B. Balas and C. Tonsager, Face animacy is not all in the eyes: Evidence from contrast chimeras, Perception, vol.43, issue.5, pp.355-367, 2014.

M. Barni, L. Bondi, N. Bonettini, P. Bestagini, A. Costanzo et al., Aligned and nonaligned double jpeg detection using convolutional neural networks, Journal of Visual Communication and Image Representation, vol.49, issue.1, pp.153-163, 2017.

B. Bayar and M. C. Stamm, A deep learning approach to universal image manipulation detection using a new convolutional layer, Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp.5-10, 2016.

F. Chollet, Xception: Deep learning with depthwise separable convolutions, pp.1610-02357, 2017.

F. Chollet, , 2015.

D. Erhan, Y. Bengio, A. Courville, and P. Vincent, Visualizing higher-layer features of a deep network, vol.1341, 2009.

S. Fan, R. Wang, T. Ng, C. Y. Tan, J. S. Herberg et al., Human perception of visual realism for photo and computer-generated face images, ACM Transactions on Applied Perception (TAP), vol.11, issue.2, 2014.

H. Farid, A Survey Of Image Forgery Detection, IEEE Signal Processing Magazine, vol.26, issue.2, pp.26-51, 2009.

P. Garrido, L. Valgaerts, O. Rehmsen, T. Thormahlen, P. Perez et al., Automatic face reenactment, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.4217-4224, 2014.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015.

T. Julliand, V. Nozick, and H. Talbot, Image noise and digital image forensics, Digital-Forensics and Watermarking: 14th International Workshop (IWDW 2015), vol.9569, pp.3-17, 2001.
DOI : 10.1007/978-3-319-31960-5_1

URL : https://hal.archives-ouvertes.fr/hal-01510076

D. E. King, Dlib-ml: A machine learning toolkit, Journal of Machine Learning Research, vol.10, issue.4, pp.1755-1758, 2009.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.
DOI : 10.1145/3065386

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

J. Lee, M. Lee, T. Oh, S. Ryu, and H. Lee, Screenshot identification using combing artifact from interlaced video, Proceedings of the 12th ACM workshop on Multimedia and security, pp.49-54, 2010.
DOI : 10.1145/1854229.1854240

S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva et al., An overview on video forensics, APSIPA Transactions on Signal and Information Processing, vol.1, issue.1, 2012.
DOI : 10.1017/atsip.2012.2

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/585CF8F1CAB9400D215A7C8266A7FB22/S2048770312000029a.pdf/div-class-title-an-overview-on-video-forensics-div.pdf

N. Rahmouni, V. Nozick, J. Yamagishi, and I. Echizen, Distinguishing computer graphics from natural images using convolution neural networks, IEEE Workshop on Information Forensics and Security
DOI : 10.1109/wifs.2017.8267647

URL : https://hal.archives-ouvertes.fr/hal-01664590

Y. Rao and J. Ni, A deep learning approach to detection of splicing and copy-move forgeries in images, Information Forensics and Security (WIFS), pp.1-6, 2016.

J. A. Redi, W. Taktak, and J. Dugelay, Digital image forensics: a booklet for beginners. Multimedia Tools and Applications, vol.51, pp.133-162, 2011.
DOI : 10.1007/s11042-010-0620-1

URL : https://link.springer.com/content/pdf/10.1007%2Fs11042-010-0620-1.pdf

A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies et al., Faceforensics: A large-scale video dataset for forgery detection in human faces, vol.4, p.5, 2018.

V. Schetinger, M. M. Oliveira, R. Da-silva, and T. J. Carvalho, Humans are easily fooled by digital images, 2015.
DOI : 10.1016/j.cag.2017.08.010

URL : http://arxiv.org/pdf/1509.05301

W. Shi, F. Jiang, and D. Zhao, Single image superresolution with dilated convolution based multi-scale information learning inception module, 2017.
DOI : 10.1109/icip.2017.8296427

URL : http://arxiv.org/pdf/1707.07128

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, vol.15, issue.1, pp.1929-1958, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions. Cvpr, issue.3, 2015.

J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner, Face2face: Real-time face capture and reenactment of rgb videos, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol.1, p.3, 2016.

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol.1, 2001.

W. Wang and H. Farid, Exposing digital forgeries in video by detecting double mpeg compression, Proceedings of the 8th workshop on Multimedia and security, pp.37-47, 2006.

W. Wang and H. Farid, Detecting re-projected video, International Workshop on Information Hiding, pp.72-86, 2008.
DOI : 10.1007/978-3-540-88961-8_6

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, 2015.