N

N

Creation of Autonomous Artificial Intelligent Agents
using Novelty Search method of fitness function
optimization

laroslav Omelianenko

» To cite this version:

Taroslav Omelianenko. Creation of Autonomous Artificial Intelligent Agents using Novelty Search
method of fitness function optimization. [Research Report] NewGround LLC. 2018. hal-01868756v2

HAL Id: hal-01868756
https://hal.science/hal-01868756v2
Submitted on 7 Sep 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01868756v2
https://hal.archives-ouvertes.fr

Creation of Autonomous Artificial Intelligent Agents
using Novelty Search method of fitness function
optimization

Taroslav Omelianenko
NewGround LLC
Kiev, Ukraine
Email: yaric@newground.com.ua

Abstract—Search for Novelty is an universal method of biolog-
ical life evolution through introduction of the random beneficial
mutations to the genetic code of the organism. In this work we
describe experiment of applying Novelty Search method of fitness
function optimization combined with Neuro-Evolution of Aug-
menting Topologies (NEAT) algorithm to produce Autonomous
Artificial Intelligent Agents capable to solve spatial navigation
task in complex maze environment. The AI Agents produced by
the neuro-evolution method described by the NEAT algorithm
evolve through gradual complexification of their internal neural
network by augmenting its topologies.

Finally, we consider how to apply studied optimization meth-
ods and evolutionary algorithms to create ensembles of compact
modular Al systems trained using vocabulary of terms describing
real world settings. And how to control such ensembles by
specialized supervisors knowledgeable about the task and the
operating environment.

We provide the complete source code for implementing the
NEAT algorithm, including Novelty Search and Objective-Based
optimization methods, in the GO programming language.

Keywords—novelty search, objective-based search, evolutionary
computation, artificial intelligence, autonomous agents, neuroevo-
lution of augmented topologies, NEAT, neuroevolution, artificial
neural networks, modular Al systems, modular artificial neural
networks, reinforcement learning

I. INTRODUCTION

For billions of years of evolution, biological intelligent
agents have mastered the power to find optimal solutions in
deceptive environments that we encounter in our daily inter-
actions with the real world. We can easy navigate themselves
through the maze of a big city subways and roadways. But
for artificial intelligent systems, this is too difficult to be
easily solved using the optimal computing resources. This
is especially true for offline autonomous agents that are not
backed by super power of cloud servers.

The main problem here is related to the fact that reliable
maze navigation requires the development of a solution in
an environment having many traps with strong local optima
of fitness function. Such traps are represented as cul-de-sacs
that are close to the final destination, but that can not be
escaped without a step back, away from the ultimate goal (at
least temporary). In such environments, objective-based solvers
basically can not find optimal solution or any solution at all,
because they do not have the necessary internal machinery

for committing the leap-of-faith and move backward from the
target in order to eventually find a way out.

The objective-based solvers depends on the best attempts of
their designers to assess the operating environment and develop
a better way to achieve the ultimate goal. But, as it happens in
the real world, preliminary assumptions often can not account
for all the traps on the way to the goal because of the extreme
complexity of the environment settings. And even in simple
artificial environments, such as maze navigation, it often
happens that objective-based solvers can not find the optimal
solution within the adequate execution time and computational
resources allocation. But for successful autonomous execution
in real world environments, it is critically important to create
Intelligent Agents capable of quickly finding a solution with
minimal computational load.

This paper is organized as follows: In Section we
provide overview of our assumptions and details of the ex-
periment as well as description of maze solver agent and its
seed genome. It is followed by Section with results of
executing the experiment’s trials. In Section we compare
performance of the optimization methods studied for specific
environments using the experimental results obtained. Finally,
in Section [V| we discuss our vision how studied optimization
method combined with neuro-evolution can be used to create
Autonomous Artificial Intelligent Agents based on ensembles
of compact, modular and specialized ANNs that can solve real-
world tasks in energy efficient and understandable way.

With this work we provide full implementation of NEAT
algorithm and of studied fitness function optimization methods
in GO programming language [8]] in form of GitHub reposi-
tories:

e the NEAT algorithm with Reinforcement Learning
experiments: https://github.com/yaricom/goNEAT

e the Novelty Search and Objective-Based methods of
fitness function optimization along with maze ex-
perimental environment: https://github.com/yaricom/
goNEAT_NS

II. EXPERIMENT OVERVIEW

In the experiment we studied how Novelty Search (NS) [3]]
method of fitness function optimization performs compared to
traditional objective-based ones for unsupervised training of

l|Page

https://github.com/yaricom/goNEAT
https://github.com/yaricom/goNEAT_NS
https://github.com/yaricom/goNEAT_NS

