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Abstract

Mixed finite element methods are applied to a Poisson problem with singular-
ity at a boundary point. The approximation spaces are based on quarter-point el-
ements, the shape functions inheriting the singular behavior of their quadratic ge-
ometric maps. Two mesh scenarios are considered, by fixing some macro quarter-
point elements at the coarse level, and subdividing them by mapping uniformly
refined square meshes on the master element by their corresponding geometric
transforms. For eight-noded coarse quadrilateral quarter-point elements, placing
two mid-side nodes near the singular vertex, radial singularity is exactly captured
along element edges, and their refinements reveal shape regular curved meshes.
For an improved version, using collapsed quadrilateral quarter-point elements ob-
tained by reducing one of the quadrilateral element edges to the singular point,
the radial singularity is captured inside the coarse macro elements as well. Their
uniform refinement generates anisotropic meshes, grading towards the singular
point. The assembly of the required H(div)-conforming approximation spaces
based on these kind of meshes are described. Results for a typical test problem
demonstrate a superior effectiveness of the proposed techniques for convergence
acceleration, when confronted with usual affine finite elements, for h, p and hp-
adaptive refinements. Specially, collapsed quarter-point elements applied to the
singular problem reveal accuracy rates equivalent to standard regular contexts,
of smooth solutions discretized on uniform affine meshes.

Keywords: Mixed finite elements, hp adaptivity, curved and anisotropic meshes, quarter-point
elements, boundary point singularity.
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1 Introduction
A source of difficulties in the numerical simulation of elliptic problems in bounded
domains is the occurrence of singularities in the solution. For instance, they can be
caused by the presence of re-entrant boundary corners (or by abrupt change in bound-
ary conditions), typical situations in fracture mechanics applications, where a radial
square root singularity is representative for modeling the state of tension around a
fracture in elasticity formulations.

Since the beginning of finite element history, poor convergence of standard H1-
conforming methods based on regular grids has been verified in the presence of this
kind of low regularity behavior. One popular remedy for this drawback consists in
adding special functions to the finite element approximation space, as early described
in the papers [1]. This is also the principle guiding the extended finite element method
[2, 3, 4, 5], using the notion of partition of unity [6]. Another different concept is the
application of isoparametric mappings, with singular map for the geometry and for the
construction of shape functions, as described in [7, 8]. In this context, the quarter-
point element is widely used in linear elastic fracture computations withH1-conforming
finite element methods. Adaptive numerical treatment of singular problems, incorpo-
rating local mesh refinement (h-adaptivity) and/or different orders of approximating
polynomials on separate elements in the same mesh (p-adaptivity), has proved to be
very effective [9, 10, 11]. Anisotropic mesh refinement has also been considered and
analyzed in [12, 13, 14, 15], with improved results. There are also the so called Mapped
Finite Element Methods (MFEM), initially proposed in [16], for better approximations
of straight crack problems, and recently extended in [17] for more general crack con-
figurations. Namely, the method can be interpreted as a reformulation of the problem
statement in a reference parametric domain Ω̂, over which the singularity is eliminated,
the corresponding parametric solution û being smoother than the original targeted one,
and thus being able to be accurately solved using approximations based on standard
uniform partitions of Ω̂. Similar ideas have been used for the construction of the
Method of Auxiliary Mapping (MAM), summarized in [18], which has been applied for
p and hp-versions of various elliptic and elasticity problems.

The developed method incorporates all these aspects in some extent, but the
adopted formulation is of mixed methods, where two variables are simulated simul-
taneously: the primal (potential) variable u, approximated by discontinuous functions
in L2(Ω), and the dual (flux) variable σ, represented in H(div)-conforming spaces
[19]. The interest is to evaluate the performance of this method for the resolution of
a square-root radial point singularity by the incorporation of approximations based
on quarter-point elements in the vicinity of the singularity point, the shape functions
inheriting the singular behavior of the geometric map. As far as we understand, mixed
formulations based in quarter-point elements have not been explored in the literature.

