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Introduction 

Any time-domain signal can be equivalently represented in the frequency domain. Such 

representation is appropriate to estimate the average of spectral measures over time. However, 

often it is of interest to study the temporal dynamics of EEG data, for example in ERP analysis, 

thus in EEG literature we see more and more studies using time-frequency analysis (TFA). TFA 

decomposes a time series in a two dimensional plane, with one dimension being the time and 

the other being the frequency. One can then perform the analysis for any number of frequencies 

along time. In this section we will explain and describe univariate and bivariate spectral 

measures in the frequency and time-frequency (TF) domain. In the discussion we will consider 

some of the technical concerns that should be addressed in practice. Throughout this article will 

denote by x an EEG segment recorded at one channel or at any other derivation, such as a source 

component, for example a source component derived by independent component analysis 

(Makeig et al., 2004) or, more in general, by blind source separation techniques (Congedo, 

Gouy-Pailler and Jutten, 2008). Notice that we will enclose in brackets < > an empirical average 

over K realizations (i.e., 1

1

K

kK k
a a


  ), using the usual notation in the right-end side only 

when necessary to avoid confusions. This will allow us to simplify notation considerably and 

to make more apparent the different ways in which averages can be taken.  

 

Frequency Domain Analysis 

The fundamental mathematical tool for harmonic analysis is the Discrete Fourier Transform 

(DFT). The DFT decomposes a finite signal as a finite sum of sinusoids with different 

frequency, amplitude and phase. It can be computed efficiently by means of the celebrated Fast 

Fourier Transform (FFT) algorithm (Cooley and Tukey, 1965; Frigo and Johnson, 2005). The 

DFT of the signal in x results in a complex number zf =af +ibf for each discrete Fourier frequency 

f 1. af and bf are real numbers and are named the FFT coefficients. The univariate measures of 

interest are the amplitude and phase at frequency f, given by the modulus of zf, rf =|zf |=
2 2

f fa b  

and by its argument f =Arg (zf)=ArcTan(bf /af), respectively. The amplitude and phase are real 

quantities and have a straightforward geometrical interpretation in the complex plane (Fig. 3); 

                                                           
1 If x holds M samples and letting m=M/2, the DFT of x results in m+1 of such complex numbers, corresponding 

to frequencies 0 (direct current), 1/L, 2/L,…,m/L, where L is the frequency resolution, given by the reciprocal of 

the number of seconds in x. For example, if x holds two seconds of data, the frequency resolution L will be 

1/2=0.5Hz. M is typically chosen as a power of 2, a typical requirement of FFT algorithms. 
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in the DFT, for each frequency f, rf is the amplitude of the decomposed sinusoid and f is its 

position in time (lag). The set of values rf ² and  f along all discrete frequencies provides then 

the power spectrum and phase spectrum, respectively.  

In order to analyze continuous EEG time-series of arbitrary duration, the standard methods is 

averaging the power spectrum across sliding overlapping windows (Welch, 1967). In ERP and 

ERD/ERS analysis the multiple realizations are sweeps time-locked to an event and we can 

conveniently average across sweeps. The phase spectrum is rarely analyzed, since the phase of 

the signal is more conveniently studied by means of TFA. Bivariate measures in the frequency 

domain such as coherence have identical expressions as in TFA, so without loss of generality 

we will treat them in the framework of TFA. 

 

Figure 3: In the complex plane the abscissa is the real line and the ordinate is the imaginary line endowed 

with the imaginary unit i, which is defined as i²=-1. A complex number z can be represented in Cartesian 

coordinates as (z)+i(z), where (z) is the real coordinate and (z) the imaginary coordinate. It can 

also be represented by a position vector, that is, the vector joining the origin and the point, with length 

r and angle , the angle being defined with respect to the real axis. r and   are known as the polar 

coordinates of a complex number. More, in trigonometric form the coordinates are rcos and irsin, 

therefore, using Euler’s formula ei=cos+isin, we can also express any complex number as rei. This 

reduces to ei if the point is on the unit circle (i.e., wherever r=1), which is the case of the thick vector 

in the figure. In the frequency domain we obtain a complex number for each frequency. In the time-

frequency domain we obtain a complex number for each time-frequency point. Regardless the 

representation, the amplitude r  is expressed in µV units, while the phase , which is a circular quantity, 

is usually reported in the radians interval (-,…,] or (0,…,2]. 
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Time-Frequency Domain Analysis 

Whereas several possible time-frequency (TF) representations exist, in the EEG literature we 

mainly encounter two of them, namely, the analytic signal resulting from the Hilbert transform 

(Chavez et al. 2006; Rosenblum et al., 1996; Tass et al., 1998) and wavelets (Lachaux et al., 

1999; Tallon-Baudry et al., 1996). Several studies comparing the Hilbert transform to wavelets 

have found that the two representations give very similar results (Burns, 2004; Le Van Quyen 

et al., 2001; Quian Quiroga et al., 2002). 