Fig. 1: The schema of maze agent with input sensors plot

Artificial Intelligent Agents to do spatial navigation in complex
maze environment. The main idea behind NS optimization
is to rather look for novel outcomes in the search space
than the distance to the final objective: the maze exit. The
Novelty Search assigns higher fitness values to the Intelligent
Agent capable to find the most novel solution among all
previous tries. Despite its ignorance to the final objective the
NS happens to be extremely effective optimization method
capable of breeding AAIA, which crack deceptive real-world
tasks even in the realms where traditional objective-based
methods have failed completely. The main assumption about
what makes this possible, is that in order to reach final goal,
AAIA must find several intermediate goals (stepping stones)
which in most cases do not resemble the ultimate objective
[3)l. Sometimes Intelligent Agent must step back to avoid
deceptive traps. By doing this it will see a decrease in value
of objective-based fitness function for a moment but will get a
better outcomes in the future. This is one of the fundamental
properties of the real-world environment that the exact route
to the final objective in most cases can not be predicted in
advance, and all intermediate stepping stones should be found
by taking the path.

The Novelty Search optimization seems like a natural fit
for Neuro-evolution family of genetic algorithms [3] producing
elegant custom Artificial Neural Networks (ANNs) [4]. In
the experiment we combined NS with Neuro-Evolution of
Augmenting Topologies [2] algorithm which efficiently evolve
ANNSs through complexification by augmenting its topologies.

A. The Maze Solver Agent Configuration

Autonomous Artificial Intelligent Agent, designed to solve
the maze, has ten input sensors that allow collecting informa-
tion about the environment and two output effectors controlling

its movements through the maze (see Figure [I). The final
objective of the agent is to go through the maze and find a
way out.

The input sensors are: six range finders that indicate the
distance to the nearest obstacle (blue arrows) and four pie-slice
radar sensors (slices of red circle) that act as a compass towards
the goal (maze exit), activating when a line from the goal to
the center of the agent falls within the pie-slice. The

in the center points to the movement direction
of the agent.

The agent is also equipped with two effectors producing a
forces that respectively turn and propel the robot, i.e. change
its linear and angular velocity.

B. Seed Genome Configuration

The configuration of the seed genome of the solver agent
can be summarized as follows (see Figure [2):

e ten input (sensor) neurons (blue): six for range find-
ers [RIGHT, FRONT-RIGHT, FRONT, FRONT-LEFT,
LEFT, BACK] plus four for slice radar sensors with
45 degree FOV [FRONT, LEFT, BACK, RIGHT]

e two output (effectors) neurons (red): angular (neuron
#13) and linear (neuron #14) velocity controlling
effectors

e one hidden neuron (#12) to introduce non linearity
(green)

e one bias neuron (#1) to avoid zero saturation when
input neurons is not activated ()

The input neurons has following numbers on the seed
genome schema (2):

Fig. 2: The seed genome schema

2|Page

Fig. 3: The medium maze winners genome when Novelty
Search optimization method applied

e Range Finders: #2 - RIGHT, #3 - FRONT-RIGHT, #4
- FRONT, #5 - FRONT-LEFT, #6 - LEFT, #7 - BACK

e Radar Sensors: #8 - FRONT, #9 - LEFT, #10 - BACK,
#11 - RIGHT

C. The Novelty Search metric definition for a maze environ-
ment

The Novelty Search optimization method is based on nov-
elty metric calculation for each solver agent after performing a
certain number of time steps in simulation of maze navigation
for that agent. The novelty metric biases the search in a
fundamentally different way than the objective-based fitness
function (which depends only on the distance from the agent to
the exit) and determines the behavior-space through which the
search will be performed. Therefore, since what is important in
the maze, this is where the solving agent ends navigation, then
for the maze domain, the behavior of a navigator is defined
as its final position. The novelty metric then maximizes the
N-nearest neighbor distance between the final positions of
all known solving agents, i.e. the most distant agent will have
the greatest score of the novelty metric.

The effect of this novelty metric is to reward the solver
agent for ending in a place where none have ended before
and the method of traversal is ignored. This measure reflects
that what is important, is to reach a certain location (i.e. the
goal) rather than the method of locomotion. Thus, although
the novelty metric has no knowledge of the ultimate goal, a
solution that reaches the goal can appear novel. In addition, the
comparison between fitness-based and novelty-based search
is fair because both scores are calculated only based on the
distance of the final position of the agent from other points.

III. EXPERIMENT RESULTS

As for deceptive environments we choose two types of
maze environments with different complexity as was recom-
mended in [3]: medium and hard maze. The maze configura-
tions was designed in such a way as to create many cul-de-
sacs with strong local optima, deceiving the objective-based
optimization methods.

