−1)

· · ·

𝑒𝑖

𝑦𝑗

· · ·2Sum
𝜖𝑖−1 𝜖𝑡𝑖 𝜖𝑖

𝑟𝑖−1

Fig. 2. The VecSumErrBranch (VSEB) Algorithm.

We prove the following property, of Algorithm 5, that
will be useful later on.

Theorem 2. If (𝑒𝑖) is F-nonoverlapping wIZ, then
VSEB(𝑥0, . . . , 𝑥𝑛−1) is P-nonoverlapping with the same sum,
provided that 𝑝 ≥ 𝑛 − 1. In this case, Fast2Sum can be
used instead of 2Sum, so that Algorithm 5 only costs 3𝑛− 3
operations.

Proof: Again, interleaving zeros in the input can be
ignored without changing anything, so we suppose that
we have removed them. We write 𝑒𝑖 = 𝑀𝑖 · 2𝑘𝑖 with
|𝑀𝑖| < 2𝑝 odd so that |𝑒𝑖+1| ≤ 1

22
𝑘𝑖 . By an easy induction,

for all 𝑖, 𝑟𝑖−1 and 𝜖𝑖 are multiples of 2𝑘𝑖 .
∙ Let 𝑖0 be such that |𝜖𝑖0 | = 2𝑘𝑖0 . Let us show by

induction that for all 𝑖0 ≤ 𝑖 ≤ 𝑛 − 2, we have
|𝑟𝑖| ≤ 2𝑘𝑖0 (2− 2𝑖0−𝑖−1).

– We can initialize with 𝑖 = 𝑖0 − 1, because what
is transmitted to next step (playing the role of
𝑟𝑖0−1) is 𝜖𝑖0 , which exactly satisfies the condition.

– We suppose that |𝑟𝑖−1| ≤ 2𝑘𝑖0 (2− 2𝑖0−𝑖).
We have |𝑒𝑖+1| ≤ 1

22
𝑘𝑖 ≤ 1

42
𝑘𝑖−1 ≤ · · · ≤

2𝑖0−𝑖−12𝑘𝑖0 .
Thus |𝑟𝑖−1|+ |𝑒𝑖+1| ≤ 2𝑘𝑖0 (2− 2𝑖0−𝑖−1), and this
is a FP number because 𝑖0 ≥ 1 and 𝑖 ≤ 𝑛−2 give

𝑖0−𝑖−1 ≥ −𝑛+2 ≥ −𝑝+1, so that |𝑟𝑖| ≤ 2𝑘𝑖0 (2−
2𝑖0−𝑖−1). This gives the result by induction.

In particular, with 𝑗 such that 𝑦𝑗 = 𝑟𝑖0−1, we have
ulp(𝑦𝑗) ≥ 2|𝜖𝑖0 | = 2 · 2𝑘𝑖0 so |𝑦𝑗+1| < ulp(𝑦𝑗).

∙ For 𝑖0 such that |𝜖𝑖0 | > 2𝑘𝑖0 , we similarly get that
for all 𝑖 ≥ 𝑖0 such that 𝜖𝑡𝑖0+1, . . . , 𝜖

𝑡
𝑖 = 0, we have

|𝑟𝑖| ≤ |𝜖𝑖0 |+ 2𝑘𝑖0 .
Indeed, the same proof replacing 2𝑘𝑖0 (2 − · · ·) by
|𝜖𝑖0 |+2𝑘𝑖0 (1−· · ·) works, except that the equality case
can be reached in case of errors. In this case, this is
sufficient given ulp(𝑦𝑗) ≥ 2|𝜖𝑖0 | > |𝜖𝑖0 |+ 2𝑘𝑖0 ≥ 𝑦𝑗+1.

∙ Finally, we can use Fast2Sum. Indeed, we have
2𝑘𝑖

⃒⃒
𝑒0, . . . , 𝑒𝑖 so 2𝑘𝑖

⃒⃒
𝜖𝑖, and |𝑒𝑖+1| ≤ 2𝑘𝑖 .

Usually, we do not want to keep the complete output,
but only a fixed number of terms. The resulting algorithm
is denoted by VSEB(𝑘)(𝑒0, . . . , 𝑒𝑛−1). We have

Theorem 3. The relative error caused by keeping only the
first 𝑘 terms of a P-nonoverlapping sequence is bounded by
2𝑢𝑘 + 4.2 · 𝑢𝑘+1, provided that 𝑝 ≥ 6.

Proof: We have by P-nonoverlapping:

ufp(𝑦𝑘) ≤ 𝑢 · ufp(𝑦𝑘−1) ≤ · · · ≤ 𝑢𝑘 · ufp(𝑦0),

hence,

|𝑦𝑘|+ · · ·+ |𝑦𝑛−1| ≤ (2−2𝑢)(𝑢𝑘 +𝑢𝑘+1+ · · ·+𝑢𝑛)ufp(𝑦0),

hence |𝑦𝑘 + · · ·+ 𝑦𝑛−1| ≤ 2𝑢𝑘ufp(𝑦0).
We also have,

|𝑦0+ · · ·+𝑦𝑛−1| ≥ |𝑦0|−|𝑦1+ · · ·+𝑦𝑛−1| ≥ (1−2𝑢)ufp(𝑦0).

Therefore,

|𝑦𝑘 + · · ·+ 𝑦𝑛−1| ≤
2𝑢𝑘

1− 2𝑢
|𝑦0 + · · ·+ 𝑦𝑛−1|,

which implies the theorem.

2.3 Composed algorithm

Algorithms VecSum and VSEB were designed to be
composed, in order to obtain a “normalization” algorithm
such as Algorithm 6 below. In that case, we note that
the first 2Sum in VSEB can be skipped because (𝑒0, 𝑒1) is
already a DW. When Fast2Sum can be used everywhere,
we get a total of 6𝑛− 9 operations and 𝑛− 2 tests.

3 ARBITRARY THREE FP NUMBERS TO TW

Before manipulating Triple-Word numbers, we want to
be able to turn any unevaluated sum of three FP numbers
into a TW, with no error (this is the equivalent of the
2Sum algorithm for 3 FP numbers). We can use Algorithm
6, which can be found in [6] for quad-word numbers,
and in [25, page 87] for general expansions:

5

Algorithm 6 – ToTW(𝑎, 𝑏, 𝑐). (21 operations & 1 test)
Ensure: 𝑟 TW and 𝑟 = 𝑎+ 𝑏+ 𝑐

𝑑0, 𝑑1 ← 2Sum(𝑎, 𝑏)
𝑒0, 𝑒1, 𝑒2 ← VecSum(𝑑0, 𝑑1, 𝑐)
𝑟0, 𝑟1, 𝑟2 ← VSEB(𝑒0, 𝑒1, 𝑒2)
return (𝑟0, 𝑟1, 𝑟2)

We have,

Theorem 4. If 𝑎, 𝑏, 𝑐 are FP numbers, then 𝑇𝑜𝑇𝑊 (𝑎, 𝑏, 𝑐) is
a TW, provided that 𝑝 ≥ 4.

