
HAL Id: hal-01868498
https://hal.science/hal-01868498

Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Extending OpenAPI 3.0 to Build Web Services from
their Specification

David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, Arnaud Lanoix

To cite this version:
David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, Arnaud Lanoix. Extending OpenAPI 3.0 to
Build Web Services from their Specification. International Conference on Web Information Systems
and Technologies, INSTICC, Sep 2018, Seville, Spain. �hal-01868498�

https://hal.science/hal-01868498
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Extending OpenAPI 3.0 to Build Web Services from their Specification

David Sferruzza1,3, Jérôme Rocheteau1,2, Christian Attiogbé1 and Arnaud Lanoix1

1LS2N, UMR CNRS 6004, F-44322 Nantes Cedex 3, France
2ICAM, 35, avenue du Champ de Manœuvres, 44470 Carquefou, France

3Startup Palace, 18, rue Scribe, 44000 Nantes, France
david.sferruzza@ls2n.fr, christian.attiogbe@ls2n.fr, arnaud.lanoix@ls2n.fr, jerome.rocheteau@icam.fr,

david.sferruzza@startup-palace.com

Keywords: Software Engineering, Web Applications, Web Services, Model-Driven Engineering, OpenAPI 3.0.

Abstract: Web services are meant to be used by other programs. Developers (or other programs) need to understand how
to interact with them, which means documentation is crucial. Some standards like OpenAPI define ways to
document web services and target both humans and programs. Many tools can be used to help developers to
work in a forward engineering process: they use hand-written OpenAPI models as input and automatically
generate a skeleton of a working application, for example. However, this approach is not suitable to generate
working applications if several evolutions occur over time, which often results in a misalignment between
the OpenAPI model and the web services implementation. Here we show how we extend the OpenAPI 3.0
specification to allow building actual web services using a Model-Driven Engineering (MDE) approach. We
extend the SWSG tool to make it possible to generate code from an extended OpenAPI model. This leverages a
MDE approach to build web services from a model while benefiting from OpenAPI 3.0 tooling and ecosystem.

1 INTRODUCTION

Context. Web services often aim to back various
web or mobile applications which deliver a service to
end-users. Lots of different processes and tools can
be used to build web services. Some of them fit well
for rapid-prototyping whereas others were made with
production-readiness in mind. The first must allow
fast iteration loops while progressively building from
a high-level to a low-level, and the latter must promote
good stability, maintainability and performance.
Both approaches can be interesting depending on
the context; and some of them can fit both needs.
For example, SWSG (Sferruzza et al. 2018), a
framework to generate consistent web services for
both prototyping and production, was developed in the
context of Startup Palace (a web company). At the
same time, it is important to design web services in
a way that makes them actually usable. This implies
providing a good documentation that can be used
by developers writing consumer applications or by
these consumer applications if they can adapt their
behavior dynamically. While this kind of documen-
tation can take many forms, some standards such as

OpenAPI 1 and RAML 2 are widely used by the indus-
try. These standards define formats of specifications
that describe HTTP APIs of web services and are the
base of ecosystems of tools. This paper focuses on
OpenAPI 3.0 because it is the standard used at Startup
Palace. Tools around OpenAPI can be used in two
main ways. First, with a forward engineering process,
developers create manually an OpenAPI model, and
refine it using various tools. For example: one-time
generation of an implementation skeleton in a given
technology. Second, with a reverse engineering pro-
cess, a tool is used to extract an OpenAPI model from
a working implementation (which can be enhanced by
annotations).

Motivation. Web companies like Startup Palace
would benefit from using the first process because its
top-down approach fits well in the activity of helping
startups to launch their products step-by-step. While
the second process is useful to document existing web
services, it cannot leverage the benefits of building
web service from a high-level (model) to a low-level

1https://github.com/OAI/OpenAPI-Specification/blob/
master/versions/3.0.1.md

2https://raml.org/

https://www.startup-palace.com
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://raml.org/

(implementation). Yet (DeRemer and Kron 1975)
shows the advantages of using different languages
for programming-in-the-large and for programming-
in-the-small. The first process makes it possible to
partially leverage these advantages, but lacks the abil-
ity to keep the OpenAPI model and the implementa-
tion aligned throughout the life of the project. Indeed,
implementation is often obtained by a projection of
the model that is then manually modified to imple-
ment business logic. Any following model evolution
needs to be projected again which would require man-
ual modifications to be re-applied from the beginning.
This work is intended to go beyond this limitation.