A. The Medium Complexity Maze Environment

The first experiment to establish baseline performance
metric was performed using maze configuration of medium
complexity. The Novelty Search optimization was combined
with Neuro-Evolution of Augmenting Topologies algorithm
which use genetic neuro-evolution process to create a popula-
tion of organisms capable of solving a maze. We also compared
its performance with the objective-based optimization method
for the NEAT algorithm, where fitness function optimization
was dependent on how close final destination of produced
organism is from the exit of the maze.

The final performance metric of each Autonomous Agent
created for both optimization methods depends only on how
close to the maze exit is the final destination of the solver after
400 stimulation steps. Thus, despite the various methods of
fitness function optimization, the final results can be compared
for both methods. Each experimental trial was performed with
2000 epochs of evolution or until a winner is found.

1) Novelty Search optimization: Applying Novelty Search
based optimization it was possible to get the winner in /0 form
10 trials with optimal genome found approximately within
50 generations. An Artificial Neural Network produced by
an organism with a near optimal genome has 16 neurons
with only three hidden units, i.e. it was capable of growing
two additional units compared to the above-mentioned seed
genome (see Figure [2). And it is able to control maze solver
agent with a spatial error of about 1.9% for targeting the exit
of the maze.

Among with the two additional hidden units (neurons),

fit »= 0.8
g of 32

fit < 0.8
24 of 32

Fig. 4: The color coded final positions of NS maze solvers for
medium maze environment

3|Page

e ® o o

[
e @
- @
, 3
| ®

10
W\
® @

Fig. 5: The medium maze winners genome when objective-
based fitness function optimization method is applied

the recurrent link was developed at the output neuron #13
(angular velocity effector) - see Figure [3] The recurrent link
at this output neuron appears to be of great importance,
since it was introduced in each configuration of the winner’s
genome generated in each test trial. Such a consistent pattern
seems pretty reasonable for the neuron #13, because it affects
the agent’s steering and requires learning more complicated
behavior compared to the neuron #14 (linear velocity control).

It is also interesting to consider the hidden neuron #91,
which seemingly have learned the complex behavior of the
steering to the exit of the maze when it is discovered to
the right or behind the agent. Weve made such assumptions
because of its connections with input sensors #2, #7 (range
finders: RIGHT, BACK) and #10, #11 (radar sensors: BACK,
RIGHT).

The hidden neuron #293 connected with input sensor #11
(radar sensor: RIGHT), has learned to influence the steering of
the agent in the direction of the exit of the maze, since most
of the time the exit is on the right bottom relative to the agent.

The hidden neuron #12 which is introduced in seed genome
() operates as main control-and-relay switch relaying signals
from sensors and other hidden neurons to the effectors (neu-
rons #13, #14).

On the Figure [presented a diagram of the maze solving
simulation by solver agents controlled by ANNs, derived from
the genomes of all organisms introduced into the population
until a winner is found. Agents are coded by color depending
on which species the source organism belongs to. The fitness
of agent is measured as the relative distance between its final
destination and maze exit after running simulation for certain
number of time steps (400 in our setup).

The initial agent position is at the top-left corner marked

with green circle and maze exit at the bottom-right marked
with red circle.

The upper plot shows the final destinations of the most fit
agents (fitness >= 0.8), and the lower plot - the rest. The
results are presented for an experimental trial producing the
configuration of the winner genome depicted at Figure [3] The
total number of species created at that trial is 32, with only 8
becoming the most fit ones (fitness >= 0.8).

2) Objective-Based optimization: — Applying objective-
based optimization, it was possible to create the winners
capable of solving medium maze configuration in 9 from 10
trials. But the configuration of the winner’s genome in most
cases was not so elegant and energy efficient, as with above-
mentioned Novelty Search optimization.

After 248 generations, it was found near optimal configura-
tion of the winner’s genome (see Figure [5), capable of guiding
the maze solving agent through the medium-complexity maze
and reach the exit of the maze with spatial error about 1.8%.
The artificial neural network produced by this genome has
22 units (neurons) with nine hidden neurons for modeling
complex learned behavior.

Comparing the objective-based simulation plot (6) with the
similar for simulation based on Novelty Search optimization,
it can be seen that agents final destinations are distributed less
evenly through the maze space. Another interesting point is
that most fit agents were less exploratory, moving mainly along
the maze walls towards the local fitness optima. This behavior
resulted in more generations needed to produce the winner on
average, as well as completely failed trials.

B. The Hard Complexity Maze Environment

The hard maze configuration introduces additional com-
plexity, emphasizing the idiosyncrasies of the objective-based
optimization method. This requires a bit of strategic thinking,
which sometimes allows the agent to deviate from the seem-
ingly optimal places (with high local fitness function values)
to finally find the guiding path through the maze. The ability

fit »= 0,80
7oof 41

fit < 0,80
34 of 41

Fig. 6: The color coded final positions of objective-based maze
solvers for medium maze environment

4|Page

. 13

Fig. 7: The hard maze winner genome when Novelty Search
optimization method applied

of Novelty Search optimization to mimic mentioned strategic
reasoning due to its inherent ability to find all the promising
areas of the search space has made it an absolute champion
with this experiment.

1) Novelty Search optimization: The Novelty Search opti-
mization method, produced solving agents capable to solve the
hard maze in 10 from 10 trials. The power of NS method led to
the finding of winning solvers within up to 100 generations in
the maze environment of both: medium and hard complexity.
Which marks NS as a highly effective optimization method
for creating Autonomous Artificial Intelligent Agents capable
of complex spatial navigation.

After 109 generations of populations of organisms, the near
optimal configuration of the winner’s genome was found (see
Figure [7). The winner is able to guide the agent through the
hard maze environment and approach the exit with a spatial
error 2.5%. The Artificial Neural Network produced by this
genome has only 17 units (neurons) with four hidden neurons
for modeling complex learned behavior.

It is interesting to note that recurrent link on the output
neuron #13 (angular velocity effector) was routed through two
hidden neurons compared with the medium maze, where the
neuron #13 was simply linked to itself. This may result in
more complex behavior learned, especially taking into account
that link passes through the neuron #42, affected by the range
finder: LEFT and the radar: BACK. The neuron #42 is also
affected by connection to the neuron #643 (affected by the
range finder: LEFT). As a result, we can assume that it learned
how to steer the agent when the exit of the maze is behind,
and the wall is on the left, i.e. follow the left wall, moving
forward.

Another important point to consider is about possible
learned behavior encoded in the hidden neuron #297, which

is affected by input range finder sensors detecting distance to
obstacles in the RIGHT and FRONT direction. Considering the
maze configuration, we can assume that this neuron learned to
avoid the left chamber’s trap, where an extremely strong local
maximum of the fitness function was introduced (based on the
distance to the exit of the maze).

Because of the inherent complexity of the hard maze
environment, only one species from 35 was able to beget
genome with fitness greater than 0.8. This genome is also
the winner able to produce control ANN successfully guiding
solver agent to the exit of the maze. But, as can be seen from
the Figure [8] there is a high probability that as the number of
simulation steps increases, a larger number of species will be
able to hit the fitness threshold (0.8).

2) Objective-Based optimization: The objective-based fit-
ness function optimization method completely failed to create
any successful solver agent within all 10 experiment trials. In
some trials, it was able to create AAIAs, almost finding the
exit of the maze, but it seems that many more simulation steps
are required to eventually produce the winner genome, which
makes it too computationally expensive.

The Figure [9 depicts the most successful trials of the hard
maze solvers with objective-based optimization of the fitness

L -y -

Fit »= 0,80
1 of 35

L] f i

‘I"‘l s wu” ¢ - - []
fit < 0,80
24 of 35

Fig. 8: The color coded final positions of NS maze solvers for
hard maze environment

5|Page

Fit »= 0,80
0 of 152

Fit »= 0,30 fit »= 0,80
0 of 158 0 of 183

fit < 0,80
152 of 132

Fit < 0,80
155 of 158

fit < 0,80
183 of 183

Fig. 9: The color coded final positions of most fit objective-based maze solvers for the hard maze environment

function. Looking at it, it can be seen that most of the final
destinations of the Intelligent Agents were trapped in deceptive
cul-de-sacs, blocking them from further exploration of the
maze environment search space.

IV. DISCUSSION

As shown by our experimental data, the Novelty Search
method of fitness function optimization, when the fitness of the
agent is based on the novelty of the solution that it was able
to find, significantly outperforms traditional objective-based
optimization and was even able to solve the navigation task
when the traditional method failed completely.

We believe that Novelty Search optimization can be suc-
cessfully applied to create optimal solving agents in many
areas where strong deceptive local optima of fitness function
prevents traditional objective-based methods from finding op-
timal or any solutions at all.

Our NEAT algorithm implementation in the GO language is
also shared through NEAT software catalog, hosted by Evolu-
tionary Complexity (EPlex) Research Group at the University
of Central Florida: http://eplex.cs.ucf.edu/neat_software/

Special thanks to Dr. Kenneth O. Stanley for advises and
sharing the NEAT algorithm details.