Proof: If (𝑒0, 𝑒1, 𝑒2) is F-nonoverlapping, then Theo-
rem 2 concludes.

First, |𝑒1| ≤ 1
2ulp(𝑒0) gives (𝑒0, 𝑒1) F-nonoverlapping.

We denote 𝑠 := RN(𝑑1 + 𝑧) the intermediate value in
VecSum(𝑑0, 𝑑1, 𝑐).

∙ If 𝑒1 ̸= 0, we suppose without loss of generality that
uls(𝑒1) = 𝑢, and 𝑒2 > 1

2𝑢. Then |𝑒2| ≤ 1
2ulp(𝑠) gives

𝑠 ≥ 1 so 2𝑢
⃒⃒
𝑠 but 𝑒1 is not divisible by 2𝑢 so 𝑑0

neither, hence 𝑑0 < 1, so |𝑑1| ≤ 1
2ulp(𝑑0) ≤ 1

2𝑢.
Furthermore, |𝑐+ 𝑑1| ≥ 1+ 1

2𝑢. Thus |𝑐| ≥ (1+ 1
2𝑢)−

1
2𝑢 = 1 so ulp(𝑐) ≥ 2𝑢 > 2|𝑑1| so 𝑠 = 𝑐 and 𝑒2 = 𝑑1,
which is impossible since |𝑒2| > 1

2𝑢 ≥ |𝑑1|.
So (𝑒1, 𝑒2) is F-nonoverlapping too.

∙ If 𝑒1 = 0, then the same reasoning works with 𝑒0
instead of 𝑒1.

Another typical way of forming a TW consists in using
any of the following algorithms, but with inputs that are
DW instead of TW (with an implicit third term equal to
zero, and simplifications obtained by removing useless
operations).

4 ROUNDING A TW TO A FP NUMBER
Frequently, TW arithmetic is used in intermediate calcula-
tions, but the final result must be a floating-point number.
Hence, we need to be able to return the FP number
closest to a TW number. This is for typically the case
when we use TW numbers in intermediate calculations
for implementing correctly rounded elementary functions.
This can be done using Algorithm 7.

Algorithm 7 – RoundTW(𝑥0, 𝑥1, 𝑥2). (3 operations & 4
tests)
Require: 𝑥̄ TW
Ensure: 𝑦 = RN(𝑥̄)

if RN(𝑥0 + 2𝑥1) inexact operation or (⋆) RN(−(32𝑢 −
2𝑢2) · 𝑥0) ̸= 𝑥1 then

𝑦 ← RN(𝑥0 + 𝑥1)
else if 𝑥2 > 0 then

𝑦 ← RU(𝑥0 + 𝑥1)
else if 𝑥2 < 0 then

𝑦 ← RD(𝑥0 + 𝑥1)
else
𝑦 ← RN(𝑥0 + 𝑥1)

end if
return 𝑦

At line 1 of Algorithm 7, although the fact that the
operation 𝑥0 + 2𝑥1 is exact can in theory be detected by
checking a flag, it will be more efficient in practice to
compute (𝑠, 𝑒) = Fast2Sum(𝑥0, 2𝑥1) and test whether 𝑒 is
zero.

We have,

Theorem 5. If 𝑥̄ is a TW, then 𝑅𝑜𝑢𝑛𝑑𝑇𝑊 (𝑥̄) = RN(𝑥̄),
provided that 𝑝 ≥ 4.

Proof: First, if 𝑥0+𝑥1 is a FP number, then 𝑦 = 𝑥0+𝑥1

anyway, and it is easy to check that 𝑥0+𝑥1 = RN(𝑥̄). We
suppose for the sequel of the proof that this is not the
case.

Given |𝑥1| < ulp(𝑥0), the first condition is false iff
𝑥0 + 𝑥1 is halfway between two consecutive FP numbers,
or in a special case that can without loss of generality
be reduced to 𝑥0 = 1 + 2𝑢 and 𝑥1 = − 3

2𝑢. When that
first condition is false, Condition (⋆) is designed to be
true in the special case, but false elsewise (because of the
magnitude of |𝑥1|).

∙ If 𝑥0 + 𝑥1 is halfway between two adjacent FP
numbers, then the rounding is decided by the sign
of 𝑥2.

∙ Otherwise, one easily checks that RN(𝑥0+𝑥1+𝑥2) =
RN(𝑥0 + 𝑥1), given |𝑥2| < ulp(𝑥1).

5 SUM OF TWO TW NUMBERS
To compute the sum of two TW numbers, we simply use
the composition of VecSum and VSEB after a preliminary
sorting of the input. This gives Algorithm 8 below. That
algorithm would of course also work to compute the
sum of a DW and a TW with the same error bound, but
with less operations and tests.

Algorithm 8 – TWSum(𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2). (42 opera-
tions & 8 tests)
Require: 𝑥̄ and 𝑦 TW
Ensure: 𝑟 TW and

⃒⃒⃒
𝑟−(𝑥̄+𝑦)

𝑥̄+𝑦

⃒⃒⃒
≤ 2𝑢3 + 4.2𝑢4

𝑧0, . . . , 𝑧5 ←Merge((𝑥0, 𝑥1, 𝑥2), (𝑦0, 𝑦1, 𝑦2))
𝑒0, . . . , 𝑒5 ← VecSum(𝑧0, . . . , 𝑧5)
𝑟0, 𝑟1, 𝑟2 ← VSEB(3)(𝑒0, . . . , 𝑒5)
return (𝑟0, 𝑟1, 𝑟2)

5.1 Correctness of Algorithm 8
We have,

Theorem 6. Let 𝑥0, . . . , 𝑥5 be FP numbers such that

∀𝑖, |𝑥𝑖+1| ≤ |𝑥𝑖| and ∀𝑖, |𝑥𝑖+2| < ulp(𝑥𝑖).

Then VSEB (VecSum(𝑥0, . . . , 𝑥5)) is P-nonoverlapping, pro-
vided that 𝑝 ≥ 4.