Contribution. We extend the approach presented
in (Sferruzza et al. 2018). It consisted of a meta-model
designed to express a high-level representation of web
services in order to provide support such as visual-
ization, verification and code generation. We add the
possibility to better specify service parameters, im-
prove the type system and make re-usability easier
by adding a mechanism to bind variables in compo-
nent definitions and in their equivalents in instances’
contexts.

We introduce extensions to OpenAPI 3.0 (Sfer-
ruzza 2018); we take advantage of them to make it
possible to add the various information of our models
of web services into any OpenAPI model. This allows
us to merge our meta-model with one supported by the
industry and to polish it by removing parts that already
exist in OpenAPI while benefiting mutually of our
SWSG tool or of any tool designed for OpenAPI 3.0.

We propose a prototype 3 to build consistent web
services from an extended OpenAPI 3.0 model. This
tool is an enhanced version of the tool we proposed
in (Sferruzza et al. 2018), that could (i) check model
consistency and (ii) generate source code of working
web services from a given valid model. We improve
model consistency verification and code generation,
according to the recent evolutions of the meta-model.
Then we add support for OpenAPI 3.0 models that use
our extensions. The prototype converts these models
to models that are compliant with our meta-model so
they can benefit of our tooling.

The article is structured as follows. Section 2
presents related work. Section 3 shows, through
an example project, how OpenAPI is usually used
in the industry. Section 4 defines extensions to the
OpenAPI 3.0 specification. Section 5 improves the
meta-model presented in (Sferruzza et al. 2018). Sec-
tion 6 presents a new process to use these extensions in

3https://gitlab.startup-palace.com/research/swsg

SWSG and automatically generate web services from
an OpenAPI model. Section 7 re-runs the example in
Section 3 using the newly introduced tools. Finally,
Section 8 concludes the article with some lessons and
future work.

2 RELATED WORK

The use of MDE for development and automatic gen-
eration of web services or web applications is not
a new topic (Bernardi, Cimitile, Di Lucca, et al.
2012; Bernardi, Cimitile, and Maggi 2016; Scheidgen,
Efftinge, and Marticke 2016). Indeed, this work is
itself built on top of the approach of SWSG (Sferruzza
et al. 2018) and REIFIER (Rocheteau and Sferruzza
2016).

SWSG shares the meta-modeling approach with
tools such as M3D (introduced in (Bernardi, Cimi-
tile, Di Lucca, et al. 2012) and extended in (Bernardi,
Cimitile, and Maggi 2016)) that also focus on build-
ing web services using MDE. One of the main differ-
ences between SWSG and M3D is that SWSG was
developed with a focus on design-time support. For
example, it allows to automatically verify properties
about the structural consistency of models. Even if
SWSG is definitely related to existing standards such
as BPEL (Fu, Bultan, and Su 2004) or WSDL, our
approach differs on several aspects. First, we want
to avoid the shortcomings described in (Gronmo et al.
2004), that is WSDL models contain too much techni-
cal details and are difficult to understand for humans.
Indeed, our meta-model is simpler and less expressive
than WSDL or BPEL. Second, this allows SWSG to
provide more support to users (the balance between
flexibility and support is discussed in (van der Aalst,
Pesic, and Schonenberg 2009)). Finally, SWSG now
relies on OpenAPI.