V. FUTURE WORK

We consider the development of modular Al systems based
on ensembles of highly optimized compact Neural Networks.
Our goal is to create compact utility NN blocks that are trained
to represent vocabulary of the real-world terms that can be
combined to form complex knowledge and skill sets. The
mentioned NN blocks will be created using neuro-evolutionary
algorithms by the method of gradual complexification, creating
small and energy-efficient NN topologies that can be executed

on a commodity CPUs with minimal power consumption. We
call these blocks as Term Artificial Neural Network (tANN) to
emphasize the fact that each NN block represents a specific
term in our custom real-world vocabulary.

In addition, in order to model a more complex behavior, the
Supervisor ANN (sANN) structure will be created to process
the output of the tANN units and combine them with a
common knowledge of the internal functions of the supervised
process or system component.

It is assumed that Autonomous Artificial Intelligent system
will be represented in the form of a complex hierarchy of
tANN and sANN blocks in combination. Where each block
or hierarchy of blocks will be responsible for a particular
function, knowledge unit or set of the system skills. Such a
modular / hierarchical approach provides a simple means to
increase system capacity by introducing additional blocks with
specific training. It is also possible to obtain an understanding
of the flow of Al system reasoning, following the activations
of its constituent blocks. The knowledge transfer also becomes
easier by simply taking a NN block trained for a specific
vocabulary term and introducing it into the new system.

A. Our roadmap for future research

1) Creating definitions of the basic vocabulary terms

2) Creation of configurations of the seed genomes for
each specific term of the vocabulary

3) Training / breeding of tANN structures from the
vocabulary

4) Experiments on training / breeding of sANN-
structures, capable of solving specific complex prob-
lems

5) Comparison of the performance of Al agents obtained
using the described modular architecture against Al

6|Page

http://eplex.cs.ucf.edu/neat_software/

agents trained through traditional methods deep learn-

ing methods

(1]

(2]

(3]

[4]

(5]

(6]

(71

(8]

REFERENCES

Kenneth O. Stanley, (2004), Efficient Evolution of Neural Networks
Through Complexification — Department of Computer Sciences, The
University of Texas at Austin http://nn.cs.utexas.edu/?stanley:phd2004

Kenneth O. Stanley and Risto Miikkulainen, (2002), Evolving Neural
Networks Through Augmenting Topologies Evolutionary Computation,
10(2):99-127, 2002 http://nn.cs.utexas.edu/keyword?stanley:ec02

Joel Lehman and Kenneth O. Stanley, (2011), Novelty Search and the
Problem with Objectives Genetic Programming: Theory and Practice
IX (GPTP 2011), New York, NY: Springer, 2011 |http://eplex.cs.ucf.
edu/papers/lehman_gptp11.pdf

Stuart E. Dreyfus, (1990), Artificial neural networks, back propagation,
and the Kelley-Bryson gradient procedure Journal of Guidance,
Control, and Dynamics, Vol. 13, No. 5 (1990), pp. 926-928. https:
//doi.org/10.2514/3.25422

John H. Holland, (1975) Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology Control and
Artificial Intelligence. University of Michigan Press, Ann Arbor, MI,
1975.

Lawrence J Fogel; Alvin J Owens; Michael John Walsh, (1966),
Artificial intelligence through simulated evolution New York, John
Wiley & Sons, 1966

Donald E. Knuth, (1997) The Art of Computer Programming, Volume
1: Fundamental Algorithms Third Edition (Reading, Massachusetts:
Addison-Wesley, 1997), xx+650pp. ISBN 0-201-89683-4

Robert Griesemer, Rob Pike, Ken Thompson, (2009) The Go Program-
ming Language Google GO team, 2009-2018.

Retrieved from https://golang.org

7|Page

http://nn.cs.utexas.edu/?stanley:phd2004
http://nn.cs.utexas.edu/keyword?stanley:ec02
http://eplex.cs.ucf.edu/papers/lehman_gptp11.pdf
http://eplex.cs.ucf.edu/papers/lehman_gptp11.pdf
https://doi.org/10.2514/3.25422
https://doi.org/10.2514/3.25422
https://golang.org

	Introduction
	Experiment Overview
	The Maze Solver Agent Configuration
	Seed Genome Configuration
	The Novelty Search metric definition for a maze environment

	Experiment Results
	The Medium Complexity Maze Environment
	Novelty Search optimization
	Objective-Based optimization

	The Hard Complexity Maze Environment
	Novelty Search optimization
	Objective-Based optimization

	Discussion
	Future Work
	Our roadmap for future research

	References