Interestingly enough, we can notice that Theorem 6 may
not hold for more than 6 floating-point inputs. Indeed,
for 7 inputs, we can consider

(𝑥𝑖) = 1−𝑢,−1+2𝑢,−𝑢+𝑢2, 𝑢−𝑢2, 𝑢2−𝑢3, 𝑢2−𝑢3, 𝑢3−𝑢4

6

which gives (𝑒𝑖) = 𝑢, 𝑢2, 𝑢2,−𝑢3,−𝑢4, and finally

(𝑦𝑖) = 𝑢, 2𝑢2,−𝑢3,−𝑢4

with 2𝑢2 = ulp(𝑢).
This is why it is reasonable to use the notion of

P-nonoverlapping for TW numbers only, but not for
general expansions, for which Algorithm 8 preserves
ulp-nonoverlapping only [25, page 90].

Sketch of the proof: For space constraints, the proof
of Theorem 6 is not detailed. The main steps are:

∙ prove by induction that |𝑠𝑖| ≤ 2ufp(𝑥𝑖−1) and |𝑠𝑖| ≤
4ufp(𝑥𝑖);

∙ if 𝑒𝑖 > 1
2uls(𝑒𝑗) for some 𝑗 < 𝑖, deduce some

conditions on 𝑖 and the nearby terms in various
cases;

∙ conclude with a case study: 𝑖 ≤ 3 and 𝑒𝑖 >
1
2uls(𝑒𝑗);

𝑖 ≥ 4 and 𝑒𝑖 >
1
2uls(𝑒𝑗); or 0 < 𝑒𝑖 ≤ 1

2uls(𝑒𝑗).

5.2 Number of operations in Algorithm 8

In the Merge instruction of Algorithm 8, if the last two
numbers to sort are 𝑥2 and 𝑦2, there is no need to do
it because they play symmetrical roles in 2Sum. Thus
this part costs only 4 tests. In VecSum, there are for each
block examples where Fast2Sum cannot be used, so it
costs 30 operations. One easily checks that Fast2Sum can
be used in VSEB, so it costs 12 operations and 4 tests.

6 PRODUCT OF TWO TW NUMBERS

To compute the product of two TW numbers, we simply
distribute the sub-products and aggregate the terms
ensuring P-nonoverlapping, with an error as small as
possible. The algorithms presented below guarantee
commutativity, even if it is rarely useful in practice.

Algorithm 9 – 3Prodacc
3,3 (𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2). (46 opera-

tions & 2 tests)
Require: 𝑥̄ and 𝑦 TW ; 𝑝 ≥ 6

Ensure: 𝑟 TW and
⃒⃒⃒
𝑟−𝑥̄𝑦
𝑥̄𝑦

⃒⃒⃒
≤ 28𝑢3 + 107𝑢4

𝑧+00, 𝑧
−
00 ← 2Prod(𝑥0, 𝑦0)

𝑧+01, 𝑧
−
01 ← 2Prod(𝑥0, 𝑦1)

𝑧+10, 𝑧
−
10 ← 2Prod(𝑥1, 𝑦0)

𝑏0, 𝑏1, 𝑏2 ← VecSum(𝑧−00, 𝑧
+
01, 𝑧

+
10)

𝑐← RN(𝑏2 + 𝑥1𝑦1) (FMA)
𝑧3,1 ← RN(𝑧−10 + 𝑥0𝑦2) (FMA)
𝑧3,2 ← RN(𝑧−01 + 𝑥2𝑦0) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑧3,2)
𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4 ← VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑐, 𝑧3)
𝑟0 ← 𝑒0
𝑟1, 𝑟2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3, 𝑒4)
return (𝑟0, 𝑟1, 𝑟2)

6.1 Bounds on the different terms

We suppose without loss of generality that 1 ≤ 𝑥0, 𝑦0 < 2,
so that |𝑥1|, |𝑦1| < 2𝑢 and |𝑥2|, |𝑦2| < 2𝑢2. Then, we have:

1 ≤ |𝑧+00| < 4
|𝑧−00| ≤ 2𝑢 ; uls(𝑧−00) ≥ 4𝑢2

|𝑧+01|, |𝑧
+
10| < 4𝑢 |𝑏2| ≤ 4𝑢2

|𝑥1𝑦1| < 4𝑢2 − 4𝑢3 |𝑐| < 8𝑢2

|𝑧−01|, |𝑧
−
10| ≤ 2𝑢2 |𝑥0𝑦2|, |𝑥2𝑦0| < 4𝑢2

|𝑧3,1|, |𝑧3,2| ≤ 6𝑢2 |𝑧3| ≤ 12𝑢2

|𝑠3| ≤ 20𝑢2

6.2 Correctness and error bound of Algorithm 9

We have,

Theorem 7. If 𝑥̄, 𝑦 are TW numbers and 𝑝 ≥ 6, then
3𝑃𝑟𝑜𝑑acc3,3 (𝑥̄, 𝑦) is a TW number, and the relative error
committed by 3𝑃𝑟𝑜𝑑𝑎𝑐𝑐3,3 (𝑥̄, 𝑦) is bounded by 28𝑢3 + 107𝑢4.

Theorem 7 uses the following, straightforward, lemma.

Lemma 1. For all FP numbers 𝑥, 𝑦, 1
2ulp(𝑥)

⃒⃒
RN(𝑥+ 𝑦).

Proof of the theorem:
1. (𝑟0, 𝑟1, 𝑟2) is a TW number.
⋆ First, let us prove that the last 2 lines are equivalent

to computing 𝑟0, 𝑟1, 𝑟2 = VSEB(3)(𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4)
∙ If 𝑒1 ̸= 0, then the fact that 𝑒0 = RN(𝑒0 + 𝑒1)

concludes immediately.
∙ If 𝑒1 = 0, one easily checks that |𝑠1|, |𝑠2|, |𝑠3| < 16𝑢 ≤

1
2ufp(𝑧+00) so that the next nonzero |𝑒𝑖| is strictly less
than 1

2ulp(𝑒0), which concludes.

⋆ Then, let us prove that, with this equivalent version,
(𝑟0, 𝑟1, 𝑟2) is P-nonoverlapping.

We denote 𝑎 := RN(𝑧+01 + 𝑧+10) and 𝑠3 := RN(𝑐 + 𝑧3)
intermediate sums in VecSum.

We want to show that VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑠3) is F-
nonovelapping, with 𝑒4 F-nonovelapping them too.

Thanks to Theorem 2, this would imply that (𝑟0, 𝑟1, 𝑟2)
is P-nonoverlapping.

- First, let us show that (𝑧+00, 𝑏0, 𝑏1, 𝑠3) satisfies the
conditions of Theorem 1.

First, we always have ufp(𝑧+00) ≥ 1 much larger than
four times any other number computed ; and in case on
they are non-zero ufp(𝑏1) ≤ 1

2ulp(𝑏0) < 1
2ufp(𝑏0).

For the rest of the proof, we suppose without loss of
generality that |𝑥1| ≥ |𝑦1|.

On one hand, we easily obtain |𝑠3| ≤ 10ulp(𝑥1).
On the other hand lemma 1 gives 1

2ulp(𝑥1)
⃒⃒
𝑎 with

1
2ulp(𝑥1) ≤ 𝑢2 < uls(𝑧−00) so 1

2ulp(𝑥1)
⃒⃒
𝑏0, 𝑏1.

∙ Case 𝑠3 = 0: we use 𝐼 = ∅. (nothing more to show)
∙ Case 𝑠3 ̸= 0 and 𝑏0 = 0 (so 𝑏1 = 0): we use 𝐼 = ∅.

(idem)
∙ Case 𝑠3 ̸= 0, 𝑏0 ̸= 0 and 𝑏1 = 0: we use 𝐼 = {1}.

7

Indeed, we have ufp(𝑠3) ≤ 1
4ufp(𝑧+00), and ufp(𝑠3) ≤

2𝑝−2uls(𝑏0). (using 𝑝 ≥ 6)
∙ Case 𝑠3 ̸= 0, 𝑏0 ̸= 0 and 𝑏1 ̸= 0: we use 𝐼 = {2}.

Indeed, we have ufp(𝑠3) ≤ 16ufp(𝑏1) ≤ 1
4ufp(𝑏0)

and ufp(𝑠3) ≤ 2𝑝−2uls(𝑏1). (using 𝑝 ≥ 6)

It also allows us to call Fast2Sum instead of the three
2Sum in this part of the algorithm, saving FP operations.

- Then, let us show that 𝑒4 is F-nonoverlapping with
the other 𝑒𝑖.

Firstly, ulp(𝑠3) ≥ 2|𝑒4|. Secondly, we have seen that
uls(𝑏0),uls(𝑏1) ≥ 1

2ulp(𝑥1) ≥ 1
20 |𝑠3| ≥ ulp(𝑠3). (using

𝑝 ≥ 6). Thirdly, ulp(𝑧+00) ≥ 2𝑢 > ulp(𝑠3).
Thus 𝑒0, 𝑒1 and 𝑒2 are divisible by ulp(𝑠3) ≥ 2|𝑒4|.
2. The relative error is bounded by 28𝑢3 + 107𝑢4.
There are three sources of error: the terms that are

ignored, the roundings in the computation of 𝑧3 and 𝑐
and the terms not kept in VSEB. A naive analysis gives:

|𝜖0| := |𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2|
≤ 2(2𝑢− 2𝑢2)(2𝑢2 − 2𝑢3) + (2𝑢2 − 2𝑢3)2

≤ 8𝑢3 − 11.9𝑢4

|𝜖1| := |(𝑧−10 + 𝑥0𝑦2)− 𝑧3,1|
≤ 𝑢 · ufp(𝑧−10 + 𝑥0𝑦2)
≤ 𝑢 · ufp(2𝑢2 + 4𝑢2)
≤ 4𝑢3

|𝜖2| := |(𝑧−01 + 𝑥2𝑦0)− 𝑧3,2| ≤ 4𝑢3

|𝜖3| := |(𝑧3,1 + 𝑧3,2)− 𝑧3| ≤ 8𝑢3

|𝜖4| := |(𝑏2 + 𝑥1𝑦1)− 𝑐| ≤ 4𝑢3

|𝜖5| := |(𝑧+00 + 𝑏0 + 𝑏1 + 𝑐+ 𝑧3)− (𝑟0 + 𝑟1 + 𝑟2)|
≤ (2𝑢3 + 4.2𝑢4)|𝑧+00 + 𝑏0 + 𝑏1 + 𝑐+ 𝑧3|

Yet, 𝑥̄, 𝑦 ≥ 1 − (2𝑢 − 2𝑢2) − (2𝑢2 − 2𝑢3) ≥ 1 − 2𝑢 so
𝑥̄𝑦 ≥ 1− 4𝑢. We eventually obtain that the error cannot
be too large if 𝜖5 ̸= 0 (not detailed here), and finally:⃒⃒⃒⃒

𝑟 − 𝑥̄𝑦

𝑥̄𝑦

⃒⃒⃒⃒
≤ 28𝑢3 − 11.9𝑢4

1− 4𝑢
≤ 28𝑢3 + 107𝑢4. (1)

The bound (1) is very tight. Indeed, for instance in
binary64 arithmetic, if we take:

(𝑥0, 𝑥1, 𝑥2)
= (1 + (13 · 226 + 28)𝑢, 2𝑢− 227𝑢2, 2𝑢2 − 4𝑢3)

(𝑦0, 𝑦1, 𝑦2)
= (1 + 7 · 227𝑢, 2𝑢− (228 − 8)𝑢2, 2𝑢2 − 4𝑢3),

(2)

we obtain a relative error around (28− 10−5)𝑢3.

6.3 Number of operations of Algorithm 9
Before the last 3 lines, we count 22 operations. There are
3 Fast2Sum in VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑐, 𝑧3), so that it costs 15
operations. Finally, the call to VSEB costs 9 operations
and 2 tests. Thus the total is 46 operations and 2 tests.

Note that the optimization that directly uses 𝑒0 = 𝑟0
does not save any operation, but it saves the first
branching, which is very interesting.

6.4 Faster version
In this version, 𝑒4 is not computed.

Algorithm 10 – 3Prodfast
3,3 (𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2). (38 opera-

tions & 1 test)
Require: 𝑥̄ and 𝑦 TW ; 𝑝 ≥ 6

Ensure: 𝑟 TW and
⃒⃒⃒
𝑟−𝑥̄𝑦
𝑥̄𝑦

⃒⃒⃒
≤ 44𝑢3 + 176𝑢4

[same 5 first lines as Algorithm 9]
𝑧3,1 ← RN(𝑧−10 + 𝑥0𝑦2) (FMA)
𝑧3,2 ← RN(𝑧−01 + 𝑥2𝑦0) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑧3,2)
𝑠3 ← RN(𝑐+ 𝑧3)
𝑒0, 𝑒1, 𝑒2, 𝑒3 ← VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑠3)
𝑟0 ← 𝑒0
𝑟1, 𝑟2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3)
return (𝑟0, 𝑟1, 𝑟2)

This saves 8 operations and 1 test. The proof of
correctness and the computation of the error bound are
similar to those for Algorithm 9. The obtained error
bound is 44𝑢3 + 176𝑢4, which is very tight, because with
the input values (2) in binary64 arithmetic, we obtain a
relative error around (44− 10−5)𝑢3.

7 MULTIPLYING A DW BY A TW
To multiply a DW (𝑥0, 𝑥1) by a TW (𝑦0, 𝑦1, 𝑦2), we use
the same algorithms as previously, slightly simplified
to take into account that 𝑥2 = 0. Additionally to being
interesting in itself, this operation will be used later on
to compute reciprocals and quotients, which justifies a
separate analysis.

Algorithm 11 – 3Prodacc
2,3 (𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑦2). (45 operations

& 2 tests)
Require: 𝑥̄ DW and 𝑦 TW ; 𝑝 ≥ 6

Ensure: 𝑟 TW and
⃒⃒⃒
𝑟−𝑥̄𝑦
𝑥̄𝑦

⃒⃒⃒
≤ 10.5𝑢3 + 39𝑢4

[same 5 first lines as Algorithm 9]
𝑧3,1 ← RN(𝑧−10 + 𝑥0𝑦2) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑧−01)
𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4 ← VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑐, 𝑧3)
𝑟0 ← 𝑒0
𝑟1, 𝑟2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3, 𝑒4)
return (𝑟0, 𝑟1, 𝑟2)

7.1 Correctness, number of operations and error
bound
Since Algorithm 11 is a particular case of Algorithm 9,
correctness is directly ensured, provided that 𝑝 ≥ 6.
Compared to Algorithm 9, we saved 1 operation, so that
the total number of operations is 41. The error bound
of Theorem 7 holds. However, one can redo the analysis
taking into account that 𝑥2 = 0 and obtain a better bound,
namely,

8

Theorem 8. If 𝑥̄ is a DW number and 𝑦 is a TW number, then
the relative error committed by 3𝑃𝑟𝑜𝑑acc2,3 (𝑥̄, 𝑦) is bounded by
10.5𝑢3 + 39𝑢4, provided that 𝑝 ≥ 6.

The proof is omitted. It is unclear whether the bound
of Theorem 8 is very tight, but it is not too bad either:
in binary64 arithmetic, the choice

(𝑥0, 𝑥1)
= (1 + 3 · 227𝑢, 𝑢− 227𝑢2)

(𝑦0, 𝑦1, 𝑦2)
= (1 + (3 · 226 + 6)𝑢, 2𝑢− 5 · 227𝑢2, 2𝑢2 − 26𝑢3)

(3)

gives a relative error around (10− 2 · 10−6)𝑢3.

7.2 Faster version

As previously, one obtains a faster yet slightly less
accurate algorithm by avoiding the computation of 𝑒4.
This gives Algorithm 12 below.

Algorithm 12 – 3Prodfast
2,3 (𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑦2). (37 operations

& 1 test)
Require: 𝑥̄ DW and 𝑦 TW ; 𝑝 ≥ 6

Ensure: 𝑟 TW and
⃒⃒⃒
𝑟−𝑥̄𝑦
𝑥̄𝑦

⃒⃒⃒
≤ 18𝑢3 + 75𝑢4

[same 5 first lines as Algorithm 9]
𝑧3,1 ← RN(𝑧−10 + 𝑥0𝑦2) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑧−01)
𝑠3 ← RN(𝑐, 𝑧3)
𝑒0, 𝑒1, 𝑒2, 𝑒3 ← VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑠3)
𝑟0 ← 𝑒0
𝑟1, 𝑟2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3)
return (𝑟0, 𝑟1, 𝑟2)

Similarly to what was done before, we obtain, provided
that 𝑝 ≥ 6,

|𝑟 − 𝑥̄𝑦|/|𝑥̄𝑦| ≤ 18𝑢3 + 75𝑢4.

This bound is very tight: in binary64 arithmetic, with
the input values given by (3), we obtain a relative error
around (18− 2.4 · 10−6)𝑢3.

8 RECIPROCAL OF A TW NUMBER

To compute the reciprocal of a TW, we use Algorithm 13
below, which is based on the Newton-Raphson iteration,
following the idea of [8] for general expansions. This
algorithm requires the stronger constraint 𝑝 ≥ 10. For
computing 1/𝑥, the Newton-Raphson iteration is

𝑟𝑛+1 = 𝑟𝑛(2− 𝑟𝑛𝑥)

which ensures a quadratic convergence towards 1/𝑥 as
soon as 𝑟0 is close enough to 1/𝑥.

Algorithm 13 – 3Reci(𝑥0, 𝑥1, 𝑥2). (73 operations & 2 tests
and relative error bounded by 11.5𝑢3+1465𝑢4 if 3Prod2,3

is Algorithm 11, 65 operations & 1 test and relative error
bounded by 19𝑢3 + 1502𝑢4 if 3Prod2,3 is Algorithm 12.
Require: 𝑥̄ TW ; 𝑝 ≥ 10
𝑎← RN ((1 + 2𝑢)/𝑥0)
ℎ1,1 ← 2Prod2(1 + 2𝑢)(𝑎, 𝑥0) = RN(𝑎𝑥0 − (1 + 2𝑢))
(FMA)
ℎ1 ← RN(−ℎ1,1 − 𝑎𝑥1) (FMA)
𝑏0,1, 𝑏1,1 ← 2Prod(𝑎, 1− 2𝑢)
𝑏1,2 ← RN(𝑏1,1 + 𝑎ℎ1) (FMA)
𝑏̄← Fast2Sum(𝑏0,1, 𝑏1,2)
𝑖̄← 2− 3Prod2,3(𝑏̄, 𝑥̄)
𝑦 ← 3Prod2,3(𝑏̄, 𝑖̄)
return (𝑦0, 𝑦1, 𝑦2)

A natural starting point for the Newton-Raphson iter-
ations would be RN(1/𝑥0), obtained through a floating-
point division. However, Algorithm 13 uses RN((1 +
2𝑢)/(𝑥0)) instead of RN(1/𝑥0) to start the calculations in
order to take profit from the fact that for any FP number 𝑥,
RN(𝑥×RN(1+2𝑢

𝑥)) = 1+2𝑢 (the proof is straightforward).
Thus in Algorithm 13, one has to imagine a “virtual”

ℎ0 = 2 − (1 + 2𝑢) = 1 − 2𝑢. This defines a DW number
ℎ̄ = (ℎ0, ℎ1) that approximates 2− 𝑎 · (𝑥0 + 𝑥1).