OpenAPI is an active and growing industry stan-
dard that is also involved in various research areas.
In (Cao, Falleri, and Blanc 2017), it was chosen for its
popularity over WADL and other industry standards
in order to automatically transform plain HTML doc-
umentations of web services to a machine-readable
format. Moreover, (Cremaschi and De Paoli 2017)
provides a great state of the art of service description
formats (which seems to be an updated version of the
work proposed in (Tsouroplis et al. 2015, §3.2)) that
brings out OpenAPI as the most promising choice at
the moment and enriches it with semantic annotations.
(Schwichtenberg, Gerth, and Engels 2017) shows an
approach that is agnostic to service description for-
mats but uses OpenAPI in the article. The popularity
of OpenAPI is also highlighted by its use in other do-

https://gitlab.startup-palace.com/research/swsg

mains. For example (Willighagen and Mélius 2017)
describes a case where OpenAPI 2.0 is used in combi-
nation of other tools from the life sciences community
and points out that the specification extension mech-
anism of OpenAPI 3.0 (that we use in this article)
might be an interesting opportunity of improvement.
Another example in the telecommunication domain is
presented in (Pugaczewski et al. 2017) which provides
a section to emphasizes the trade-offs of Model-Driven
Engineering and argues that they can be overcomed
“with increased investment in the tools that support the
development process”; we share the same vision.

3 A COMMON USAGE OF
OpenAPI

The OpenAPI Specification defines a standard to ex-
press interfaces to HTTP APIs in a language-agnostic
way. It aims at allowing “both humans and comput-
ers to discover and understand the capabilities of the
service without access to source code, documentation,
or through network traffic inspection”: that is a meta-
model. As in MDE, the point of having meta-models
is to have tools that can rely on them in order to safely
manipulate models and offer support to developers.
Indeed, an ecosystem of tools was developed around
OpenAPI by various actors. Such tools have several
purposes, including but not limited to: providing an
interactive graphical user interface from a model 45,
generating functional tests from a model 6 or generat-
ing a model from an annotated implementation 7.

To ease the development of these tools, official
examples of OpenAPI models are shipped with the
specification. In this article, we focus on the Petstore
example 8. It describes a simple application that ex-
poses 4 services to list, show, add and remove data
records representing animals. We assume that we are
in the context of a company such as Startup Palace;
that means the goal is to develop these web services in
order for them to be consumed by user interface appli-
cations; for example, desktop and mobile applications
for the owner of the store.

The common top-down development process fol-
lows. First, developers make several iterations on writ-
ing an OpenAPI model. This model must match the
functional specifications and describe web services

4https://github.com/swagger-api/swagger-editor
5https://github.com/swagger-api/swagger-UI
6https://github.com/apiaryio/dredd
7https://github.com/vanderlee/PHPSwaggerGen
8https://github.com/OAI/OpenAPI-Specification/blob/3.

0.1/examples/v3.0/petstore-expanded.yaml

that are fully exploitable by consumer applications.
For example, the description of one of the Petstore
services is shown in Listing 1.

/pets/{id}:
get:

description: Returns a user based on a single ID,
if the user does not have access to the pet↪→

operationId: find pet by id
parameters:

- name: id
in: path
description: ID of pet to fetch
required: true
schema:

type: integer
format: int64

responses:
'200':

description: pet response
content:

application/json:
schema:

$ref: '#/components/schemas/Pet'

Listing 1: A Service in the Petstore Example.

When this model is stable enough, developers can
use it as a specification to start building web services
and consumer applications. There are some kinds of
tools that can take the OpenAPI model as input and
help to build compliant web services. For example, by
generating a skeleton of an application using a given
technological stack 9, or by generating automated tests
that can be used to check if the web services are com-
pliant 10. But these tools have a major lack: they
require humans to update the OpenAPI model when-
ever the web services evolve. This is a very common
situation: specifications must evolve either because
business requirements have changed or new constraints
have been discovered while developing. Even if some
tools can mitigate this issue, it is likely that devel-
opers will eventually stop maintaining the OpenAPI
model after the web services reach production, mak-
ing the two diverge over time. In long-term projects,
this means giving up on every advantage provided by
OpenAPI and its MDE approach.

To fix this shortcoming, we present in Section 6 an
improved version of this process that leverages a meta-
model of web services we introduced in (Sferruzza
et al. 2018). In order for this new approach to be
feasible, we first extend the OpenAPI 3.0 Specification
in Section 4 and improve our meta-model in Section 5.

9https://github.com/pmlopes/slush-vertx
10https://github.com/apiaryio/dredd

https://github.com/swagger-api/swagger-editor
https://github.com/swagger-api/swagger-UI
https://github.com/apiaryio/dredd
https://github.com/vanderlee/PHPSwaggerGen
https://github.com/OAI/OpenAPI-Specification/blob/3.0.1/examples/v3.0/petstore-expanded.yaml
https://github.com/OAI/OpenAPI-Specification/blob/3.0.1/examples/v3.0/petstore-expanded.yaml
https://github.com/pmlopes/slush-vertx
https://github.com/apiaryio/dredd

4 EXTENDING OpenAPI 3.0

The OpenAPI Specification describes a meta-model
to express an interface to web services. Therefore, it
does not describe how web services are implemented.
To make our approach possible, we propose a way to
merge OpenAPI with our meta-model of web services
introduced in (Sferruzza et al. 2018).

To preserve tools compatibility we make use of
Specification Extensions, as defined in OpenAPI 3.0.
This mechanism allows to add data to models without
breaking their compliance to the specification or their
ability to be used by tools designed to be compatible
with it. In (Sferruzza 2018) we present our extensions
to OpenAPI 3.0. The following paragraphs discuss
the nature of these extensions for each aspect of our
meta-model.

Because an OpenAPI model can be seen as a tree
(before references are resolved) that has the OpenAPI
object as root, we make use of the notion of paths. The
OpenAPI > components path designate the child of
the root named components. Sub-children are sepa-
rated using a > symbol; the OpenAPI > components
> requestBodies designates the requestBodies
child of the components child of the root.

Data Model. An OpenAPI 3.0 model can contain a
set of Schema objects11. A Schema object defines a
data type for input or output data, which can then be
referenced from elsewhere in the model. This mecha-
nism provides more expressiveness than ours and was
made for the same purpose. Thus it is a good fit for
the entities of our meta-model.

Processes. On purpose, there are no equivalent of
our component system in OpenAPI 3.0, because it
describes processes that are internal to the web services
which is out of OpenAPI’s scope. Accordingly we add
two properties in the Components object of OpenAPI.
They contain sets of atomic and composite component
definitions12. Exact schemas of these components
follow on from their definition in our meta-model.

Services. Describing services is the main feature of
OpenAPI. As such they can be specified in a quite ex-
pressive way. Yet the service meta-model in OpenAPI
is not a superset of ours because of two lacks that re-
quire it to be extended. First, each service must be
associated to a component instance that describes its

11In the OpenAPI > components > schemas path.
12Their paths are OpenAPI > components >

x-swsg-ac and OpenAPI > components > x-swsg-cc.

behavior13. Second, if a service has a requestBody
property (that describes the type of the data required
in the request body), the RequestBody object must
contain a variable name14. When generating the web
services code, this is used to include the request body
contents in a variable of the execution context.

5 EXTENDING A META-MODEL
OF WEB SERVICES

Notations. A tuple T is a product type between n
types T1 to Tn, with n≥ 2. It is denoted T ≡ T1× . . .×
Tn. A value t of type T is written as t = (t1, . . . , tn)
where t1 ∈ T1, . . . , tn ∈ Tn.

A record R is a tuple with labeled elements. It is
denoted R ≡ 〈label1 : T1, . . . , labeln : Tn〉. It is syn-
tactic sugar over a tuple T1× . . .×Tn and n functions
label1 : R→ T1, . . . , labeln : R→ Tn. A value r of
type R is written as r = (t1, . . . , tn) where t1 ∈ T1,
. . . , tn ∈ Tn. Associated functions can also be written
r.label1, . . . , r.labeln.

P(T) is the type of sets of elements of type T .

In (Sferruzza et al. 2018) we presented a meta-
model of web services. This meta-model has a vol-
untarily simple design in order to provide two ad-
vantages: (i) to give developers good abstractions to
write reusable code while giving them a good flex-
ibility and (ii) to allow tools to provide support to
developers, such as design-time consistency verifica-
tion. It is a combination of three elements: a set of
entities that stands for the data model, a set of com-
ponents that stands for the process model and an or-
dered list of services that exposes components to the
outer world. It is defined by M ≡ 〈entities : P(E),
components : P(C), services : List(S)〉15. We identi-
fied some design issues and we propose evolutions to
fix them.

Weakness of Type System. Some parts of our meta-
model describe a type system. This type system is
used to define entities’ attributes and components’ con-
tracts. Valid types are defined by the union of a set
of predefined scalar types (such a String or Boolean)
and the parametrized type EntityRe f (E) where E is
the name of an entity declared in the current model. In

13In the x-swsg-ci property of the service.
14In a x-swsg-name property.
15List(T) designates a list of elements of type T ; it is

better introduced in (Sferruzza et al. 2018, §2.1).

order to deal with realistic use cases, we add two new
parametrized types:

SeqOf(T). Represents an ordered list of elements of
any valid type T .

OptionOf(T’). Represents an optional value of type
T , that is every value of type T plus a special null
value that represent the absence of value.

From now on, E ′ denotes the entities that make use
of this enhanced type system.

Restricted Component Reusability. When defin-
ing an atomic component in a model, one must provide
its contract: three sets that contain variables required
on the execution context, variables that will be added
and variables that will be removed. The names of
these variables are then used in the component im-
plementation. A problem appears when instantiating
such a component (for example in a composite com-
ponent definition): variables in the component’s con-
tract must have the same name in every execution
context it is instantiated in. For example, it is possible
to instantiate an atomic component c1 = (”atomic”,
/0, /0, {(”v1”, String)}, /0) twice in a row in a com-
posite component c2 = (”composite”, /0, [(”atomic”,
/0), (”atomic”, /0)]). But, because this component
adds a variable to the execution context, this will vi-
olate a verification rule. Indeed the second instance
cannot add an already defined variable to the execu-
tion context. To fix this, we introduce an alias prop-
erty of type P(〈source : String, target : String〉) to
the component instance record (previously denoted
by CI ≡ 〈component : C, bindings : P(〈param : V,
argument : Term〉)〉). The source name designates
a variable in the component definition, and target
is the name it should take in this instance’s context
only. This makes it possible to define and imple-
ment components independently from their instan-
tiation contexts. This results in CI′ ≡ 〈component :
C′, bindings : P(〈param : V, argument : Term〉),
aliases : P(〈source : String, target : String〉)〉 where
CI′ is the updated component instances and C′ the
set of components that uses them. Both of them use
the enhanced type system. Using this mechanism,
c2 becomes c′2 = (”composite”, /0, [(”atomic”, /0, /0),
(”atomic”, /0, {(”v1”, ”v2”)})]); there won’t be a veri-
fication error anymore, the resulting execution context
will contain v1 and v2 and the definition of c1 remains
the same.

Unexpressive Service Parameters. In a service def-
inition, it is possible to specify parameters that will be
extracted from the HTTP request’s URL at runtime.

The resulting variables are then injected in the execu-
tion context so that components can access them. We
change the type of the params attribute of the service
record from P(V) to P(〈location : L, variable : V 〉)
where L ≡ {Query, Header, Path, Cookie, Body}.
This makes it possible to extract parameters’ values
from various parts of the HTTP request which is of-
ten necessary in real world services. Now on, S′ de-
notes the services that integrate these modifications
and make use of CI′ component instances and the en-
hanced type system.

The resulting meta-model M′ ≡ 〈entities : P(E ′),
components : P(C′), services : List(S′)〉 is defined by
the BNF grammar in Figure 1.

6 AN EXTENSION OF SWSG TO
BUILD WEB SERVICES

To support the approach of automatically building
web services from an OpenAPI model, we extend
the SWSG tool introduced in (Sferruzza et al. 2018).
First, its internal meta-model and the corresponding
concrete syntax are updated to match the changes pre-
sented in Section 5. Second, an OpenAPI 3.0 parser
is implemented; it is designed to work with the ex-
tensions presented in Section 4. Finally, a custom
model-to-model transformation is implemented in or-
der to convert extended OpenAPI models to SWSG
models. The process that follows on from these im-
provements is illustrated by Figure 2; it is an extended
version of (Sferruzza et al. 2018, Figure 2).