 

The Analytic Signal  

 

The analytic signal (Gabor, 1946) is efficiently computed by means of the FFT algorithm, as 

described concisely by Marple (1999). The analytic signal representation of time-series x has 

the form z=x+iy, where y is the Hilbert transform of x. z is a complex signal in the time domain 

with the same sampling rate as the original signal. By applying a filter bank to the signal, that 

is, a series of band-pass filters centered at successive frequencies f (for example, centered at 

1Hz, 2Hz, …) and by computing the Hilbert transform for each filtered signal, we obtain the 

analytic signal in the TF domain, that is, for all points ztf =xtf+iytf in the TF plane. In analogy to 

what we have done in the frequency domain, from ztf we obtain the analytic amplitude rtf, also 

known as the envelope, and the analytic phase tf, as the modulus and argument of ztf, 

respectively2. These quantities are the polar coordinates of the analytic signal (Fig. 3), which 

we may write as tfi

tf tf
z r e


 . The physical interpretation of these quantities in is illustrated in 

Fig. 4. 

                                                           
2 Often they are named instantaneous amplitude and instantaneous phase. Here we prefer keeping the 
denomination “analytic” since “instantaneous” is used in this chapter in opposition to “lagged” to indicate a 
particular kind of phase relationships. 
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Figure 4: Two 2-second signals are shown as the top traces (x). Time is on the abscissa. The vertical 

scaling of the last traces is arbitrary. The analytic signal is z=x+iy, where y is the Hilbert transform of 

the input signal and is shown as the second trace. The next two traces are the analytic amplitude 

(envelope) and analytic phase. Note that the envelope is a non-negative quantity. A): the input signal is 

a sine wave at 4Hz. The instantaneous amplitude is constant in the whole epoch. The phase oscillates 

regularly in between its bounds at 4Hz. B): the input signal is a sine wave at 4Hz multiplied by a sine 

wave at 0.5 Hz with the same amplitude. The result input signal is a sine wave at 4Hz, which amplitude 

is modulated by the sine wave at 0.5Hz. The phase features an abrupt change at 1s, which may be 

misinterpreted as a phase resetting phenomenon. 

 

Computing Ensemble Averages in the Time-Frequency Domain  

In order to increase the signal-to-noise ratio, the analytic signal is usually averaged across short 

time segments and/or adjacent frequencies. In the following we will drop the time and 

frequency subscripts t and f whenever not necessary, assuming that the analytic signal z under 

analysis refers to a single TF point or that it has been averaged within neighboring TF points 

before computing the average across realizations. As a matter of fact, all measures we will 

consider makes use of two different ways to obtain averages and they determine to what 

physiological phenomena the measure is sensitive. Let zk=xk+iyk be the analytic signal evaluated 

at realization k. Suppose we average the envelope across realizations as 

2 21
K k kk

z x y  . In this case the average envelope depends on the absolute magnitude 

of the xk and yk coefficient, ignoring completely their phase. Thus, z  is sensitive to all kinds 

of activity, may it be phase-locked or not. We may also average the analytic signal directly as 

1 1
K Kk kk k

z x i y   , from which the average analytic amplitude and analytic phase are 

given by z  and arg z , respectively. Note that z  may be high only if the realizations 
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have a preferred phase at that time-frequency point, whereas if the phase is randomly 

distributed around the circle, z  will tend toward zero. This phenomenon if illustrated in Fig 

5. As a consequence, z
 
is a measure of Concentration (inverse of phase variance) that is 

sensitive to phase-locked activity only (e.g., evoked ERP components), while arg z  

measures the phase preferred direction (mean direction). These considerations should be kept 

in mind for interpreting the measures we will describe. 