Several variants are possible for implementing the
last two lines of Algorithm 13. First, one can choose
the accurate (Algorithm 11) or fast (Algorithm 12) ver-
sion of 3Prod2,3 to implement the DW×TW products.
Then, further simplification is possible: to compute
2 − 3Prod2,3(𝑏̄, 𝑥̄) there is no need to actually perform
a multiplication followed by a subtraction, one can just
slightly modify the multiplication algorithm, essentially
by replacing the terms 𝑒𝑖 in Algorithm 11 or Algorithm 12
by their opposite by turning some + into − operations
and conversely in order not to waste any operation (this
gives Algorithm 16 in the appendix, see supplementary
material). The last product can also be simplified by
taking into account the fact that 𝑖0 = 1. We have,

Theorem 9. If 𝑥̄ is a TW, and if 𝑝 ≥ 10, then the relative
error committed by 3𝑅𝑒𝑐𝑖(𝑥̄) is bounded by 11.5𝑢3 + 1465𝑢4

if 3Prod2,3 is Algorithm 11 (accurate version), and by 19𝑢3 +
1502𝑢4 if 3Prod2,3 is Algorithm 12 (fast version).

The proof of Theorem 9, with the modified versions
of Algorithms 11 and 12 is given in the appendix.

9 QUOTIENT OF TWO TW NUMBERS

To compute 𝑧/𝑥̄, the first idea that springs in mind is
to compute the reciprocal of 𝑥̄ and then to multiply
it by 𝑧. However (using the notation 𝑏̄ that appears
in Algorithm 13), this would mean that we compute
something like 𝑧 × (𝑏̄× (2− 𝑏̄𝑥̄)), while it is significantly
better to compute (𝑧 × 𝑏̄) × (2 − 𝑏̄𝑥̄). In particular, this
allows to parallelize the computations of 𝑧𝑏̄ and 2− 𝑏̄𝑥̄.
We obtain Algorithm 14 below.

9

Algorithm 14 – 3Div(𝑧0, 𝑧1, 𝑧2, 𝑥0, 𝑥1, 𝑥2). (119 operations
& 4 tests and relative error bounded by 24𝑢3 + 1509𝑢4 if
the “accurate” multiplications algorithms are used, and
103 operations & 2 tests and relative error bounded by
39𝑢3 +1582𝑢4 if the “fast” multiplications algorithms are
used.)
Require: 𝑧,𝑥̄ TW ; 𝑝 ≥ 10

[same 5 first lines as Algorithm 13]
𝑏̄← Fast2Sum(𝑏0,1, 𝑏1,2)
𝑖̄← 2− 3Prod2,3(𝑏̄, 𝑥̄)
𝑎̄← 3Prod2,3(𝑏̄, 𝑧)
𝑦 ← 3Prod3,3(𝑎̄, 𝑖̄)
return (𝑦0, 𝑦1, 𝑦2)

As for Algorithm 13, several variants are possible
for implementing the products 3Prod2,3 and 3Prod3,3

in Algorithm 14. One can choose the accurate or fast
version of the DW×TW and TW×TW multiplication
algorithms. Again, the subtraction that appears in the
line “ 𝑖̄ ← 2 − 3Prod2,3(𝑏̄, 𝑥̄)” does not need to be per-
formed: the multiplication algorithm is slightly modified
instead (Algorithm 16 in the appendix, see supplementary
material).

For the computation of the final product, one of course
can use Algorithm 9 or Algorithm 10. However, as for the
reciprocal operation, these algorithms can be simplified
significantly by taking into account that 𝑖0 = 1. The
corresponding multiplication algorithm in the “fast” case
is Algorithm 18 in the appendix. We finally have,

Theorem 10. If 𝑥̄,𝑧 are TW numbers and if 𝑝 ≥ 10, then
the relative error committed by 3𝐷𝑖𝑣(𝑧, 𝑥̄) is bounded by
24𝑢3 +1509𝑢4 if the “accurate” versions of the multiplication
algorithms are used, and by 39𝑢3+1582𝑢4 if the “fast” versions
are used.

The proof is given in the appendix, see supplementary
material.

10 SQUARE ROOT OF A TW NUMBER

To compute the square root of a TW number, we use
Algorithm 15 below, based again on the Newton-Raphson
iteration. Its analysis and the various possible optimizing
tricks are very similar to the ones used before for division.
The underlying iteration is now

𝑟𝑛+1 = 𝑟𝑛

(︂
3

2
− 1

2
𝑟2𝑛𝑥

)︂
,

which ensures a quadratic convergence towards 1/
√
𝑥 as

soon as 𝑟0 is close enough to 1/
√
𝑥.

Algorithm 15 – 3SqRt(𝑥0, 𝑥1, 𝑥2). (127 operations & 4
tests and and relative error bounded by 24𝑢3+10260𝑢4 if
the “accurate” multiplications algorithms are used, and
111 operations & 2 tests and relative error bounded by
39𝑢3 + 10333𝑢4 if the “fast” multiplications algorithms
are used.)
Require: 𝑥̄ TW ; 𝑝 ≥ 11

Ensure: 𝑦 TW and
⃒⃒⃒
𝑦−

√
𝑥̄√

𝑥̄

⃒⃒⃒
≤ 24𝑢3+10260𝑢4, resp. 39𝑢3+

10333𝑢4

𝑎← RN
(︀
(1 + 4𝑢)/RN(

√
𝑥0)

)︀
𝑎′ = 1

2𝑎 (exact)
ℎ
(1)
0 , ℎ

(1)
1,1 ← 2Prod(𝑎, 𝑥0)

ℎ
(1)
1 ← RN(ℎ

(1)
1,1 + 𝑎𝑥1) (FMA)

ℎ
(2)
0,1, ℎ

(2)
1,1 ← 2Prod(𝑎′, ℎ(1)

0)

ℎ
(2)
0 ← 1.5− ℎ

(2)
0,1 (exact)

ℎ
(2)
1 ← −RN(ℎ

(2)
1,1 + 𝑎′ℎ

(1)
1) (FMA)

𝑏0,1, 𝑏1,1 ← 2Prod(𝑎, ℎ(2)
0)

𝑏1,2 ← RN(𝑏1,1 + 𝑎ℎ
(2)
1) (FMA)

𝑏̄← Fast2Sum(𝑏0,1, 𝑏1,2)
𝑏̄′ = 1

2 𝑏̄ (exact)
𝑖(1) ← 3Prod2,3(𝑏̄, 𝑥̄)

𝑖(2) ← 1.5− 3Prod2,3(𝑏̄
′, 𝑖(1))

𝑦 ← 3Prod3,3(𝑖(1), 𝑖(2))
return (𝑦0, 𝑦1, 𝑦2)

We have,

Theorem 11. If 𝑥̄ is a TW, then the relative error committed
by 3𝑆𝑞𝑅𝑡𝑎𝑐𝑐(𝑥̄) (resp. 3𝑆𝑞𝑅𝑡𝑓𝑎𝑠𝑡(𝑥̄)) is bounded by 24𝑢3 +
10260𝑢4 (resp. 39𝑢3 + 10333𝑢4).

The major steps of the proof are given in the appendix,
see supplementary material.