Two kinds of quarter-point elements shall be considered: the eight-noded quadri-
lateral element, placing two mid-side nodes near the singular vertex, and the collapsed
quadrilateral quarter-point element, obtained by reducing one of the quadrilateral el-
ement edges to the singularity point, resulting a six node triangular element. The
square-root radial singularity is exactly captured along element edges by the first type
of quarter-point element, while in the latter case, it is captured inside the coarse macro
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elements as well. Starting from fixed macro quarter-point elements at the coarse level,
they are refined by mapping uniformly refined square meshes on the master element by
the corresponding geometric transforms. This uniform refinement reveals shape reg-
ular curved meshes inside coarse eight-noded quarter-point elements, and anisotropic
meshes inside the coarse collapsed quadrilateral coarse elements, grading towards the
singular point. In the later case, the meshes are formed by some triangles sharing the
point singularity, and trapezoidal quadrilateral elements elsewhere.

As shall be illustrated by some verification tests, the proposed formulation based
on quarter-point geometry share some underlying ideas of MFEM and MAM methods,
in the sense that the method can be interpreted as local reformulation of the problem
statement on the macro elements of the coarse mesh in the reference parametric domain
K̂, over which the singularity is eliminated, the corresponding parametric solution û
being smoother than the original targeted one, and thus being able to be accurately
solved using approximations based meshes uniformly refined. This effect has a great
impact on simulations for the collapsed quadrilateral quarter-point scenario, but it has
some limitations for eight-noded quadrilateral ones. For this later case, hp-adaptive
meshes are employed for the quarter-point geometry in order to accelerate the conver-
gence of the resulting approximate solutions.

Several methods have been developed for the construction of divergence conform-
ing approximation spaces to be applied in flux approximations of the mixed element
formulation. As described in [19, 20], they are usually formed by locally backtracking
vector polynomial spaces restricted to the master element by the Piola transforma-
tion, which is defined in terms of the geometric map. The constructions of hierarchical
high order spaces in [21, 22, 23] are based on the properties of the De Rham complex.
For the applications of the present paper, H(div)-conforming finite element subspaces
based on curved quadrilateral meshes, with hp-adaptation, are constructed. The vec-
tor shape functions form a hierarchy of bases, as proposed in [24] for triangular and
quadrilateral affine elements, and extended to three-dimensional tetrahedral, hexahe-
dral and prismatic affine meshes in [25]. Cases of hp-adaptive mixed formulations for
other kinds of elements in two- and three-dimensional problems, including curved and
surface elements, have been treated in [26, 27].

The paper is organized as follows. Some basic facts about the mixed element for-
mulation for elliptic problems are described in Section 2. General aspects on the con-
struction of H(div)-conforming approximation spaces for hp-adapted curved meshes,
and the kinds of adopted approximation space configurations, are recalled in Section
3. Some properties of approximations based on quarter-point geometry are illustrated
in Section 4. Applications of these space configurations for the mixed formulation of
a model problem are discussed in Section 5, for uniform and hp-adaptive frameworks.
The results are confronted with the corresponding ones given by simulations based on
affine square meshes, showing the dramatic error reduction when quarter-point ele-
ments are used. Section 6 gives the final conclusions.

The implementations are performed in the NeoPZ1 computational platform, which
is an open-source object-oriented project providing a comprehensive set of high per-
formance tools for finite element simulations, including the ones required for the present
numerical study, namely H(div)-conforming approximation spaces, hp adaptivity, curved

1http://github.com/labmec/neopz
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elements, and appropriate integration rules for functions showing point singularities.

2 Mixed finite element formulation
Consider a model Poisson problem:

σ = −∇u in Ω,

∇ · σ = f in Ω,

u = ud on ΓD,

∇u · η = g on ΓN ,

where ∂Ω = ΓD ∪ ΓN , ