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Institut Mathématique de Marseille
Campus de Luminy,

13288 Marseille Cedex 9, France
e-mail: denys.pommeret@univ-amu.fr
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Abstract: In this paper we investigate a semiparametric testing approach
to answer if the parametric family allocated to the unknown density of a
two-component mixture model with one known component is correct or
not. Based on a semiparametric estimation of the Euclidean parameters of
the model (free from the null assumption), our method compares pairwise
the Fourier’s type coefficients of the model estimated directly from the data
with the ones obtained by plugging the estimated parameters into the mix-
ture model. These comparisons are incorporated into a sum of square type
statistic which order is controlled by a penalization rule. We prove under
mild conditions that our test statistic is asymptotically χ2(1)-distributed
and study its behavior, both numerically and theoretically, under different
types of alternatives including contiguous nonparametric alternatives. We
discuss the counterintuitive, from the practitioner point of view, lack of
power of the maximum likelihood version of our test in a neighborhood of
challenging non-identifiable situations. Several level and power studies are
numerically conducted on models close to those considered in the literature,
such as in McLachlan et al. (2006), to validate the suitability of our ap-
proach. We also implement our testing procedure on the Carina galaxy real
dataset which low luminosity mixes with the one of its companion Milky
Way. Finally we discuss possible extensions of our work to a wider class of
contamination models.

MSC 2010 subject classifications: Primary 62F03, 28C20; secondary
33C45.
Keywords and phrases: Asymptotic normality, Chi-squared test, False
Discovery Rate, maximum likelihood estimator, nonparametric contiguous
alternative, semiparametric estimator, two-component mixture model..

1. Introduction

Let us consider n independent and identically distributed random variables
(X1, . . . , Xn) drawn from a two-component mixture model with probability den-
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sity function g defined by:

g(x) = (1− p)f0(x) + pf(x), x ∈ R, (1.1)

where f0 is a known probability density function, corresponding to a known sig-
nal, and where the unknown parameters of the model are the mixture proportion
p ∈ (0, 1) and the probability density function f ∈ F (a given class of densities)
associated to an unknown signal. Model (1.1) is widely used in statistics and
is usually so-called the contamination model. This class of models is especially
suitable for detection of differentially expressed genes under various conditions
in microarray data analysis, see McLachlan et al. (2006) or Dai and Charnigo
(2010). In astronomy such a model has been used to model mixtures of X-ray
sources, see Melchior and Goulding (2018) and Patra and Sen (2016). Recently
some applications have been also developed in selective Statistical Editing, see
Di Zio and Guarnera (2013), in biology to model trees diameters, see Podlaski
and Roesch (2014) or in kinetics to model plasma data, see Klingenber et al.
(2018).

Many techniques have been proposed to estimate the Euclidean and func-
tional parameters p and f in model (1.1). The most popular methods for known
finite order mixture models, such as the moment method, see Lindsay (1989),
the moment generating function based method, see Quandt and Ramsey (1978),
or the maximum likelihood method, see Lindsay (1983), are largely used but suf-
fer from the requirement of assigning a parametric form to the f density. Since
then, some semiparametric approaches have been developed, such as the pioneer
work by Bordes et al. (2006), to relax that parametric modelling. These authors
only restricted, for example, their study to the class of location-shift symmetric
densities in order to make model (1.1) semiparametrically identifiable. More re-
cently, different nonparametric approaches have been also considered, such as in
Nguyen and Matias (2014) where f0 is a uniform distribution on [0, 1]. In Ma and
Yao (2015), where f0 is only supposed to belong to a parametric family, a tail
identifiability approach is used, considering symmetric distributions embedded
in a nonparametric envelop. We also recommend the recent work by Al Moham-
mad and Boumahdaf (2018) who consider situations where the unknown com-
ponent f is defined through linear constraints. In Balabdaoui and Doss (2018)
a log-concave assumption is done on the family F to insure the identifiability of
the model. In Patra and Sen (2016) the identifiability and estimation problem
is considered under tail conditions with very few shape constraints assumptions.

The goal of the present paper is to answer a very natural question, explicitly
raised in McLachlan et al. (2006, Section 6) or Patra and Sen (2016, Section 9.2),
which is basically “can we test if the unknown component of the contamination
model belongs to a given class of parametric densities ?”, or more formally can
we test

H0 : f ∈ F = {fθ; θ ∈ Θ} against H1 : f /∈ F , (1.2)

where fθ is a probability density function parametrized by an Euclidean param-
eter θ belonging to a parametric space Θ. For simplicity we will restrict ourselves
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to the case where fθ is a symmetric probability density function with respect to
a location parameter µ ∈ R, as described in (2.1), but discuss in Section 10 how
our approach can be generalized to any class of parametric densities provided
that model (1.1) can be

√
n-estimated semiparametrically. This problem has

been considered recently by Suesse et al. (2017), who use a maximum likelihood
estimate-based testing approach. In general the behavior of the maximum like-
lihood estimator is difficult to control or figure out, as illustrated in Section 7,
under the alternative since the model is then misspecified. To get a consistent
testing method under both H0 and H1, at the price of some shape restriction
about H1, we propose to use an H0 ∪H1 consistent semiparametric estimation
approach in order to build a H0-free statistic (do not forcing to fit into the
parametric model). To the best of our knowledge this is the first time that an
H0-free semiparametric approach is used to test mixture models. The advantage
of this new strategy will be demonstrated, both theoretically and numerically,
on very counterintuitive examples in the close neighborhood of non-identifiable
situations, see Fig. 1 and comments. For a general overview about semipara-
metric mixture models we recommend the recent surveys by Xian et al. (2018)
or Gassiat (2018). Note that the test against a specific distribution, proposed in
Bordes and Vandekerkhove (2010, Section 4.1), does not allow to test versus a
complete class of probability density functions which is our goal here. To point
out the interest of the statistical community about the contamination problem
testing, let us mention the very recent work by Arias-Castro and Huang (2018)
on the sparse variance contamination model testing and references therein.
The main idea of our test is based on the data driven smooth test procedure
developed by Ledwina (1994), extending the idea of Neyman (1934), which con-
sists in estimating the expansion coefficients of f in an orthogonal basis, first
assuming f ∈ S (the set of symmetric probability density functions with re-
spect to a location parameter µ ∈ R), and to compare thes estimates to those
obtained by assuming f ∈ F . This approach has been used in Doukhan et
al. (2015), see also references therein, but the specificity of the two-component
mixture model necessitates a special adaptation of the Neyman smooth test. In
our case we develop a two rates procedure, one rate driven by the asymptotic
normality of the test statistic and another one driven by the almost sure rate
of convergence of the semiparametric estimators. As we will discuss along this
paper, the approach of Suesse et al. (2017), restricted to model (1.1), does not
allow to investigate the asymptotic behavior of the test statistic under alter-
native assumptions (possibly contiguous) since the asymptotic behavior of the
maximum likelihood estimator cannot be controlled properly under distribution
misspecification. Another aspect of our nonparametric approach is that it can
easily deal with situations where f0 is only known through a training data. This
situation is illustrated in Section 9 through a real dataset collecting the radial
velocity of the Carina galaxy and its companion Milky Way.
The paper is organized as follows: in Section 2 we describe our two-step test
methodology; in Section 3 we state the assumptions and asymptotic results
under the null hypothesis; Section 4 is dedicated to the test divergence under
the alternative; Section 5 is devoted to the study of our testing procedure under
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contiguous nonparametric alternatives (inspired from the parametric contiguous
alternative concept); in Section 6 we discuss the choice of the reference mea-
sure when considering orthogonal bases for the unknown density decomposition;
in Section 7 we conduct a power comparison between the semiparametric and
maximum likelihood versions for our test, this section enlightens interestingly
the fact that a maximum likelihood approach could force, in certain setups of
the McLachlan et al. (2006, Section 6) Gaussian mixture model, to consider the
number q of components defining f equal to 1 when in reality q = 2; Section 8
is dedicated to a simulation-based empirical and power levels study; in Section
9 we proceed with the application of our testing method to the datasets (breast
cancer, colon cancer, HIV) previously studied in McLachlan et al. (2006) and
to the Galaxy dataset studied in Patra and Sen (2016). Finally in Section 10
we discuss further leads of research connected with the contamination model
testing problem.

2. Testing problem

Let us consider an independent and identically distributed sample denoted
(X1, . . . , Xn), drawn from a probability density function g defined in (1.1) with
respect to a given reference measure ν. The problem addressed in this sec-
tion deals with testing the unknown component f assuming the fact that f
belongs to S, the set of symmetric densities provided with the identifiability
conditions in Bordes and Vandekerkhove (2010, p. 25). More precisely, denoting
F = {f(µ,θ); (µ, θ) ∈ Λ} the set of densities with respect to ν, with mean µ and
shape parameter θ where (µ, θ) is supposed to belong to a compact set Λ of
R×Θ, our goal is to test

H0 : f ∈ F against H1 : f ∈ S\F . (2.1)

Our test procedure is based on the Ledwina (1994) approach and consists in
estimating the expansion coefficients of the unknown density f in an orthogonal
basis, first assuming f ∈ S, and comparing in contrast these estimates to those
obtained when f is supposed to belong strictly to the sub-parametric family F .
As intuitively expected, we will show how the study of the successive expansion
coefficient differences helps in detecting possible departure from H0 given the
data. We will denote byQ = {Qk; k ∈ N}, a ν-orthogonal basis satisfying Q0 = 1
and such that ∫

R
Qj(x)Qk(x)ν(dx) = q2kδjk, (2.2)

with δjk = 1 if j = k and 0 otherwise, and where the normalizing factors q2k ≥ 1
will permit to control the variance of our estimators, as illustrated in Lemmas 1
and 3. We assume that Q is an L2(R, ν) Hilbert basis, which is satisfied if there
exists θ > 0 such that

∫
R e

θ|x|ν(dx) < ∞, and that the following integrability
conditions are satisfied:∫

R
f20 (x)ν(dx) <∞ and

∫
R
f2(x)ν(dx) <∞.
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Then, for all x ∈ R, we have

g(x) =
∑
k≥0

akQk(x) with ak =

∫
R
Qk(x)g(x)ν(dx)/q2k,

f0(x) =
∑
k≥0

bkQk(x) with bk =

∫
R
Qk(x)f0(x)ν(dx)/q2k,

f(x) =
∑
k≥0

ckQk(x) with ck =

∫
R
Qk(x)f(x)ν(dx)/q2k.

From (1.1) we have

ak = (1− p)bk + pck.

Let us denote by Z a random variable with density fµ,θ and consider

αk(µ, θ) = E(Qk(Z))/q2k.

The null hypothesis can be rewritten as ck = αk(µ, θ), for all k ≥ 1, or equiva-
lently as

H0 : ak = (1− p)bk + pαk(µ, θ), for all k ≥ 1. (2.3)

Since the probability density function f0 is known, the coefficients bk are au-
tomatically known. As a consequence, for all k ≥ 1, the coefficients ak can be
estimated empirically by:

ak,n =
1

n

n∑
i=1

Qk(Xi)

q2k
, n ≥ 1.

To avoid possible compensation phenomenon under H1 between the estimation
of ϑ = (p, µ) and the estimation of the αk’s, the estimator of (p, µ) will be ob-
tained without assuming the null hypothesis, that is using the semiparametric
estimator ϑ̄n = (p̄n, µ̄n) introduced in Bordes et al. (2006) and studied more
deeply in Bordes and Vandekerkhove (2010). Indeed, as numerically demon-

strated in Section 7, the maximum likelihood estimator (p̂n, µ̂n, θ̂n) under the
null assumption tends to provide the best H0-fitted model when the semipara-
metric estimator of Bordes and Vandekerkhove (2010) is not influenced by this
constraint and can provide very distant, Euclidean and functional, estimations
under H1 (when the model is misspecified under the null assumption). In the
same way, considering the relation (1.1), the estimator of θ is obtained by the
H0-free semiparametric plug-in moment method satisfying

Eθ(Xp
1 ) =

1

n

n∑
i=1

Xp
i , (2.4)

where Eθ(Xp
1 ) means that we express this expectation as a function of θ. The

estimator of αk(µ, θ) is obtained by using a standard plug-in approach, that is:

αk,n = αk(µ̄n, θ̄n).

imsart-generic ver. 2014/10/16 file: DParxiv-V2.tex date: March 11, 2019



D. Pommeret and P. Vandekerkhove/Contamination density test 6

To illustrate our general approach, let us detail the Gaussian case here. If F is
equal to G the set of normal densities with mean µ and variance θ = s, then the
plug-in moment yields

s̄n =
M̄2,n − (1− p̄n)

p̄n
− (µ̄n)2, (2.5)

where M̄2,n = n−1
∑n
i=1X

2
i . Now coming back to generality, looking at the H0

reformulation in (2.3) we expect that the differences

Rk,n = ak,n − p̄n(αk,n − bk)− bk, for all k ≥ 1,

will allow us to detect any possible departure from the null hypothesis. For sim-
plicity matters and without loss of generality, since the bk’s are known constants,
we assume from now on them to be equal to zero. For all k ≥ 1, we define the
k-th order coefficient of our test statistic (incorporating the k-th order departure
information from H0)

Tk,n = nU>k,nD̂
−1
k,nUk,n, (2.6)

where Uk,n = (R1,n, . . . , Rk,n) and where D̂k,n is an estimator of

Dk,n = diag(var(R1,n), . . . , var(Rk,n)),

normalizing the test statistic as in Munk et al. (2010). To avoid instability in the

evaluation of D̂−1k,n, following Doukhan et al. (2015), we add a trimming term

e(n) to every i-th, i = 1, . . . , k, diagonal element of D̂k,n as follows:

D̂k,n[i] = max(v̂ar(Ri,n), e(n)), 0 ≤ i ≤ k, (2.7)

where v̂ar(Ri,n) is a weakly consistent estimator of var(Ri) as n → +∞, and
e(n)→ 0.

Following Ledwina (1994) and Inglot et al. (1997), we suggest a data driven
procedure to select automatically the number of coefficients needed to answer
the testing problem. We introduce the following penalized rule to pick parci-
mouniously (trade-off between H0 departure detection and complexity of the
procedure involved by index k) the “best” rank k for looking at Tk,n:

Sn = min
{

argmax
1≤k≤d(n)

(s(n)Tk,n − βkpen(n))
}
, (2.8)

where s(n) → 0 is a normalizing rate, d(n) → +∞ as n → +∞, pen(n) is a
penalty term such that pen(n)→ +∞ as n→ +∞, and the βk’s are penalization
factors. In practice we will consider βk = k, k ≥ 1, and pen(n) = log(n), n ≥ 1.
To match the asymptotic normality regime, under H0, of the test statistic Tk,n
defined in (2.6), the normalizing factor s(n) is usually taken equal to one, but
in our case, due to the specificity of the semiparametric mixture estimation
(possibly adapted to nonparametric contiguous alternatives), we chose:

s(n) = nλ−1, with λ ∈]0, 1/2[. (2.9)
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The above calibration is connected with the almost sure convergence rate of the
estimators p̄n and µ̄n (see Theorem 3.1 in Bordes and Vandekerkhove, 2010).
Note that the selection rule in (2.8), adapted to the semiparametric framework,
strongly differs from the BIC criterion used by Suesse et al. (2017, p. 9).

Remark 1. It is important to notice at this point that we could have also
investigated a test expressed like this:

H0 : there exists θ ∈ Θ such that F = Fθ,

against its alternative, where F denotes the cumulative distribution function of
f . To simplify, consider the Gaussian case with variance parameter s = θ and
write Fs(·) = F (

√
s × ·). Write also F(0,1) the standard Gaussian cumulative

distribution function. In such a perspective we could have used a strategy inspired
from the simple hypothesis test of Bordes and Vandekerkhove (2010, Section
4.1). Since according to Theorem 3.2 in Bordes and Vandekerkhove (2010) the

semiparametric estimator F̂n of F satisfies a functional central limit theorem,
one could consider sn in (2.5) as a natural estimate of s under H0 and evaluate
the square of

√
n[F̂n,sn − F(0,1)] =

√
n[F̂n,sn − Fsn ] +

√
n[Fsn − F(0,1)]

over a set of fixed values (x1, . . . , xk), where F̂n,sn(·) = F̂n(
√
sn×·). By using the

delta method, we can show that the second term of the above quantity is asymp-
totically normal, however the behavior of the first term looks much more difficult
to analyze due to the random factor term sn inside the semiparametric estimate
F̂n. In addition of this technical difficulty, it would also be more satisfactory to
investigate a Kolmogorov type test based on

√
n supx∈R |Fn(

√
snx) − F(0,1)(x)|,

embracing the whole complexity of F(0,1), instead of a χ2(k)-type test based on
the above expression evaluated over a k-grid. Again this is a very challenging
problem. In that sense our approach allows to get a sort of asymptotic framework
to capture the whole complexity of f through its (asymptotically unrestricted) de-
composition in a base of orthogonal functions.

3. Assumptions and asymptotic behavior under H0

To test consistently (2.1), based on the statistic T (n) = TSn,n, we will suppose
the following conditions:

(A1) The coefficient order upper bound d(n) involved in (2.8) satisfies d(n) =
O(log(n)e(n)), where e(n) is the trimming term in (2.7).

(A2) For all k ≥ 1, αk(·, ·) is a C1 function and there exists nonnegative
constants M1 and M2 such that for all (µ, θ) ∈ Λ,

|αk(µ, θ)| ≤M1 and ‖α̇k(µ, θ)‖ ≤M2,

where α̇k denotes the gradient (∂αk/∂µ, ∂αk/∂θ)
T and ‖ · ‖ denotes the

Euclidean norm on R2.

imsart-generic ver. 2014/10/16 file: DParxiv-V2.tex date: March 11, 2019



D. Pommeret and P. Vandekerkhove/Contamination density test 8

(A3) There exists a nonnegative constant M3 such that for all (k, i) ∈ N∗×N∗,

1

k

k∑
i=1

var

(
Qi(X1)

q2i

)
≤M3.

Under these three conditions, which will be checked respectively in Lemma 1 and
3 for the Gaussian and the Lebesgue reference measure, we state the following
theorem.

Theorem 2. If assumptions (A1-3) hold, then, under H0, Sn converges in
Probability towards 1 as n→ +∞.

Corollary 3. Under (A1-3), the test statistic T (n) converges in law towards
a χ2-distribution with one degree of freedom as n→ +∞.

Remark 4. Theorem 2 and Corollary 3 still hold if we replace in T (n) the
semiparametric estimators and their (asymptotic) variances by their maximum
likelihood counterparts. The proofs of these two results are completely similar to
the semiparametric case and rely on the asymptotic normality of the maximum
likelihood estimator detailed in the supplementary material file. In this case the
rate of the selection rule is the standard one, which is namely s(n) = 1.

4. Asymptotic behavior under H1

In the next proposition we study the behaviour of our test statistic under
H1 : f ∈ S \ F .

Proposition 1. If f ∈ S \ F , then the test statistic T (n) tends to +∞ in
probability with a nλ-drift, 0 < λ < 1/2, as n→ +∞.

We would like to stress out the fact that the identifiability conditions sup-
posed when considering the class of densities S, see definition in Section 2, are
crucial in the proof of Proposition 1. As mentioned in Bordes, Delmas and Van-
dekerkhove (2006), there exists various non identifiability cases for model (1.1).
Let us remind the following one from Bordes and Vandekerkhove (2010):

(1− p)ϕ(x) + pf(x− µ) = (1− p

2
)ϕ(x) +

p

2
ϕ(x− 2µ), x ∈ R

where ϕ is an even probability density function, p ∈ (0, 1) and f(x) = (ϕ(x −
µ) + ϕ(x + µ))/2. This example is very interesting since it clearly shows the
danger of estimating model (1.1) when the probability density function of the
unknown component has exactly the same shape as the known component. In
particular if ϕ is a given Gaussian distribution and we want to test if the 2nd
component is Gaussian, we could possibly either reject or accept H0 with our
testing procedure depending on the convergence of our semiparametric esti-
mators. Indeed the maximum likelihood estimator would converge towards the
natural underlying Gaussian model and the semiparametric method could pos-
sibly converge towards both solutions. To avoid this very well identified concern,
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we recommend to check if the departures between the maximum likelihood esti-
mator and the semiparametric one is not driven by a factor 2, i.e µ̂n ≈ 2µ̄n and
p̂n ≈ p̄n/2. To advise on this possible proximity, one could check if µ̂n/2 and 2p̂n
respectively belong to the 95% confidence intervals of µ and p derived from the
asymptotic normality of (p̄n, µ̄n), see Bordes and Vandekerkhove (2010). Now
if so, we suggest to initialize the semiparametric approach close the maximum
likelihood estimator to force it to detect the possibly existing f -component in
model (1.1).

5. Contiguous alternatives

5.1. Detected contiguous alternatives

We consider in this section a vanishing convolution-class of nonparametric con-
tiguous alternatives. More specifically, the null hypothesis consists here in con-
sidering that the observed sample Xn = (X1, . . . , Xn) comes from

H0 : Xi = (1− Ui)Yi + UiZi, i = 1, . . . , n,

where (Ui)i≥1 and (Yi, Zi)i≥1 are respectively independent and identically dis-
tributed sequences distributed according to a Bernoulli distribution with param-
eter p and f0 ⊗ fµ,θ, where fµ,θ is the unknown density function with respect
to the reference measure ν. For each n ≥ 1, the contiguous alternative consists
in the fact that the observed sample X(n) = (Xn

1 , . . . , X
n
n ) comes from a row

independent triangular array:

H
(n)
1 : Xn

i = (1− Ui)Yi + UiZ
n
i , i = 1, . . . , n,

where Zni = Zi + δnεi, (εi)i≥1 is an independent and identically distributed
sequence of random variables, independent from the Z’s and δn → 0 as n→ +∞
(vanishing factor). We assume here that, ∀i ≥ 1, Zi + δnεi /∈ S. In the Gaussian
case this assumption is insured if the ε′s are non Gaussian. It is also assumed
that the E(e|ε1| <∞. This type of contiguous modeling looks natural to us as,
in any experimental field, measurement errors could happen, represented above
by the δnεi’s, and additively impact the Z true underlying phenomenon. We
also remind at this point that the distribution of the Y ’s is theoretically known
by assumption.

The whole contiguous models collection will be denoted H∗1 = ⊗∞n=1H
(n)
1 .

To emphasize the role of index n in the triangular array, we will denote all the
estimators depending on X(n) or any function depending onG(n), the cumulative

distribution function of the X
(n)
i ’s, with the extra superscript (n); for example,

with this new notational rule, the estimator p̄n(X(n)) of p will be denoted p̄
(n)
n .

Similarly we will denote by ĝ
(n)
n the kernel density estimator of g(n) involved in

the contiguous alternative setup, see the supplementary material file, defined by

ĝ(n)n (x) =
1

nhn

n∑
i=1

K

(
x−Xn

i

hn

)
, x ∈ R, (5.1)
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where the bandwidth hn satisfies hn → 0, nhn → +∞ and K is a symmetric
kernel density function detailed in the supplementary file. We will denote also by
E(n) and P(n) the expectation and probability distribution under the alternative

H
(n)
1 and consider the following assumptions:

(A4) The bandwidth setup is hn = n−1/4−γ with γ ∈ (0, 1/12).
(A5) The vanishing factor satisfies δn = n−3/4−ξ, with 3γ < ξ < 2γ + 1/4.
(A6) There exists a nonnegative constant C such that for all k ∈ N,

|E(n) (Qk(X0 + δnε1)−Qk(X0)) |/q2k ≤ Cδn,

where X0 is H0 distributed.

Condition (A6) is checked in Lemmas 2-4 for the Gaussian and the Lebesgue
reference measure. It is also satisfied for any reference measure with bounded
support. For simplicity, we refer to condition (A2-3) under H∗1 in the proposi-
tion below. This means that both conditions are satisfied for all n ≥ 1 replacing
X1 by Xn

1 . Following the proof of these conditions in Appendix under H0 it is
possible to establish explicit moment conditions on ε, adapted to the moments
of Z, to insure (A2-3) under H∗1 . These conditions being technical and their
proof being painful but straightforward we do not detail them here.

Proposition 2. If assumptions (A1-6) hold, then, under H∗1 , Sn converges in
Probability towards 1 and T (n) converges in law towards a χ2-distribution with
one degree of freedom, as n→ +∞.

5.2. Undetected contiguous alternatives

Combining Assumptions (A4) and (A5), we clearly have 0 < ξ < 1/3 and then

there exists ξ̃ = 3/4+ξ ∈ (3/4, 13/12) such that δn = n−ξ̃. The convergence rate
of δn to zero is slow enough to distinguishe the asymptotic null hypothesis when
n tends to infinity. Contrarily, we now consider two convergence rates which are
too fast to recover the asymptotic null distribution of the test statistic, despite
the convergence of the contiguous alternative towards the null hypothesis. These
convergence rates are given under the following assumptions:

(A7) E(ε) = 0 and there exists 0 < ξ′ < 1/4 such that δn = n−ξ
′
.

(A8) E(ε) 6= 0 and there exists 0 < ξ′′ < 1/8 such that δn = n−ξ
′′
,

where ε denotes a generic random variable involved in the above definition of
the Zn’s. The rate in (A7) will control the mean deviation due to the pertur-
bations ε and the rate given in (A8) will allow to control the variance of these
perturbations when there is no mean deviation.

Proposition 3. If assumptions (A7) or (A8) holds, then, under H∗1 , T (n)
converges in probability towards +∞. Moreover, under (A7) Sn converges in
probability towards 1, and under (A8) Sn converges in probability towards 2.
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6. Choice of the reference measure and test construction

In order to run our test, we have to select now a reference measure ν and an ad.
hoc. orthogonal family Q = {Qk, k ∈ N}. The choice of the ν depends clearly
of the support of X1. For a compact support, one can choose a uniform dis-
tribution for ν and their associated Legendre polynomials. Since our numerical
studies are dedicated to the Gaussian case, we illustrate here the choice of ν
corresponding to two measures on the real line: the Gaussian and the Lebesgue
one. The verification of conditions (A2–3) for these two measures is relegated
in the supplementary material file.

Gaussian reference measure. In practice, in the present paper, we chose for ν the
standard normal distribution for testing the Gaussianity. This choice is adapted
to any distribution having support on the real line. The set Q is constructed
from the f(0,1)-orthogonal Hermite polynomials defined for all k ≥ 0 by:

Hk(x) = k!

bk/2c∑
m=0

(−1)mxk−2m

m!(k − 2m)!2m
, x ∈ R. (6.1)

We have ‖Hk‖2 = k! and, for illustration purpose, the six first polynomials are:

H0 = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x.

Lemma 1. Let Hk be defined by (6.1) and let Qk(x) = Hk(x), for all x ∈ R.
Assume that we want to test H0 : f ∈ G, where G is the set of Gaussian densities.
Then conditions (A2–3) are satisfied.

Remark 5. Lemma 1 can be extended to non Gaussian null distribution f with
known moments as discussed in Remark 1 in supplementary file.

Lemma 2. Let Hk be defined by (6.1) and let Qk(x) = Hk(x), for all x ∈ R.
Then condition (A6) is satisfied.

Lebesgue reference measure. Another simple ν reference measure could the Lebesgue
measure over R. In that case, we would rather consider the set of orthogonal
Hermite functions defined by:

Hk(x) = hk(x) exp(−x2/2), x ∈ R, (6.2)

where hk(x) = 2k/2Hk(
√

2x), with Hk defined in (6.1). In addition we have
‖Hk‖2 = k!2k.

Lemma 3. Let Hk be defined by (6.2) and let Qk(x) = Hk(x), for all x ∈ R.
Then conditions (A2–3) are satisfied.

Lemma 4. Let Hk be defined by (6.2) and let Qk(x) = Hk(x), for all x ∈ R.
Then condition (A6) is satisfied.
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Test construction. The computation of the test statistic T (n) = TSn,n, see
expressions (2.6) and (2.8), is grounded on the computation of the αi(µ, s)’s
quantities. We detail here the expression of R1,n and var(R1,n) when the ref-
erence measure is Gaussian associated with the Hermite polynomials. To over-
come the complex dependence between the estimators a1,n, p̄n, µ̄n and s̄n, we
split the sample into four independent sub-samples of size n1, n2, n3, n4, with
n1 +n2 +n3 +n4 = n. We use the first sample to estimate a1, the second sample
to estimate p, the third one to estimate µ, and the last one to estimate s. We
get α1(µ, s) = µ and α1,n = µ̄n which makes

R1,n = n−11

n1∑
i=1

Xi − p̄n2
µ̄n3

, and

var(R1,n) = var(X)/n1 + var(p̄n2
)var(µ̄n3

) + var(p̄n2
)E(µ̄n3

)2 + E(p̄n2
)2var(µ̄n3

).

We propose a consistent estimator of var(R1,n):

V1,n = S2
X,n1

+ vp,n2vµ,n3 + µ̄2
n3
vp,n2 + p̄2n2

vµ,n3 ,

where S2
X,n1

denotes the empirical variance based on (X1, . . . , Xn1), and vp,n2 ,
respectively vµ,n3 , denotes the consistent estimator of var(p̄n2), respectively
var(µ̄n3

)), obtained from Bordes and Vandekerkhove (2010, p. 40). The com-
putation of the test statistic first requires the choice of d(n), e(n) and s(n).
A previous study showed us that the empirical levels and powers were overall
weakly sensitive to d(n) for d(n) large enough. From that preliminary study
we decided to set d(n) equal to 10. The trimming e(n) is calibrated equal to
(log(n))−1. The normalization s(n) = nα−1 is setup close enough to n−1/2, with
α equal to 2/5, which seemed to provide good empirical levels.

Secondly, since the probability density functions considered in our set of
simulation are R-supported we use the standard Gaussian distribution for ν
and its associated Hermite polynomials for Q. All our simulations are based on
200 repetitions. Let us remind briefly that the empirical level is defined as the
percentage of rejections under the null hypothesis and that the empirical power
is the percentage of rejections under the alternative. Finally the asymptotic level
is standardly fixed to 5%.

7. Semiparametric and maximum likelihood approaches comparison

In our testing procedure we estimate p, µ by the semiparametric estimators pro-
posed in Bordes and Vandekerkhove (2010) instead of the maximum likelihood
estimators. In the same way our estimation of θ, see expression (2.5), is H0-free
contrary to what would happen when using the maximum likelihood technique.
Both approaches are asymptotically equivalent under the null hypothesis, see
remark 4, and all the simulations we did shown very similar empirical levels
when comparing the semiparametric and maximum likelihood approaches un-
der null models. However, under certain types of alternatives, the maximum
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likelihood approach can lead to very unexpected empirical powers. These be-
haviors are due to compensation phenomenon in models close, for example, to
the non-identifiable one described in Section 4. To illustrate clearly this point
we detail here the Gaussianity test in these cases. Write

g(x) = (1− p)f(0,1)(x) + pha,s(x− µ), x ∈ R, (7.1)

where ha,s(x) = (f(0,s)(x−a)+f(0,s)(x+a))/2, a 6= 0, f(0,s) being the Gaussian
density, centered, with variance s. We notice that (7.1) turns to satisfy, when
µ = a and s = 1, the following rewriting

g(x) = (1− p

2
)f(0,1)(x) +

p

2
f(0,1)(x− 2µ), x ∈ R. (7.2)

In this case there are two different parametrizations for (7.1): one that we call the
null parametrization, coinciding with H0 with null parameters p0 = p/2, µ0 = 2µ
and s0 = 1, see the right hand side of (7.2). The other one is called the alterna-
tive parametrization, coinciding with H1 with p1 = p, µ1 = µ and s1 = µ2+1, see
the right hand side of (7.1). By construction the maximum likelihood estimator
will favor the null parameters. We study now this phenomenon through a set of
simulations where the parameters are µ = 4, s = 1 and p = 0.4. For comparison,
we used the same initial values for the both semiparametric and maximum like-
lihood algorithms, namely (p, µ, s) = (0.3, 6, 8.5), which is exactly between the
null parametrization (p, µ, s) = (0.2, 8, 1), and the alternative parametrization
(p, µ, s) = (0.4, 4, 17). It is of interest to study now the behavior of the semipara-
metric and maximum likelihood testing methods when the true model deviates
smoothly from the null hypothesis in two ways: i) the unknown component is a
ha,1 with µ 6= a, i.e

g(x) = (1− p)f(0,1)(x) + p

(
1

2
f(0,1)(x− a− µ) +

1

2
f(0,1)(x+ a− µ)

)
︸ ︷︷ ︸

µ-symmetric mixture detected by the semiparametric method

=
(

(1− p)f(0,1)(x) +
p

2
f(0,1)(x+ a− µ))

)
+
p

2
f(0,1)(x− a− µ)

≈
(

1− p

2

)
f(0,1)(x) +

p

2
f(0,1)(x− a− µ))︸ ︷︷ ︸, when µ→ a,

(a+ µ)-centered Gaussian attracting the maximum likelihood method
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this case will be called the mean deviation trap, and ii) the unknown component
is a ha,s with µ = a but s 6= 1, i.e.

g(x) = (1− p)f(0,1)(x) + p

(
1

2
f(0,s)(x− 2µ) +

1

2
f(0,s)(x)

)
︸ ︷︷ ︸

µ-symmetric mixture detected by the semiparametric method

=
(

(1− p)f(0,1)(x) +
p

2
f(0,s)(x))

)
+
p

2
f(0,1)(x− 2µ)

≈
(

1− p

2

)
f(0,1)(x)) +

p

2
f(0,s)(x− 2µ))︸ ︷︷ ︸, when s→ 1

(2µ)-centered Gaussian attracting the maximum likelihood method

this case will be called the variance deviation trap.
It is very important to point out now that the above phenomenons illustrate the
risk of considering only one single Gaussian component (q = 1) in the generic
mixture model defining f in McLachlan et al. (2006, Section 6) when actually
two Gaussian components (q = 2) would be necessary to accurately fit the
model.

Mean deviation trap. We consider deviations from the null model obtained
by considering µ = 3, 2, 1 and s = 1. Fig. 1 shows the g probability density func-
tion under these respective alternatives. It can be observed that, if we try to
visually detect a mixture of two Gaussian distributions, the probability density
function of the left-side component moves clearly aside the Gaussian distribu-
tion family as µ moves largely away from a = 4, i.e. when µ = 1, but we
bet that many practitionners would probably vote “intuitively” for a mixture
of two Gaussian distributions when µ = 3 or 2. Fig. 1 in supplementary file
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Fig 1: The probability density function g in model (7.1) when a = 4, s = 1, and
µ = 3, 2, 1.

illustrates the difficulty of the maximum likelihood estimator to recognize the
alternative model when the mean deviation is not distant enough (here µ = 3
and a = 4). Based on a run of 200 repetitions, it is shown that the maxi-
mum likelihood estimation is trapped at the null parametrization which namely
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is (p, µ, s) = (0.2, 7, 1) when on the opposite, the semiparametric estimation
detects the correct (p, µ, s) = (0.4, 3, 17) alternative parametrization. In Fig.
2 we display respectively the empirical power of our testing procedure based
on the maximum likelihood and the semiparametric approach for µ = 3, 2, 1,
a = 4, s = 1, and for n = 1000, 2000, 5000. As expected the maximum like-
lihood approach barely detects the alternative for small values of n when its
semiparametric counterpart surpasses it with up to 10 times more correct de-
cision results. The reason of this lack of power is due to the fact that our test
focuses more on the moments of the second components than those of the first
one and, as seen in Fig. 1, the second components looks pretty much Gaussian
even for µ = 1.
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Fig 2: Empirical powers obtained with the maximum likelihood approach (left)
and semiparametric approach (right) under the trap effect for µ = 3, 2, 1 and
a = 4

Variance deviation trap. We consider the variance deviations s = 2, 3, 4,
fixing µ = a = 4. Fig. 3 shows the g probability density function under these
alternatives. Empirical powers are displayed in Fig. 4. We can observe that both
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Fig 3: The probability density function g in model (7.1) with µ = a = 4 and
s = 2, 3, 4.
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powers associated with the maximum likelihood and semiparametric approach
increase according to the variance deviation but it is worth to notice that the de-
tection based on the maximum likelihood approach is again very poor compared
to the semiparametric approach. As a conclusion, this set of numerical exper-
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Fig 4: Empirical powers obtained with the maximum likelihood approach (left)
and semiparametric approach (right) under the variance deviation trap effetct
for s = 2, 3, 4 6= 1, with µ = a = 4.

iments shows the clear interest, in terms of testing power, of considering the
semiparametric versus the maximum likelihood approach especially in a close
neighborhood of non-identifiable type (1.1) Gaussian models.

8. Simulations: empirical levels and powers

8.1. Empirical levels

McLachlan et al. (2006) considered the two-component Gaussian version of the
mixture model (1.1) through three datasets arising from the bioinformatics lit-
erature: the breast cancer data, with n = 3226, the colon cancer data, with
n = 2000, and the HIV data, with n = 7568. The estimation of their associated
parameters are respectively: (p̂n, µ̂n, ŝn) = (0.36, 1.52, 0.99), (0.58, 1.61, 2.08),
and (0.98,−0.15, 0.79). To make sure that our methodology will have reliable
behaviors when applied on this collection of datasets, we investigate the em-
pirical levels of our testing procedure across parameter values such as n ∈
{2000, 3000, 7500} and (p, µ, s) = (1/3, 1.5, 1), (0.5, 1.5, 2) and (0.98,−0.15, 0.8)
which are values in the range of the above targeted applications. For this pur-
pose, for each value of n, p, µ and s, we compute the test statistic T (n) based
on the sample and compare it to the 5%-critical value of its approximated dis-
tribution under H0 (χ2(1) according to Corollary 3). Note that, for numerical
simplicity, we initialize our parameter estimation step at the true value of the
Euclidean parameter. The collection of empirical levels obtained for this set of
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simulated examples is reported in Fig. 2 of the supplementary file. It appears
that a significant number of observations is needed to get close to the theoretical
level. This drawback can be balanced by the fact that today, as mentioned in
the Introduction, genomic datasets usually contain thousands of genes which
makes our methodology in practice suitable for a wide class of standard (from
the sample size view point) microarray analysis problems.

8.2. Empirical powers

In this section we consider the Gaussian testing problem (1.2) with F = G where
G =

{
f(µ,s); (µ, s) ∈ Λ ⊂ R× R+∗} denotes the set of Gaussian densities with

mean µ and variance s, compared to Student and Laplace alternatives. First a
1-shifted Student distribution t(3), having a shape far enough from the Gaussian
distribution, with a shift µ = 1. Second a shifted Student t(10), again with a shift
equal to 1, but having a shape closer to the null Gaussian distribution. Third a
Laplace distribution L(1, 1) with mean 1 and variance 2. The last alternative is
a Laplace L(1, 2) with mean 1 and variance 8. The empirical powers for Student
and Laplace alternatives are respectively summarized in Fig. 5 and 6.

As expected, when comparing pairwise the Student alternatives, the power is
greater for the t(3) distribution compared to the t(10) distribution. The t(3) is
very clearly detected by the test since the detection level is greater than 80% for
all the cases and even close to 100% for n = 7000. Now, similarly to the mean
and variance deviation trap setups investigated in Section 7, we can observe that
the power is greater as p increases, which practically means that the Student
component is enhanced in the model (remind that our test procedure is focused
on the 2nd-component moments analysis) . We display the mixture densities
corresponding to this set of alternatives in Fig. 3 of the supplementary file. For
the first Student alternative, comparing p = 1/2 and p = 0.98, we can observe
that a serious jump happens in terms of dissimilarity between the alternative
model and the best fitted (same mean and variance) Gaussian null-model. For
p = 0.98, the Student distribution strongly prevails and the test is automatically
empowered. The second alternative is also detected, but with a lower power, let
say between 40 % and 90%, due to the proximity of the Student t(10) with the
Gaussian N (0, 1).
In Fig. 3 of the supplementary file we can see how close the null distribution
and the t(10) alternative are, especially for p = 1/3 and p = 1/2, and visually
evaluate how challenging these testing problems really are.

The empirical powers for Laplace alternatives are given in Fig. 6. The power
is larger with the alternative L(1, 2) than with the alternative L(1, 1). Indeed
the L(1, 2) distribution has a stronger shape departure from the Gaussian than
the L(1, 1), and the associated mixture densities inherit these characteristics as
we can see in Fig. 3 of the supplementary file. These alternatives are globally
very well detected by our method and the power increases strongly when p gets
closer to 1 (see Fig. 6 curve in green).
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Fig 5: Empirical powers when the alternative is a shifted Student t(3) (left)
and a shifted Student t(10) for parameter values p = 1/3 (�), p = 1/2 (◦) and
p = 0.98 (4) with sample sizes n = 2000, 3000, 7500.

9. Real datasets

Microarray data. We consider 3 datasets arising from the bioinformatics lit-
erature and studied in McLachlan et al. (2006). Fig. 7 shows the non parametric
kernel estimations of their probability density functions. Each of them deals with
genes expressions modeled by the two-component mixture model (1.1) in which
f was arbitrarily, for simplicity matters, considered as Gaussian (without any
theoretical justification). The goal of this section is to answer if the classical
Gaussian assumption was a posteriori correct or not.

Breast cancer data. We consider the breast cancer data studied in Hedenfalk
et al. (2001). It consists in n = 3226 gene expressions in breast cancer tissues
from women with BRCA1 or BRCA2 gene mutations. The maximum likelihood
parameter estimations under the Gaussian null model are p̂n = 0.36, µ̂n = 1.53,
ŝn = 0.98. By the semiparametric method we obtain p̄n = 0.41, µ̄n = 1.35 and
s̄ = 1.31. It can be noticed here that nonparametric and maximum likelihood
estimators give pretty similar results here which may corroborate the null hy-
pothesis. Our test procedure provides a p-value equal to 0.82, with Sn = 1. As a
consequence the normality of the second mixture component under H0 cannot
be rejected.

Colon cancer data. We consider the colon cancer data analysed in Alon et al.
(1999). The samples comes from colon cancer tissues and normal colon tissues.
It contains n = 2000 expressions of genes. The maximum likelihood estimations
of the parameters are p̂n = 0.58, µ̂n = 1.61, ŝn = 2.08; The semiparametric
method provides p̄n = 0.72, µ̄n = 1.28 and s̄ = 2.33. By using our testing proce-
dure we obtain a p-value less than 10−8 with Sn = 4. Here we clearly reject the
normality under H0. The rejection of the Gaussian mixture can be explained
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Fig 6: Empirical powers with alternative a Laplace L(1, 1) (left) and a Laplace
SL(1, 2) (right) for parameter values p = 1/3 (�), p = 1/2 (◦) and p = 0.98
(4) with sample sizes n = 2000, 3000, 7500.
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Fig 7: Respectively the kernel density estimators of the breast data, colon data
and HIV data distributions.

here by the fact that the nonparametric and the maximum likelihood estimators
lead to notably different values especially on p.

HIV data. We consider the HIV dataset of vant’ Wout et al. (2003). It contains
expression levels of n = 7680 genes in CD4-T-cell lines, after infection with the
HIV-1 virus. The maximum likelihood estimations of the parameters are p̂n =
0.98, µ̂n = −0.15, ŝn = 0.79. The semiparametric method provides p̄n = 0.99,
µ̄n = 0.20 and s̄ = 0.80. The p-value given by our testing procedure is equal
to 0.64, associated with the decision Sn = 1. As a consequence the normality
under H0 cannot be rejected despite the fact that the maximum likelihood and
semiparametric estimations of µ are quite different but both close to 0, meaning
a strong overlap of the mixed distributions (see the almost symmetry of the
third probability density function in Fig. 7).

imsart-generic ver. 2014/10/16 file: DParxiv-V2.tex date: March 11, 2019



D. Pommeret and P. Vandekerkhove/Contamination density test 20

Galaxy data. We consider here the Carina dataset, see Walker et al. (2007),
studied previously in Patra and Sen (2016). Carina is a low luminosity galaxy
companion of the Milky Way. The data collects n = 1266 measurements of
the radial velocity of stars in Carina. This is a contamination model in the
sense that the measurements of stars in the Milky Way are mixed with some of
Carina (overlapping). The Milky Way is largely observed, see Robin et al. (2003).
Figure 8 shows the density f0 of the radial velocity of Milky Way, estimated
over n′ = 170, 601 observations. This density is clearly not zero-symmetric but
in such a case it is enough to refer to the tail-oriented set of identifiability
conditions of Proposition 3 i) in Bordes et al. (2006) to make the semiparametric
estimation method still valid. Note also that the asymptotic results of Bordes
and Vandekerkhove (2010) still hold if the cumulative distribution function F0

is replaced by a smooth empirical estimate F̃0,n′ based on a n′ = ϕ(n) sized
training data provided with n/n′ → 0 as n → +∞. Unfortunately the study
of the maximum likelihood estimate, see Section 5 of the supplementary file,
cannot be generalized straightforwardly since the non-parametric estimation of
the Kullback distance, obtained by replacing f0 by a kernel density estimate f̂0,n
in the log-likelihood, is known to be very a delicate problem, see Berrett et al.
(2018) and references therein. Though, the fact that the unknown component
of g under H0 is supposed to have a parametric form should definitely help
to control some technical tail issues specific to the Kullback estimation. We
obtained for p and µ, respectively the proportion and the mean of the Carina
radial velocity, the following estimations:

p̄n = 0.361 and µ̄n = 222.60.

In their study, Patra and Sen (2016) obtained very similar values: p̃ = 0.323
and µ̃ = 222.9. However, the estimation of the variance s appears to be highly
sensitive to the estimation of p. Using the plug-in estimator given by (2.5)
we get s̄n = 453.93. Note that the estimation given in Patra and Sen (2016)
was s̃n = 56.4 which looks far from the expected value given the data. To
illustrate this remark, we compare in Fig. 8 the kernel density estimate of the
observed data with the probability density of model (1.1), obtained by replacing
(p, µ, s) by our estimates (p̄n, µ̄n, s̄n) and the Patra and Sen (2016)’s estimates
(p̃n, µ̃n, s̃n). We can observe that our estimation provides an excellent fitting
when the variance estimated by Patra and Sen (2016) appears to be way too
small. Our test procedure yields a p-value equal to 0.75 with a test statistic
TSn,n = T1 = 0.097. As a consquence, there is no evidence here to reject the
normality of the Carina radial velocity.

10. Discussion and perspectives

In this paper we proposed an H0-free testing procedure to deal with the del-
icate problem of the contamination model parametrization. In our numerical
study we focused our attention on the Gaussianity testing problem however it
is very important to remind that our asymptotic results can be generalized to
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Fig 8: Left side: estimated density of the Milky Way Radial velocities. Right
side: in black, the plot of the Carina dataset nonparametric density estimate. In
red, resp. in blue, the plot of the model (1.1) probability density function under
f = f(µ,s) and obtained by plugging (p̄n, µ̄n, s̄n), resp. (p̃n, µ̃n, s̃n), into (p, µ, s).

any suitable distribution (possibly non-symmetric). Indeed, if the unknown dis-
tribution of model (1.1) is embedded in a nonparametric envelop S provided
with identifiability constraints and if there exists a corresponding semiparamet-
ric
√
n-consistent method, then the asymptotic results in Sections 3-4 extends

straightforwardly. For this latter case, we recommend the recent work by Al
Mohammad and Boumahdaf (2018) who consider in model (1.1) an unknown
component defined through linear constraints. In their paper, the authors derive
an original consistent and asymptotically normally distributed semiparametric
estimation method with asymptotic closed form variance expressions. Indeed,
when considering null assumptions different from the Gaussian case, basically
only the shape parameter estimation, usually deduced from moment equations,
and the choice of the orthogonal basis described in Section 2 could possibly
change, depending on the support of the tested distribution. Wavelet functions
and Laguerre polynomials could respectively be used for probability density
functions on the whole, respectively positive, real line, when Legendre, or co-
sine bases could be used for densities with compact support. Also, with a slight
adaptation of our work, we could definitely test the unknown component of the
contamination model considered in the recent work by Ma and Yao (2015) where
the first component density is only supposed to belong to a parametric family
(the first component is not entirely known anymore). For each case, the use of
the maximum likelihood or semiparametric approach could be again discussed.
On the other hand, as it has been demonstrated in Section 7, see Figs. 2 and
4, the semiparametric testing approach shows better power performances than
the maximum likelihood version especially in the neighborhood of the mean and
variance deviation trap situations (up to 10 times more efficient for small sam-
ple sizes). We also proposed in Section 5 a vanishing convolution-class of non-
parametric contiguous alternatives and studied theoretically their detectability
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under certain convergence rate conditions. In a futur work it would be very in-
teresting to address the contiguous detection problem associated with the mean
and variance deviation trap setups. This would namely consist in looking at
the asymptotic behavior of our test when replacing respectively the parameters
µ and s in the mean and variance deviation trap setups by sequences µn and
sn converging respectively towards a and 1 as n goes to infinity. The major
technical difficulty here is that we are not able to establish yet optimal bounds
of convergence for the semiparametric Euclidean estimator associated with a
triangular array driven by the above asymptotic parametrization, see Remark 4
in the supplementary material file. Future work is also to consider a K-sample
extension, K ≥ 2, in the spirit of Wylupeck (2010), Ghattas et al. (2011), or
more recently Doukhan et al. (2015). More precisely, we could test the equality
of K unknown components through K observed mixture models.
Acknowlegement. The authors acknowledge the Office for Science and Tech-
nology of the Embassy of France in the United States, especially its antenna in
Atlanta, for its valuable support to this work.

11. Appendix: proofs of the main results

Theorem 2. Let us prove that P(Sn ≥ 2) vanishes as n→ +∞. By definition of

Sn in (2.8) and D̂k,n[·] in (2.7) we have for all λ ∈]0, 1/2[:

P(Sn ≥ 2)

= P
(

there exists k ∈ {2, . . . , d(n)} : nλU>k,nD̂
−1
k,nUk,n − k log (n) ≥ nλU>1,nD̂−11,nU1,n − log (n)

)
≤ P

(
there exists k ∈ {2, . . . , d(n)} : nλU>k,nD̂

−1
k,nUk,n ≥ (k − 1) log (n)

)
≤ P

there exists k ∈ {2, . . . , d(n)} :

k∑
j=2

nλ(Rj,n)2 ≥ (k − 1) log (n)e(n)


≤ P

(
there exists (j, k) with 2 ≤ j ≤ k ≤ d(n) : nλ(Rj,n)2 ≥ log (n)e(n)

)
≤ P

d(n)∑
j=2

nλ(Rj,n)2 ≥ log (n)e(n)

 . (11.1)

It is important for us to keep the summation term up to d(n) in the left hand
side of the above inequality-type event in order to straightforwardly use the
almost sure rate of convergence of the semiparametric Euclidean parameters,
see (11.5)–(11.6). We decompose Rk,n as follows:

Rk,n = (ak,n − E(ak,n))− (p̄nαk,n − p0αk(µ0, θ0)), 1 ≤ k ≤ d(n). (11.2)
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By using the inequality (a+ b)2 ≤ 2(a2 + b2), for all (a, b) ∈ R2, we get

P

d(n)∑
k=2

nλ(Rk,n)2 ≥ log (n)e(n)

 ≤ P

d(n)∑
k=2

(ak,n − E(ak,n))2 ≥ log(n)e(n)

4nλ


(11.3)

+ P

d(n)∑
k=2

(p̄nαk,n − p0αk(µ0, θ0))2 ≥ log(n)e(n)

4nλ

 .

We study now all the above quantities separately. By the Markov inequality, we
first have

P

d(n)∑
k=2

(ak,n − E(ak,n))2 ≥ log(n)e(n)

4nλ

 ≤ 4nλ

log(n)e(n)

d(n)∑
k=2

E
(
(ak,n − E(ak,n))2

)

=
4nλ

log(n)e(n)

d(n)∑
k=2

1

n
var

(
Qk(X1)

q2k

)
≤ 4d(n)

n1−λ log(n)e(n)
M3, (11.4)

where the right hand side term goes to zero as n→ +∞ since d(n)/log(n)e(n) =
O(1) according to (A1) and (2.9).
Secondly, by decomposing p̄nαk,n − p0αk(µ0, θ0) = (p̄n − p0)αk,n + p0(αk,n −
αk(µ0, θ0)), we obtain the following majorization

P

d(n)∑
k=2

(p̄nαk,n − p0αk(µ0, θ0))2 ≥ log(n)e(n)

4nλ

 ≤ P

d(n)∑
k=2

(αk,n)2(p̄n − p0)2 ≥ log(n)e(n)

8nλ


+ P

d(n)∑
k=2

p20(αk,n − αk(θ0, µ0))2 ≥ log(n)e(n)

8nλ

 .

Since the αk,n’s are bounded by M1 according to (A2), we have

P

d(n)∑
k=2

α2
k,n(p̄n − p0)2 ≥ log(n)e(n)

8nλ

 ≤ P
(

(p̄n − p0)2 ≥ log(n)e(n)

8nλM1d(n)

)
,(11.5)

where the last right hand side term goes to zero as n→ +∞ since λ ∈ (0, 1/2)
and |p̄n − p0|2 = oa.s.(n

−1/2+α) for all α > 0, by Bordes and Vandekerkhove
(2010). By denoting ρ0 = (µ0, θ0) and ρ̄n = (µ̄n, θ̄n), we also have ‖ρ̄n− ρ0‖2 =
oa.s.(n

−1/2+α), for all α > 0. Since the α̇k,n’s are bounded by M2 according to
(A2), using the mean value theorem we obtain:

P

d(n)∑
k=2

(αk,n − αk(µ0, θ0))2 ≥ log(n)e(n)

8nλ

 ≤ P
(
‖ρ̄n − ρ0‖2 ≥

log(n)e(n)

8nλM2
2 d(n)

)
,(11.6)
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which last term goes to zero as n→ +∞. Hence from (11.1) and the controls in
probability (11.3–11.6), we obtain that P(Sn ≥ 2)→ 0 as n→ +∞.

Corollary 3. From Theorem 2, TSn,n has the same limiting distribution as T1,n =
nR2

1,n/V1,n. Since the estimators θ̄n and µ̄n are independent and asymptotically
Normally distributed towards the true values θ0 and µ0 we get, by using the
delta method, the following convergence in distribution:

√
nα1(µ̄n, θ̄n) −→ N (α1(µ0, θ0), D(µ0, θ0)V D(µ0, θ0), as n→ +∞,

where D(·, ·) is the gradient α̇1(·, ·), and where V is the asymptotic variance of
(
√
nµ̄n,

√
nθ̄n). Combining this convergence in law with the following conver-

gence in probability:

V1,n −→ var(R1,n) and p̄n −→ p0, as n→ +∞,

along with the independence and the asymptotic normality of the first estimated

coefficient a1,n =

n∑
i=1

Q1(Xi)/nq
2
1 , we get, by using the Slutsky’s Theorem, the

following limiting distribution:

√
n
R1,n√
V1,n

=

√
n

V1,n

(
1

n

n∑
i=1

Q1(Xi)

q21
− p̄nµ̄n

)
−→ N (0, 1), as n→ +∞,

which concludes the proof.

Proposition 1. The advantage of considering the semiparametric approach in
Bordes and Vandekerkhove (2010) versus the maximum likelihood method is
that under H1 we keep the following consistency results in probability:

ϑ̄n = (p̄n, µ̄n) −→ (p0, µ0), θ̄n −→ θ0, Ri −→ ri = E(Qi(X)/q2i )− p0αi(µ0, θ0),

as n → +∞, for i ≥ 1, along with their associated asymptotic normality. As a

consequence, by using the Slutsky’s Theorem, the terms
√
n(Ri,n−ri)/

√
D̂k,n[i],

1 ≤ i ≤ k, are asymptotically normally distributed since D̂k,n[i] is a weakly
consistent estimator of var(Ri). Now, Clearly by (1.1) (with bi = 0), E(Qi(X)) =
p0E(Qi(Y )), where Y is a f -distributed random variable. Then we have the
following equivalence

ri = 0, for all i ≥ 1 ⇐⇒ E(Qi(Y )/q2i ) = αi(µ0, θ0), for all i ≥ 1.

This condition implies that the expansion of the Y s’ density matches with the
expansion of the unknown density f with mean µ0 and parameter θ0, which is
in contradiction with the semiparametric identifiability of model/setup H1, see
Bordes et al. (2006). Thus we can state that there exists an index j such that
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rj 6= 0. For simplicity matters let us consider j0 = min {j ≥ 1 : rj 6= 0}. Since
from (2.6), for every k ≥ 1 fixed, we can decompose Tk,n as follows:

s(n)Tk,n = nλUTk,nD̂
−1
k,nUk,n

= nλ−1
k∑
`=1

√n
R`,n − r`√

D̂k,n[`]

2

+ 2nλ−1/2
k∑
`=1

√
n

R`,n − r`√
D̂k,n[`]

 r`
+ nλ

k∑
`=1

r2` ,

it comes that for all k < j0, Tk,n = Op(n
λ−1) since the r`’s are all equal to zero

for 1 ≤ ` ≤ k, when instead for the index j0 we have Tj0,n ≥ nλr2j0 +Op(n
λ−1/2).

It comes that for all k < j0 we have

P (s(n)Tk,n − βkpen(n) < s(n)Tj0,n − βj0pen(n)) −→ 1, as n→ +∞.

This obviously shows, according to Sns’ definition (2.8), that Sn ≥ j0 with
probability one as n→ +∞. Now, since Tk,n is a k-increasing sequence for every
given n ≥ 1, we have that TSn,n ≥ Tj0,n ≥ nλr2j0 +Op(n

λ−1/2) which proves the
wanted result. Note that the right hand side of the previous inequality shows
clearly a drift of our test statistic in Op(n

λ), 0 < λ < 1/2, under the alternative
H1.

Proposition 2. Similarly to the proof of Theorem 2, we have

P
(
S(n)
n ≥ 2

)
≤ P

d(n)∑
k=2

nλ
(
R

(n)
k,n

)2
≥ log(n)e(n)

 . (11.7)

To prove that the right hand side term of the above probability goes to zero as

n→ +∞, we decompose R
(n)
k,n as follows:

R
(n)
k,n =

(
a
(n)
k,n − E(n)(a

(n)
k,n)

)
−
(
p̄(n)n α

(n)
k,n − p0αk(µ0, θ0)

)
+ ψk,n, (11.8)

with α
(n)
k,n = αk(µ̄

(n)
n , θ̄

(n)
n ), and

ψk,n = p0E(n) (Qk(X0 + δnε1)−Qk(X0)) /q2k, (11.9)

which denotes the expectation of the k-th difference between the H
(n)
1 and H0-

distribution type supported by the second component in the mixture model
(1.1), X0 being H0 distributed. By (A6) there exists c > 0 such that

ψ2
k,n ≤ cδ2n. (11.10)
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We then have

P(S(n)
n ≥ 2)

= P

nλ d(n)∑
k=2

(
(a

(n)
k,n − E(n)(a

(n)
k,n))− (p̄(n)n α

(n)
k,n − p0αk(µ0, θ0)) + ψk,n

)2
≥ log(n)e(n)


≤ P

nλ d(n)∑
k=2

(
((a

(n)
k,n − E(n)(a

(n)
k,n))− (p̄(n)n α

(n)
k,n − p0αk(µ0, θ0)))2 + ψ2

k,n

)
≥ log(n)e(n)/2


≤ P

nλ d(n)∑
k=2

(
(a

(n)
k,n − E(n)(a

(n)
k,n))− (p̄(n)n α

(n)
k,n − p0αk(µ0, θ0))

)2
≥ log(n)e(n)/2− cnλd(n)δ2n


≤ P

d(n)∑
k=2

(
(a

(n)
k,n − E(n)(a

(n)
k,n))2 + (p̄(n)n α

(n)
k,n − p0αk(µ0, θ0))2

)
≥ log(n)e(n)/(4nλ)− cd(n)δ2n/2


≤ P

d(n)∑
k=2

(
a
(n)
k,n − E(n)(a

(n)
k,n)

)2
≥ C(k, n)/(8nλ)


+ P

d(n)∑
k=2

(
p̄(n)n α

(n)
k,n − p0αk(µ0, θ0)

)2
≥ C(k, n)/(8nλ)


where C(k, n) = log(n)e(n)−2cd(n)nλδ2n. By (A1) we have d(n) = O(log(n)e(n)),
and nλδ2n → 0 as n→ +∞ due to (A5) (key point of the proof). It follows that

C(k, n) = log(n)e(n) + o(log(n)e(n)). (11.11)

We study the two above probabilities separately. First we have, according to the
Markov inequality and Condition (A3), that

P

d(n)∑
k=2

(
a
(n)
k,n − E(n)(a

(n)
k,n)

)2
≥ C(k, n)

8nλ

 ≤ 8nλ

C(k, n)

d(n)∑
k=2

1

n
var

(
Qk(Xn

1 )

q2k

)

≤ 8d(n)

n1−λC(k, n)
M3,

where the last right hand side term goes to zero as n→ +∞ according to (A1).
Secondly we have

P

d(n)∑
k=2

(
p̄(n)n α

(n)
k,n − p0αk(µ0, θ0)

)2
≥ C(k, n)

8nλ

 ≤ P

d(n)∑
k=2

(
α
(n)
k,n

)2 (
p̄(n)n − p0

)2
≥ C(k, n)

16nλ


+ P

p20 d(n)∑
k=2

(
α
(n)
k,n − αk(µ0, θ0)

)2
≥ C(k, n)

16nλ

 .
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By (A2) the αk’s are bounded by M1 which leads to

P

d(n)∑
k=2

(
α
(n)
k,n

)2 (
p̄(n)n − p0

)2
≥ C(k, n)

16nλ

 ≤ P

d(n)∑
k=2

M2
1

(
p̄(n)n − p0

)2
≥ C(k, n)

16nλ


≤ P

((
p̄(n)n − p0

)2
≥ C(k, n)

16nλd(n)M2
1

)
.

We next prove that the last right hand side term goes to zero as n → +∞.
Combining (A4)-(A5) with (ii) of Theorem 2 (in Supplementary file) we have
for all α > 0 and 0 < δ < 1/2,

‖ϑ̄(n)n − ϑ0‖ = Oa.s.

((
n−1/2+α + n−1/4+(2δ−ξ)

)1/2−δ)
= Oa.s.

((
n−1/2+α + n−1/2+(2δ−ξ+1/4)

)1/2−δ)
,

with 0 < 2δ − ξ + 1/4 < 1/4. It follows that

‖ϑ̄(n)n − ϑ0‖ = Oa.s.

((
n−1/2+α

)1/2−δ)
,

for all 0 < α < 2δ − ξ + 1/4 and 0 < δ < 1/2, and finally

‖ϑ̄(n)n − ϑ0‖ = Oa.s.

(
n−1/4+β

)
, (11.12)

for all β > 0 small enough. Since λ ∈]0, 1/2[ we obtain |p̄(n)n − p0|2 = oa.s.(n
−λ)

and the assertion follows from 11.11 and (A1). Writing ρ0 = (µ0, θ0) and ρ̄
(n)
n =

(µ̄
(n)
n , θ̄

(n)
n ), similarly (A5)-(A6) give ‖ρ̄(n)n − ρ0‖2 = oa.s.(n

−λ). Since the α̇k’s
are bounded by M2 according to (A2), using the mean value Theorem, we
obtain:

P

p20 d(n)∑
k=2

(
α
(n)
k,n − αk(µ0, θ0, )

)2
≥ C(k, n)

16nλ

 ≤ P
(
‖ρ̄(n)n − ρ0‖2 ≥

C(k, n)

16nλd(n)M2
2

)
,

which last term goes to zero as n→ +∞ according to (A1). Hence from (11.7),
we obtain that P(Sn ≥ 2) → 0 as n → +∞. Therefore, using the proofs of
Corollary 3 we get the limiting distribution of the test statistic T (n) under
H∗1 .

Proposition 3. Let us compute the close forms of the quantities ψ1,n and ψ2,n

defined in (11.9). It first comes

ψ1,n = p0E(n)(Q1(X0 + δnε1)−Q1(X0))

= p0E(n)(a1,1(X0 + δnε1) + a1,0 − a1,1(X0)− a1,0)

= p0δnE(n)(ε1),
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and we have

R
(n)
1,n =

(
a
(n)
1,n − E(n)(a

(n)
1,n)
)
−
(
p̄(n)α

(n)
1,n − p0α(µ0, θ0)

)
+ ψ1,n

= A−B + ψ1,n.

Combining Markov inequality and (A3) we obtain

P(n)(|a(n)1,n − E(n)(a
(n)
1,n)| ≥ 1/n) ≤ var

(
Q1(Xn

1 )

q21

)
< M3,

ensuring that A = Oa.s.(1/n). Moreover

B = α
(n)
k,n

(
p̄(n) − p0

)
+ p0

(
α
(n)
k,n − α(µ0, θ0)

)
= B1 +B2.

From (A2) we have |α(n)
k,n| ≤ M1 and from 11.12 we have (p̄(n) − p0) =

oa.s.(n
−λ/2) which prove that B1 = oa.s.(n

−λ/2). In the same way, using (A2)
we can show that B2 = oa.s.(n

−λ/2).

By (A7) it follows that almost surely nλ(R
(n)
1,n)2 ≈ nλ−2ξ

′ → +∞, as n →
+∞ . By construction we have T

(n)
1,n ≥ n(R

(n)
1,n)2/(v̂ar(R

(n)
1,n) + e(n)) which leads

to the almost sure convergence

s(n)T
(n)
1,n − log(n) −→ +∞, as n→ +∞.

Under (A8) we obtain immediately that ψ1,n = 0 and R1,n = oa.s.(n
−λ/2).

Since T
(n)
1,n ≤ n(R

(n)
1,n)2/e(n), it follows that almost surely

s(n)T
(n)
1,n − log(n) −→ −∞, as n→ +∞.

We also have

ψ2,n = p0E(n)(Q2(X0 + δnε1)−Q2(X0))

= p0(E(n)(a2,2(X0 + δnε1)2 + a2,1(X0 + δnε1) + a2,0

− a2,2(X0)2 − a2,1(X0)− a2,0))

= 2p0a2,2δ
2
nE(ε21).

From the above expressions and by definition of R
(n)
2,n in (11.8) we can mimic

the previous arguments to show that almost surely R
(n)
2,n ≈ δ2n and that

s(n)T
(n)
2,n − 2 log(n)

= s(n)
(
n(R

(n)
1,n)2D̂−11,n + n(R

(n)
k,n)2D̂−12,n

)
− 2 log(n)

≥ nλ
(

(R
(n)
1,n)2/(e(n) + v̂ar(R

(n)
1,n)) + (R

(n)
2,n)2/(e(n) + v̂ar(R

(n)
2,n))

)
− 2 log(n),

where the last right hand side term goes to infinity as n→ +∞ which gives us
the wanted result.
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[30] Szegö, G. (1939) Orthogonal Polynomials. Amer. Math. Soc., Colloquium
Publications Volume XXIII.

[31] Walker, M. G., Mateo, M., Olszewski, E. W., Sen, B. and Woodroofe, M.
(2009) Clean kinematic samples in drarf spheroidals: an algorithm for eval-
uating membership and estimating distribution parameters when contami-
nation is present. The Astronomical Journal, 137, 3109–3138.

[32] van’t Wout, A.B. et al. (2003) Cellular gene expression upon human im-
munodeficiency virus type 1 infection of CD4+-T-cell lines. J. Virol., 77,
1392–1402.

[33] Wylupek, G. (2010) Data driven K-sample tests. Technometrics, 52, 107–
123.

[34] Xiang, S., Yao, W. and Yang, G. (2018) An overview of Semiparametric
Extensions of finite Mixture Models. Preprint. arXiv:1811.05575v1.

imsart-generic ver. 2014/10/16 file: DParxiv-V2.tex date: March 11, 2019


	Introduction
	Testing problem
	Assumptions and asymptotic behavior under H0
	Asymptotic behavior under H1
	Contiguous alternatives
	Detected contiguous alternatives
	Undetected contiguous alternatives

	Choice of the reference measure and test construction
	Semiparametric and maximum likelihood approaches comparison
	Simulations: empirical levels and powers
	Empirical levels
	Empirical powers

	Real datasets
	Discussion and perspectives
	Appendix: proofs of the main results
	References