11 IMPLEMENTATION AND TESTS

11.1 Experimental settings

We have implemented the multiplication and division
algorithms presented in this paper (Algorithms 9 and
10 for multiplication, and Algorithm 14 in the “fast”
and “accurate” versions for division). Our goal was
twofold: to compare the performances of our algorithms
with other solutions, and to assess the correctness and
tightness of our error bounds. Our algorithms have
been implemented in the Campary library [25]. We
compare them to algorithms based on “general” floating-
point expansions used in the special case 𝑛 = 3, also
implemented in the Campary library, and to the GNU
MPFR [5] multiple-precision library. MPFR also provides
reference values. The various considered algorithms are
given in Table 1.

Source code of this benchmark is available by re-
quest to the authors. It has been compiled with
GCC 8.2.1 20181127 with compilation options -O3
-march=native, libraries GMP 6.1.2, and MPFR 4.0.2
from Archlinux repositories were used. The precision

10

Name Definition Known error bound

mpfr_mul
truncatedMul [25, Alg 31] 8𝑢3 + 48𝑢4 [25, Thm 3.4.4.]

baileyMul [25, Alg 33] 8𝑢3 + 49𝑢4 [25, Thm 3.4.5.]
3Prodacc Alg 9 28𝑢3 + 107𝑢4 Thm 7
3Prodfast Alg 10 44𝑢3 + 176𝑢4

mpfr_div
division [25, Alg 36]
3Divacc Alg 14 24𝑢3 + 1509𝑢4 Thm 10
3Divfast Alg 14 39𝑢3 + 1582𝑢4 Thm 10

TABLE 1
Algorithms considered in our tests.

of MPFR FP numbers has been set to 3 × 53 = 159.
Computations have been performed with an Intel R○

CoreTM i5-7440HQ CPU.
The input operands were generated using the MPFR

URandom algorithm. More precisely, each FP component
of a TW operand 𝑥 = (𝑥0, 𝑥1, 𝑥2) was obtained as:

𝑥𝑖+1 = URandom()× ulp(𝑥𝑖) ,

where URandom has an uniform density probability in
the range [0, 1].

11.2 Correctness and performance

We checked the various considered TW and FP expansion
algorithms over a large set of around 4× 106 randomly
chosen operands. Each result was compared to the result
obtained by the corresponding correctly rounded MPFR
algorithm. The second and third columns of Table 2 show
for each considered algorithm the largest relative error
obtained during these tests, along with the corresponding
ratio to the proven error bound referenced in Table 1.
Interestingly enough, for our multiplication and division
algorithms, the largest encountered errors in our tests are
not far from the bounds: for instance, with the 3Prodacc

algorithm (Algorithm 9), the largest encountered error is
only 0.554 times the bound. This shows that our error
bounds are rather tight.

Since in practice there is not much difference in the
accuracy of the “fast” and “accurate” versions of the
multiplication and division algorithms, it makes sense
to use the “fast” versions only. Incidentally, note that in
Table 2, the “accurate” version of the division algorithm
(3Divacc) seems less accurate than the other version. This
results from the fact that 3Divacc is more accurate in
terms of worst case analysis only: on randomly generated
values, their accuracies will not differ significantly.

The time taken to perform the operations on a large set
of randomly chosen operands is also measured. Each
measure is performed many times to account for its
variability. In Table 2, we reported the average and
standard deviation of our measures. One can see that
our algorithms are significantly faster than MPFR and
the general floating-point expansion algorithms.

Relative Ratio to Speed (Mop/s)
Name error bound mean deviation

mpfr_mul n/a 37.0 0.9
truncatedMul 3.42 · 10−49 0.031 48.3 0.9

baileyMul 3.42 · 10−49 0.031 64.5 1.2
3Prodacc 2.12 · 10−47 0.554 66.4 1.2
3Prodfast 2.69 · 10−47 0.446 80.3 1.7

mpfr_div n/a 10.4 0.3
division 6.43 · 10−49 9.3 0.2
3Divacc 1.56 · 10−47 0.476 13.2 0.3
3Divfast 1.31 · 10−47 0.245 16.8 0.3

TABLE 2
Results of correctness and speed tests for multiplication

and division algorithms. The speed is measured in
Moperations/s (a larger figure corresponds to a faster

algorithm).

Hence, compared to standard 𝑛-word floating-point
expansion algorithms with 𝑛 = 3, our triple-word algo-
rithms offer faster arithmetic, at the price of a slight (yet
carefully bounded) loss in accuracy. This is of interest for
implementing correctly-rounded transcendental functions
in floating-point arithmetic, since in general this requires a
bit more than twice the target precision (i.e., double-word
arithmetic is not enough, and very accurate triple-word
arithmetic is an overkill).

CONCLUSION

We have shown that usual floating-point expansion
algorithms adapted for building and adding triple-word
numbers are correct in the context of triple-words, and
we have introduced algorithms for rounding, multiplying,
reciprocating, dividing and computing square roots of
triple-word numbers, along with their correctness proofs
and error bounds.

Some of the error bounds have been shown to be tight
(at least in binary64 arithmetic). Our algorithms have been
implemented in the Campary library. Our experiments
show that the obtained algorithms are faster than generic
𝑛-word arithmetics at the price of a slight (yet carefully
bounded) loss in accuracy.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers, whose
comments have been very helpful for revising the original
manuscript.

REFERENCES

[1] D. H. Bailey, R. Barrio, and J. M. Borwein, High precision computa-
tion: Mathematical physics and dynamics., Applied Mathematics and
Computation 218 (2012), 10106–10121.

[2] Sylvie Boldo, Mioara Joldeş, Jean-Michel Muller, and Valentina
Popescu, Formal verification of a floating-point expansion renormaliza-
tion algorithm, 8th International Conference on Interactive Theorem
Proving (ITP) (Brasilia, Brazil), 2017.

11

[3] Florent de Dinechin, Alexey V. Ershov, and Nicolas Gast, Towards
the post-ultimate libm, 17th IEEE Symposium on Computer Arith-
metic (ARITH-17), 2005, pp. 288–295.

[4] T. J. Dekker, A floating-point technique for extending the available
precision, Numerische Mathematik 18 (1971), no. 3, 224–242.

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
MPFR: A multiple-precision binary floating-point library with correct
rounding, ACM Transactions on Mathematical Software 33 (2007),
no. 2, 15 pages. Available at http://www.mpfr.org/.

[6] Y. Hida, X. S. Li, and D. H. Bailey, Algorithms for quad-double preci-
sion floating-point arithmetic, 15th IEEE Symposium on Computer
Arithmetic (ARITH-15), June 2001, pp. 155–162.