 

Figure 5: In each diagram six complex numbers are represented as position vectors (gray arrows) in the 

complex plane (see Fig. 3). Consider these vectors as representing the analytic signal for a given time-

frequency point or time-frequency region estimated on six different ERP sweeps. In each diagram the 

black arrow is the position vector corresponding to the average of the six complex numbers, i.e., the 

average analytic signal across the six sweeps z . In the left diagram the vectors are distributed within 

one half circle, featuring a preferred direction. In the right diagram the vectors are randomly distributed 

around the circle; the resulting mean vector is much smaller, although the average length of the six 

vectors z  in the two diagram is approximately equal.  

 

Linear and Non-Linear Measures of amplitude, phase concentration and phase mean 

Based on these considerations, for analytic signal z at whatever TF region we define three 

fundamental linear univariate measures: the analytic signal mean amplitude (MAmp), the 

concentration (Con) and the mean direction (MDir) such as 

 2 2iMAmp z re x y     , (0.1) 
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2 2iCon z re x y      and (0.2) 

 
y

MDir ArcTan
x

  . (0.3) 

Note that it does not make sense to average directly phase values k estimated at each 

realization, i.e., to define a measure such as  ArcTan y x 3.  

These three measures are elementary quantities reported ubiquitously in the literature for a wide 

spectrum of purposes, in a great variety of variants and combinations. Often, new name are 

given to existing measures, or the same measure is named differently in different articles, 

increasing the confusion of the non-expert reader. Nonetheless, these three measures are the 

fundamental bricks of univariate measures. For example, in a frequency domain study on 

epilepsy, Kalitzin et al. (2002) define a “phase clustering” measure as Con/MAmp  and look at 

how such measure changes when evaluated at the frequency of intermittent photic stimulation 

and its higher harmonics.  

An important non-linear TF measures may be obtained adding a simple normalization of the 

analytic signal. Let again zk =xk+iyk be the analytic signal at realization k. Now, before 

computing the average across realizations, replace kx  by k kx r  and  ky  by  k ky r  , where 

2 2

k k k kr z x y    .This means that at all TF points and at each realization the vector k kx iy  

is stretched or contracted so as to be constrained on the unit complex circle (Fig. 6). Although 

deceivingly simple, this normalization is highly non-linear (Pascual-Marqui, 2007). After 

normalization, the MAmp measure (0.1) becomes meaningless, as it is always equal to 1; the 

Con measure on the other hand will be now actually sensitive to the variance of the phase across 

realizations regardless of amplitude, that is, it will be a measure depending only on phase. In 

the literature on circular (directional) statistics, which traces back to the work of Lord Reyleigh 

and Karl Pearson (Mardia, 1972), this is known as the “circular mean resultant length”. In the 

EEG literature it is known as inter-trial phase coherence (Makeig et al., 2002, 2004), but has 

been named by different authors also “inter-trial phase clustering” and “phase coherence” 

among other ways (Cohen, 2014, p. 243). In this chapter we will refer to it as to phase 

concentration (PCon), where here and hereafter the prefix “Phase” is added to its non-

                                                           
3Like phase, the time of the day is also a circular quantity and provides a good example. An appropriate average 
of 22h and 1h is 23h30, but this is very far from their arithmetic mean. See also Cohen (2014, pp 214-246).  
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normalized counterpart to stress the strictly dependence on phase of the measure. After the 

normalization the PCon measure simplifies to (see (0.2), Fig. 3 and Fig. 6) 

 iPCon e   , (0.4) 

and the corresponding phase mean direction (PMDir) is 

 
y r

PMDir ArcTan =
x r

   (0.5) 

Note that PCon is bounded between 0 (random phase distribution across realizations) and 1 (all 

vectors point in the same direction). This will be the case for all measures described hereafter. 

We say in this case that the measure is dimensionless. 

 

Figure 6: The left diagram is the same as in Fig. 5. The vectors in the right diagram have been 

normalized to unit length (non-linear normalization), that is, we replace 
i

re


 by 
i

e


. Note that the mean 

vector in the right points in a different direction as compared to the mean vector on the left, albeit the 

vectors have the same direction in the two diagrams; the average is weighted by the amplitude of the 

vectors in the left plot, whereas it ignores the amplitude in the right plot. 

 

A number of interesting measures can be obtained by computing a weighted average of the 

normalized analytic signal 
ie 

. Thinking this way, Con (0.2) is the non-normalized average 

analytic signal 
ire 

, that is, it is equal to the PCon weighted by its own envelope. Choosing 

the weights differently we obtain quiet different measures of phase concentration.  
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Weights can be given by experimental or behavioral variables such as reaction time, stimulus 

luminance, etc. In this way, we can discover phase concentration effects that are specific to 

certain properties of the stimulus or certain behavioral responses (Cohen and Cavanagh, 2011). 