Transformation of OpenAPI Models. Transform-
ing extended OpenAPI models to SWSG models
is quite straightforward, except for schemas/types.
OpenAPI defines some primitive types and relies on a
modified version of the JSON Schema Specification 16

for complex types. There are two issues. First, the
JSON Schema Specification is more expressive than
SWSG’s type system. For example, it allows to de-
fine refined types, e.g. to add a minimum length to a
string. Second, it supports both literal and referenced
definition of attributes’ types. Moreover, references
are quite expressive and can target many places in
the OpenAPI main document or even in another one.
In comparison, SWSG only supports literal primitive
types or references to other entities.

While the second issue is more an engineering
problem, the first would require to improve SWSG’s

16https://tools.ietf.org/html/draft-wright-json-schema-
00

https://tools.ietf.org/html/draft-wright-json-schema-00
https://tools.ietf.org/html/draft-wright-json-schema-00

model ::= 〈entities : entity*, components : component*, services : service*〉
identifier ::= [A-Za-z][A-Za-z0-9_]*

entity ::= 〈name : identifier, attributes : variable*〉
term ::= variable | constant

variable ::= 〈name : string, type : type〉
constant ::= 〈type : type, value : object〉

type ::= string | boolean | integer | float | date | datetime | entity-ref | seq-of | option-of
entity-ref ::= 〈entity : identifier〉

seq-of ::= 〈seqOf : type〉
option-of ::= 〈optionOf : type〉

component ::= atomic-component | composite-component
atomic-component ::= 〈name : identifier, params : variable*, pre : variable*, add : variable*, rem : variable*〉

composite-component ::= 〈name : identifier, params : variable*, components : component-instance*〉
component-instance ::= 〈component : identifier, bindings : binding*, aliases : alias*〉

binding ::= 〈param : variable, argument : term〉
alias ::= 〈source : variable, target : variable〉

service ::= 〈method :method, path : path, params : service-parameter*,
component : component-instance〉

method ::= [A-Z]+
path ::= .+

service-parameter ::= 〈location : parameter-location, variable : variable〉
parameter-location ::= query | header | path | cookie | body

Figure 1: BNF Grammar of the extended Meta-Model of Web Services.

OpenAPI
model Model parsing Syntax

OK?

Failure

Start Transforming to
SWSG model

Consistent? Consistency
checkingGeneration

AC
implementations

Web
services

Transformation
OK?

Stop

Failure

Failure

yes

yes

yes

no

no

no

1 2

34

Figure 2: Process of the Updated Prototype.

type system in order for it to support expressing every
possible OpenAPI type. Yet, we choose not to address
them for now because they are not essential to test
and validate our approach. Therefore our prototype
might return errors when working with some OpenAPI
models that contain unsupported types or references
in schemas.

Code Generation. The process defined by Figure 2
is generic: it does not rely on a specific language or
technology. Yet the language and technologies used
to implement atomic components must be identical
or compatible with those of the code generation tar-
get. Because we experiment in Startup Palace’s con-
text, our prototype targets the PHP programming lan-
guage 17 with the Laravel web framework 18, which is
a common tool stack.

17https://php.net/
18https://laravel.com/

Code generation is very similar to the one pre-
sented in (Sferruzza et al. 2018). The generated code
is not meant to be manually edited, but can be easily in-
tegrated in a manually-developed Laravel application.
Because this MDE approach was designed to allow
shallow consistency verification, most inconsistencies
in the model are caught at compile-time. This does
not prevent developers to create flawed applications,
as they have full control on the atomic components
implementations. Indeed this flexibility comes at the
cost of a bit of support.

7 CASE STUDY AND
ASSESSMENT

We derive a new process from the common process ex-
plained in Section 3. Step 1: design a stable OpenAPI
model. Step 2: developers need to design SWSG com-

https://php.net/
https://laravel.com/

ponents that will implement their services and use the
extensions we introduced in Section 4 to write them
inside the OpenAPI model. Every atomic component
defined in the model must be provided with an imple-
mentation. Step 3: SWSG can check the model and
generate working web services if the verification is
successful.