[7] IEEE Computer Society, IEEE standard for floating-point arith-
metic, IEEE Standard 754-2008, August 2008, Available at http:
//ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[8] M. Joldeş, J.-M. Muller, and V. Popescu, On the computation of the
reciprocal of floating point expansions using an adapted newton-raphson
iteration, 25th IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP’2014), June
2014, pp. 63–67.

[9] Mioara Joldeş, Jean-Michel Muller, and Valentina Popescu, Tight
and rigourous error bounds for basic building blocks of double-word
arithmetic, ACM Transactions on Mathematical Software 44 (2017),
no. 2.

[10] Mioara Joldeş, Jean-Michel Muller, Valentina Popescu, and War-
wick Tucker, CAMPARY: Cuda multiple precision arithmetic library and
applications, 5th International Congress on Mathematical Software
(ICMS), July 2016.

[11] W. Kahan, Lecture notes on the status of IEEE-754, Available at http://
www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF, 1997.

[12] , A logarithm too clever by half, Available at http://http.cs.
berkeley.edu/~wkahan/LOG10HAF.TXT, 2004.

[13] D. E. Knuth, The art of computer programming, 3rd ed., vol. 2,
Addison-Wesley, Reading, MA, 1998.

[14] C. Q. Lauter, Basic building blocks for a triple-double intermediate
format, Tech. Report 2005-38, LIP, École Normale Supérieure de
Lyon, September 2005.

[15] C. Q. Lauter, Arrondi correct de fonctions mathématiques, Ph.D. thesis,
École Normale Supérieure de Lyon, Lyon, France, October 2008, In
French, available at http://www.ens-lyon.fr/LIP/Pub/Rapports/
PhD/PhD2008/PhD2008-07.pdf.

[16] V. Lefèvre and J.-M. Muller, Worst cases for correct rounding of the
elementary functions in double precision, 15th IEEE Symposium on
Computer Arithmetic (ARITH-15), June 2001.

[17] X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar,
W. Kahan, A. Kapur, M. Martin, T. Tung, and D. J. Yoo, Design,
implementation and testing of extended and mixed precision BLAS,
Tech. Report 45991, Lawrence Berkeley National Laboratory, 2000,
https://publications.lbl.gov/islandora/object/ir\%3A115848.

[18] , Design, implementation and testing of extended and mixed
precision BLAS, ACM Transactions on Mathematical Software 28
(2002), no. 2, 152–205.

[19] O. Møller, Quasi double-precision in floating-point addition, BIT 5
(1965), 37–50.

[20] Daichi Mukunoki and Daisuke Takahashi, Performance comparison of
double, triple and quadruple precision real and complex blas subroutines
on gpus, Proceedings of the ATIP/A*CRC Workshop on Accelerator
Technologies for High-Performance Computing: Does Asia Lead
the Way? (Singapore, Singapore), ATIP ’12, A*STAR Computational
Resource Centre, 2012, pp. 37:1–37:3.

[21] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-
Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume
Melquiond, Nathalie Revol, and Serge Torres, Handbook of floating-
point arithmetic, 2nd edition, Birkhäuser Boston, 2018, ACM G.1.0;
G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-3-319-76525-9.

[22] M. Nakata, A numerical evaluation of highly accurate multiple-precision
arithmetic version of semidefinite programming solver: SDPA-GMP,-QD
and -DD., 2010 IEEE International Symposium on Computer-Aided
Control System Design, IEEE, 2010, pp. 29–34.

[23] Y. Nievergelt, Scalar fused multiply-add instructions produce floating-
point matrix arithmetic provably accurate to the penultimate digit, ACM
Transactions on Mathematical Software 29 (2003), no. 1, 27–48.

[24] T. Ogita, S. M. Rump, and S. Oishi, Accurate sum and dot product,
SIAM Journal on Scientific Computing 26 (2005), no. 6, 1955–1988.

[25] V. Popescu, Towards fast and certified multiple-precision libraries,

Ph.D. thesis, Université de Lyon, 2017, Available at https://hal.
archives-ouvertes.fr/tel-01534090.

[26] D. M. Priest, Algorithms for arbitrary precision floating point arithmetic,
10th IEEE Symposium on Computer Arithmetic (ARITH-10), June
1991, pp. 132–143.

[27] D. M. Priest, On properties of floating-point arithmetics: Numerical
stability and the cost of accurate computations, Ph.D. thesis, University
of California at Berkeley, 1992.

[28] Siegfried M. Rump, T. Ogita, and S. Oishi, Accurate floating-point
summation part I: Faithful rounding, SIAM Journal on Scientific
Computing 31 (2008), no. 1, 189–224.

[29] J. R. Shewchuk, Adaptive precision floating-point arithmetic and fast
robust geometric predicates, Discrete Computational Geometry 18
(1997), 305–363.

[30] S. Yamada, T. Ina, N. Sasa, Y. Idomura, M. Machida, and T. Ima-
mura, Quadruple-precision blas using bailey’s arithmetic with fma
instruction: its performance and applications, 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2017, pp. 1418–1425.

Nicolas Fabiano was born in Paris, France, in
1998. He is currently studying Computer Science
at the ENS Paris, and he is especially interested
in game theory. He is involved in different math
associations, especially the scientific part of the
Tournoi Français des Jeunes Mathématiciennnes
et Mathématiciens (TFJM2) and its international
version.

Jean-Michel Muller was born in Grenoble,
France, in 1961. He received his Ph.D. degree in
1985 from the Institut National Polytechnique de
Grenoble. He is Directeur de Recherches (senior
researcher) at CNRS, France, and he is the co-
head of GDR-IM. His research interests are in
Computer Arithmetic. Dr. Muller was co-program
chair of the 13th IEEE Symposium on Computer
Arithmetic (Asilomar, USA, June 1997), general
chair of SCAN’97 (Lyon, France, sept. 1997),
general chair of the 14th IEEE Symposium on

Computer Arithmetic (Adelaide, Australia, April 1999), general chair of
the 22nd IEEE Symposium on Computer Arithmetic (Lyon, France, June
2015). He is the author of several books, including “Elementary Functions,
Algorithms and Implementation” (3rd edition, Birkhauser, 2016), and he
coordinated the writing of the “Handbook of Floating-Point Arithmetic”
(2nd edition Birkhäuser, 2018). He served as an associate editor of the
IEEE Transactions on Computers from 2014 to 2018, and he is a fellow
of the IEEE.

Joris Picot was born in Troyes, France, in 1985.
He received his Ph.D. degree in 2013 from the
Université de Toulouse. He spend seven years
in the developement of computational fluid dy-
namics software, and he is Research Engineer at
École Normale Supérieure de Lyon, France. His
research interests are in Rigorous Computing.