We will refer to this measure as to the weighted phase concentration (wPCon). If wk are the 

weights (assumed non-negative), it is given by 

 

iwe
wPCon

w



   (0.6) 

Next, consider two distinct frequencies, which we name here the amplitude frequency fa and the 

phase frequency fp. Typically, fp < fa. Weighting the normalized analytic signal at the phase 

frequency by the envelope of the signal at the amplitude frequency we obtain a popular measure 

of cross-frequency coupling named modulation index (MI: Canolty et al., 2006; Cohen, 2014, 

p. 413). The normalized version of this measure is the phase-amplitude coupling (PAC), which 

is the MI normalized by the amplitude (Özkurt and Schnitzler, 2011). This is given by  

 

f

a

a

p
i

f

fr e
PAC

r



   (0.7) 

If the phase distribution at the phase frequency is uniform, high values of PAC indicates that 

the phase frequency modulates the signal at the amplitude frequency. Özkurt and Schnitzler 

(2011) proposed to use 2

a
fr  instead of 2

a
fr  as normalization in (0.7). Such an expression can 

be used also in the denominator of other normalized measures we encounter in this section, 

however using such normalization the obtained measure is sensitive to the variance of the 

normalizing random variables, here 
a

fr : the higher the variance of the amplitude 
a

fr  the lower 

the resulting PAC. We therefore present all measures with a normalization of the form as in 

(0.7), keeping in mind that other form of normalizations may suits better the experimental 

purposes. 

 

Both the wPCon and the MI measures are subjected to several confounding effects. As a 

consequence, they cannot be interpreted as they are, instead they must be standardized, for 

example, using resampling methods (for details see Canolty et al., 2006 and Cohen, 2014, p. 
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253-257 and p. 413-418). The standardized MI and PAC, along with their bivariate extensions 

discussed in next sub-section, are used to study an important class of phenomena that can be 

found in the literature under the name of phase-amplitude nesting (or coupling, interaction, 

binding), amplitude modulation and more (Colgin, 2015; Lisman and Jensen, 2013; Llinas, 

1988; Freeman, 2015; Palva and Palva, 2012; Varela et al., 2001). Nonetheless, the MI and PAC 

measure do not allow a straightforward physical interpretation and may issue unexpected results 

when applied to simulated data, therefore they should be used with caution. 

 

Bivariate Measures in the Frequency and Time-Frequency Domain  

A large family of bivariate measures are measures of dependency in the TF domain evaluating 

de facto the degree of amplitude co-modulation and/or phase synchronization between two time 

series over time. Two such measures are very popular in the EEG literature. They are known as 

the coherence (Nunez et al., 1997; Shaw, 1981) and phase coherence, the latter being known 

also as the phase-locking value (Lachaux et al., 1999; Mormann et al., 2000; Rosenblum et al., 

1996; Tass et al., 1998). For any analytic signal z=x+iy in whatever TF point or region, the 

auto-spectrum  

 
* 2 2 2c zz x y r      (0.8) 

 (superscript * indicates complex conjugate4) is a real quantity providing the squared amplitude 

(power) of the signal, that is, the TF-domain equivalent of the signal variance, which is a natural 

measure of the signal energy. Given two analytic signals z1 and z2 in whatever TF regions, the 

cross-spectrum between them is the TF domain equivalent of their covariance and is given by  

  1 2*

12 1 2 1 2

i
c z z rr e

 
  . (0.9) 

The coherence measure is defined as  

 
12

1 2

c
Coh

c c
 , (0.10) 

which is the equivalent of Pearson’s correlation in the TF-domain, taken in its absolute value. 

This is the bivariate extension of the Con (0.2) measure (with, as usual, the normalization in the 

denominator bounding the measure in between 0 and 1).  The right-end side expression in (0.9) 

                                                           
4 The complex conjugate of a complex number a+ib is a-ib. 
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shows that the cross-spectrum is a function of both the relative phase (1-2) of the two signals 

and the product of their amplitude r1r2. Hence, when averaging cross-spectra, coherence will 

be influenced both by the phase synchronization (dependency of angles 1-2 over realizations) 

and by the amplitude co-modulation (dependency of amplitudes r1r2 over realizations). Phase 

synchronization depends on the concentration of the relative phase. If the distribution of the 

relative phase is uniformly distributed across realizations the coherence will be zero. Amplitude 

co-modulation instead depends on the covariance of the two amplitudes. If the two amplitudes 

are uncorrelated across realizations, the coherence will be zero. Thus, coherence increases both 

with phase synchronization and amplitude co-modulation across realizations. This has been 

often been pointed out as a limitation of coherence, since it is difficult to disentangle the two 

effects (Lachaux et al., 1999). In order to do so we can decompose the terms in the right-end 

side of  (0.9). First, we define a measure of amplitude co-modulation, such as 

 
1 2

2 2

1 2

r r
Com

r r
 .  (0.11) 

This measure (known in statistics and signal processing as cosine similarity) is the bivariate 

extension of the MAmp (0.1) measure and like MAmp is not sensitive to phase synchronization 

at all. Second, applying the normalization described in the previous section, the (linear) 

coherence measure becomes the (non-linear) phase-locking measure: in (0.9) now r1=r2=1 and 

the denominator in (0.10) now equals 1, thus the coherence formula (0.10) simplifies to  

  1 2i
PCoh e

 
 , (0.12) 

which is the bivariate extension of the PCon (0.4) measure. Having now all vectors unit length, 

that is, constant amplitude, PCoh is affected by phase synchronization, but not at all by 

amplitude co-modulation (Lachaux et al., 1999; Mormann et al., 2000; Rosenblum et al., 1996; 

Tass et al., 1998). For this reason and following several authors, we will refer to this measure 

as Phase Coherence (PCoh) instead that as phase-locking value (Mormann et al., 2000; Peraaza 

et al., 2012; Stam et al., 2007). Like coherence, phase coherence is sensitive to the concentration 

of the relative phase regardless its mean. That is to say, for this measure to be high, the relative 

phase between the two vectors must be stable across realizations, regardless where the vectors 

point in space. Unbiased estimators for phase coherence, which should be applied when a few 

realizations are available (<50), have been provided by Aydore et al., (2013) and Kutil (2012). 

Note that in the frequency domain Coh (0.10), Com (0.11) and PCoh (0.12) are defined in the 
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same way, with the only difference that the input complex numbers in this case are the output 

of the DFT.  

In the same way we have done with the PCon measure, we may want to weight phase coherence 

using behavioral or experimental variables. For example, if wk are the reaction times observed 

at K ERP sweeps, the weighted phase coherence shall be defined as 

 

 1 2n ni
we

wPCoh
w

 

  . (0.13) 

By evaluating the exponential at the phase frequency of another time-series (e.g., another source 

component or another scalp derivation), the interareal phase-amplitude coupling (iPAC) 

measure allows to assess the modulation of the time series 1 at the chosen amplitude frequency 

fa by the phase frequency fp of time-series 2, yielding 

 

2

1

1

f

a

p

a

i

f

f

r e
iPAC

r



 .  (0.14) 

This measure is the bivariate extension of the PAC measure (0.7) and its interpretation is even 

more problematic. It allows to study how low-frequency waves (sometimes referred to as 

“carrier” waves) modulate high frequency oscillations in other regions and is useful when trying 

to model brain mechanisms related to large-scale synchronizations of neural assemblies (Llinas, 

1988; Freeman, 2015; Palva and Palva, 2012; Varela et al., 2001).  

 

Instantaneous and Lagged Phase Synchronization 

A major limitation of measuring phase synchronization from two scalp signals is the spurious 

dependency resulting from the volume conduction and the arbitrariness of the measures with 

respect to the electrical reference (Lachaux et al., 1999; Lehmann et al., 2006; Nunez et al., 

1997; Peraza et al., 2012; Srinivasan et al, 2007; Stam et al., 2007; Vinck et al., 2011; Winter 

et al., 2007). Since dipolar current generated in the brain diffuses instantaneously on the scalp 

even at large distances, two independent dipolar sources appear more dependent when 

measured at the scalp, especially if they are referenced to a common electrode (e.g., Peraza et 

al., 2012). To mitigate these effects it has been suggested to apply a Laplacian reference (Nunez 

et al., 1997; Winter et al., 2007) or to estimate dependency between voxels using a reference-
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free source localization method (Lehmann et al., 2006). These attempts mitigates, but do not 

solve the problem. More effectively, it has been suggested to discard the instantaneous part of 

dependency to focus only on the lagged part; the cross-spectrum in (0.9) can be written in 

Cartesian coordinates as  

    *

12 1 2 12 12c z z c i c    . (0.15) 

The real part of the cross-spectrum, named the co-spectrum, describes the instantaneous 

synchronization, that is, in-phase synchronization or out-of-phase synchronization. The 

imaginary part, named the quadrature spectrum, describes the synchronization with a quarter 

of a cycle lead or lag (Bloomfield, 2000). This is illustrated in Fig. 7. 

 

 

Figure 7: A) All sinusoidal waves have the same frequency and unitary amplitude, but different phase. 

With respect to the reference signal, the relative phase is 0 for the in-phase signal,  for the out-of-phase 

signal, /2 and /2+ for the two lagged signals. Consider the modulus of the cross-spectrum c12 in 

(0.15) between the reference signal (first trace) and the other traces taken one at a time, given by the 

square root of    12 12² ²c c  . It is equal to one for all the traces. In B) the contribution of the 

modulus for each trace is shown separately for the real part (co-spectrum) and imaginary part 

(quadrature spectrum). The square of the co-spectrum is one for the in-phase and out-of-phase signals 

and 0 for the two lagged signals. At the opposite, the quadrature spectrum is zero for the in-phase and 

out-of-phase signals and one for the lagged signal. Notice that considering the modulus of the cross-

spectrum we cannot distinguish an in-phase from an out-of-phase relationship, that is why coherence 

(0.10) is analogous to the absolute value of correlation and not to correlation. Notice also that we cannot 

distinguish between the two lagged signals, that is why coherence does not provide information on which 

signal is leading and which one is lagging. 
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Since volume conduction is instantaneous, it may influence only the co-spectrum. Hence, 

several authors have proposed lagged coherence-like measures based on the quadrature spectra 

(Nolte et al., 2004, 2006; Pascual-Marqui, 2007; Stam et al., 2007; Vinck et al., 2011).  

Nolte et al. (2004) defined the imaginary coherence (ICoh) as the coherence (0.10) where only 

the imaginary part of the cross-spectrum is retained, i.e., 

 
 12

1 2

c
ICoh

c c


 . (0.16) 

This measure has proven unsatisfactory with real data (Stam et al., 2007) and still makes use of 

the real part in the denominator of the formula. Pascual-Marqui (2007, Eq. 28) defined the 

lagged coherence (LCoh) measure applying to (0.16) a correction term in the denominator, as 

 
 

 

12

1 2 12

c
LCoh

c c c




 
. (0.17) 

The author also defined the instantaneous part of the coherence (in which only the co-spectrum 

is used), normalized versions of both lagged and instantaneous coherence (i.e., instantaneous 

and lagged PCoh) and multivariate versions of all these measures (Pascual-Marqui, 2007).  

Stam et al. (2007) took a different path. They proposed the phase-lag index (PLI), which 

estimate the asymmetry of the distribution of the relative phase. It is given by 

  12 PLI sign c  , (0.18) 

where the sign function returns 1 if the relative phase vector is in the upper quadrants or -1 if it 

is in the lower quadrants. A weighted version of this measure, named weighted phase-lag index 

(wPLI), has been proposed by Vinck et al. (2011). It is given by 

 
   

 

 

 

12 12 12

12 12

 c sign c c
wPLI

c c

  
 

 
. (0.19) 

The rationale behind the PLI and wPLI measures is illustrated in Fig. 8.   
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Figure 8: The left diagram is similar to those in Fig. 5 and 6, but now each grey vector represents 

normalized cross-spectra (0.15), i.e., relative-phase vectors. A) The phase-lag index (PLI) (0.18) 

considers the asymmetry of the distribution observed on the signs of the imaginary part of the cross-

spectrum (y-axis), represented by black vertical lines of unitary length. In B) the imaginary part of two 

normalized cross-spectra is shown as a black vertical line. The white sectors of the circle delimitate the 

relative phase range in which the relative phase vectors are closer to 0 or  as compared to /2 or /2+, 

i.e., they are closer to the real axis than to the imaginary axis. The white sectors indicate an instantaneous 

phase relationship between the two time-series, whereas the darkened sectors indicate a lagged phase 

relationship. The PLI is small if the relative phase vectors are uniformly distributed around the circle, 

like coherence and phase coherence. However, unlike these measures, PLI is small also if the relative 

phase vectors are centered around 0 and , that is, if the phase relationship is instantaneous. The wPLI 

(0.19) acts similarly to the PLI, but in addition it weights the sign function proportionally to the distance 

of the relative phase from 0 or  (rearranged from Vinck et al. 2011).  

 

Like the iPAC, the PLI and wPLI measures are currently used in studies that attempt to identify 

brain networks, for instance, by means of graph theory (Aydore et al., 2013; Palva and Palva, 

2012; Peraza et al., 2012). Vinck et al. (2011) proposed an unbiased PLI and wPLI estimator 

that should be preferred when the number of realizations is low (<50). In a high-density EEG 

studies Hardmeier et al. (2014) found the PLI to have less global inter-subject variability and 

test-retest reliability as compared to the wPLI. In an oddball ERP study performed in noisy 

conditions (walking subjects) Lau et al. (2012) found the variance of the wPLI be very high. 

However the coefficient of variation5 of the wPLI estimated on 500ms sliding windows featured 

very much lower variance. Furthermore, it reliably decreased on the average of all pair-wise 

electrodes in between 300 ms and 1s post-stimulus. It appears then that the variance of this 

estimator candidates as a useful index of phase synchronization more than the index itself.  

                                                           
5 For a statistical sample the coefficient of variation is given by the standard deviation divided by the mean. 
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It should be kept in mind that all lagged measures here discussed are insensitive to instantaneous 

phase synchronization, thus are not adapted in general. For instance, if one is interested in brain 

coupling phenomena, that is, synchronization of EEG signal across individuals, the 

instantaneous phase synchronization cannot be explained by volume conduction and can 

therefore be analyzed. 

 

Conclusions and Discussion 

Special Considerations In Time-Frequency Domain Analysis.  

Time-frequency and time-frequency dependency analysis requires special care. The Hilbert 

transform is obtained by the FFT algorithm (Marple, 1999). The FFT of a single realization 

provides an inconsistent estimates, in the sense that the variance of the estimator is proportional 

to the estimate itself and does not decrease with window size, thus some form of averaging 

and/or smoothing is always necessary (Thomson, 1982). In order to increase the consistency of 

the estimators, hence to minimize the number of points to be averaged, one can use multitaper 

FFT estimations (Thomson, 1982). The use of the FFT algorithm also requires the choice of a 

tapering window in the time domain to counteract spectral leakage due to finite window size 

(see Harris, 1978).  

Regarding the Hilbert transform, the analytic signal does not necessarily represent adequately 

the phase of the original signal. The study of Chavez et al. (2006) has stressed that this is the 

case in general only if the original signal is a simple oscillator with a narrow-band frequency 

support. These authors have provided useful measures to check empirically the goodness of the 

analytic signal representation. Because of this limitation, for a signal displaying multiple 

spectral power peaks or broad-band behavior, which is the case in general of EEG and ERP, 

the application of a filter bank to extract narrow-band behavior is necessary. When applying 

the filter bank one should strive to enforce minimal distortion to the phase of the signal. In 

general, a finite impulse response filter with linear phase response is adopted (see Widmann et 

al., 2014, for a review). The choice of the filters band width and frequency resolution is usually 

a matter of trials and errors; the band width should be large enough to capture the oscillating 

behavior and small enough to avoid capturing several oscillators in adjacent frequencies. Also, 

the use of filter banks engenders edge effects, that is, severe distortions of the analytic signal at 

the left and right extremities of the time window under analysis (Mormann et al., 2000). This 
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latter problem is easily solved defining a larger time window centered at the window of interest 

and successively trimming an adequate number of samples at both sizes.  

Regardless the chosen time-frequency representation, the estimation of phase and relative phase 

for realizations, time sample and frequencies featuring a low signal-to-noise ratio are 

meaningless; the phase being an angle, it is defined for vector of any length, even if the length 

(i.,e., the amplitude) is negligible. However, phase measures can be interpreted only where the 

amplitude is high (Bloomfield, 2000). The effect is exacerbated if we apply normalizations, 

since in this case very small coefficients are weighted as the others in the average, whereas they 

should better be ignored.  

Those are just the most important aspects to be taken into consideration when dealing with 

frequency domain and time-frequency domain methods. A throughout discussion on these 

methods and their application can be found in Cohen (2014). 
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