We re-run the example presented in Section 3 with
this new process. The example service defined by List-
ing 1 is a part of a standard OpenAPI model. We need
a component that will handle the response generation
when this service will receive requests. We create a
composite component called FindPet and reference
it from the service, as shown in Listing 2. This com-
posite component has two children that are atomic
components. The first takes an ID as input, uses it
to query the database and adds the Pet result to the
context. The second takes a Pet, serializes it in JSON
and put it in an HTTP response. These three compo-
nents are defined in Listing 3. Implementations are
written for every atomic components. Listing 4 shows
the implementation of the GetPetById component as
an example19.

/pets/{id}:
get:

x-swsg-ci:
component: FindPet

Listing 2: Instantiating a Component from a Service.

We get a PreconditionError when we run SWSG
on these inputs. This verification error indicates that
a component’s precondition is not fulfilled in a given
instantiation context. In the current case, we learn
that the GetPetById misses a string named id when
instantiated by the FindPet component in the GET
/pet/{id} service. Indeed, we voluntarily introduced
an error in Listing 3: the GetPetById component is
given an integer (by the service) whereas it requires
a string. In this particular example, it should require
an integer id variable in order to be consistent with
the service parameter. Nevertheless, in more com-
plex projects, this component might have been used
inside several other composite components and ser-
vices. Thus, it might not be a good solution to just
change the component’s definition because it might
break other workflows. This is the kind of mistakes

19The PHP class in Listing 4 depends on the Component
interface and on the Ctx and Params classes. They are
defined in code output by the code generator and are just
implementation details of the SWSG specification in this
specific code generator. Different code generators could
require different constraints on implementations of atomic
components.

components:
x-swsg-cc:

- name: FindPet
components:

- component: GetPetById
- component: RenderPet

x-swsg-ac:
- name: RenderPet

pre:
- name: pet

type:
entity: Pet

- name: GetPetById
pre:

- name: id
type: String

add:
- name: pet

type:
entity: Pet

Listing 3: Components in the SWSG Petstore Example.

<?php
namespace App\Components;
use App\SWSG\Component, App\SWSG\Ctx, App\SWSG\Params,

DB;↪→

class GetPetById implements Component {
public static function execute(Params $params, Ctx

$ctx) {↪→
$pet = DB::table('pet')->where('id',

$ctx->get('id'))->first();↪→
$ctx->add('pet', $pet);
return $ctx;

}
}

Listing 4: Implementation of the GetPetById Atomic Com-
ponent.

SWSG can prevent us to make: because they are re-
ported very early at compile-time, instead of runtime
which is too late. Developers can study the problem
and decide if they have to build a better implementa-
tion or if the process model was badly designed. With
the contributions of this article, the decision can even
escalate to whether the OpenAPI design has flaws or
not, because SWSG guarantes that the process model
and the implementations are aligned with the OpenAPI
model altogether.

The model and code of this case study are available
in the repository of SWSG20.

20https://gitlab.startup-palace.com/research/swsg/tree/
master/examples/petstore

https://gitlab.startup-palace.com/research/swsg/tree/master/examples/petstore
https://gitlab.startup-palace.com/research/swsg/tree/master/examples/petstore

8 CONCLUSION

We refined the meta-model presented in (Sferruzza et
al. 2018) in order to improve its expressiveness and fix
shortcomings with the reusability of some elements it
allows to define. We also introduced extensions to the
OpenAPI 3.0 Specification and merged the previous
meta-model into OpenAPI. This allowed web services
developers to define implementations of web services
using MDE, starting from the corresponding high-level
contract as expressed by a standard OpenAPI model.
Evolutions were made to the SWSG tool so that it
could support and automate this process. In addition
to the previous advantages of SWSG, this made easier
to write a model of web services and to keep it aligned
with the implementation.

Even if the type system was improved, it could
be improved further and allow subtyping in compo-
nent preconditions, for example. Model composition
is theoretically handled by OpenAPI but not currently
supported by SWSG. The whole approach still needs
better evaluation on more realistic (by nature and by
size) case studies. Finally, continuous evaluation re-
mains beneficial, and SWSG could still be improved
to be able to automatically check the compliance of
atomic components to their contract in the model. This
could allow developers to focus on less tedious work
that adds direct value to their products.

REFERENCES

Bernardi, Mario Luca, Marta Cimitile, Giuseppe Di Lucca, et
al. (2012). “M3D: A Tool for the Model Driven Devel-
opment of Web Applications”. In: Proceedings of the
Twelfth International Workshop on Web Information
and Data Management. WIDM 2012. USA, pp. 73–80.

Bernardi, Mario Luca, Marta Cimitile, and Fabrizio Maria
Maggi (2016). “Automated Development of Constraint-
Driven Web Applications”. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing. ACM,
pp. 1196–1203.

Cao, Hanyang, Jean-Rémy Falleri, and Xavier Blanc (2017).
“Automated Generation of REST API Specification
from Plain HTML Documentation”. In: International
Conference on Service-Oriented Computing. Springer,
pp. 453–461.

Cremaschi, Marco and Flavio De Paoli (2017). “Toward Au-
tomatic Semantic API Descriptions to Support Services
Composition”. In: European Conference on Service-
Oriented and Cloud Computing. Springer, pp. 159–
167.

DeRemer, Frank and Hans Kron (1975). “Programming-in-
the Large versus Programming-in-the-Small”. In: ACM
Sigplan Notices. Vol. 10. ACM, pp. 114–121.

Fu, Xiang, Tevfik Bultan, and Jianwen Su (2004). “Analysis
of Interacting BPEL Web Services”. In: In Proc. 13th
Int. World Wide Web Conf. Citeseer.

Gronmo, Roy et al. (2004). “Model-Driven Web Services
Development”. In: E-Technology, e-Commerce and e-
Service. EEE’04. IEEE.

Pugaczewski, Jack et al. (2017). “Software Engineering
Methodology for Development of APIs for Network
Management Using the MEF LSO Framework”. In:
IEEE Communications Standards 1.1, pp. 92–96.

Rocheteau, Jérôme and David Sferruzza (Oct. 5, 2016).
“Reifier: Model-Driven Engineering of Component-
Based and Service-Oriented JEE Applications”. In:
ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems. Saint-
Malo, France.

Scheidgen, Markus, Sven Efftinge, and Frederik Marticke
(2016). “Metamodeling vs Metaprogramming: A Case
Study on Developing Client Libraries for REST APIs”.
In: European Conference on Modelling Foundations
and Applications. Springer, pp. 205–216.

Schwichtenberg, Simon, Christian Gerth, and Gregor Engels
(2017). “From Open API to Semantic Specifications
and Code Adapters”. In: Web Services (ICWS), 2017
IEEE International Conference On. IEEE, pp. 484–
491.

Sferruzza, David (2018). Specification of SWSG Extensions
for OpenAPI. URL: https : / / gitlab . startup - palace .
com/research/swsg/tree/master/openapi-extensions-
specification/1.0.0.md.

Sferruzza, David et al. (Jan. 23, 2018). “A Model-Driven
Method for Fast Building Consistent Web Services in
Practice”. In: 6th International Conference on Model-
Driven Engineering and Software Development. Fun-
chal, Madeira, Portugal.

Tsouroplis, Romanos et al. (2015). “Community-Based API
Builder to Manage APIs and Their Connections with
Cloud-Based Services.” In: CAiSE Forum, pp. 17–23.

Van der Aalst, Wil M.P., Maja Pesic, and Helen Schonen-
berg (2009). “Declarative Workflows: Balancing be-
tween Flexibility and Support”. In: Computer Science-
Research and Development 23.2, pp. 99–113.

Willighagen, Egon and Jonathan Mélius (2017). “Automatic
OpenAPI to Bio.Tools Conversion”. In: bioRxiv. DOI:
10.1101/170274.

https://gitlab.startup-palace.com/research/swsg/tree/master/openapi-extensions-specification/1.0.0.md
https://gitlab.startup-palace.com/research/swsg/tree/master/openapi-extensions-specification/1.0.0.md
https://gitlab.startup-palace.com/research/swsg/tree/master/openapi-extensions-specification/1.0.0.md
https://doi.org/10.1101/170274

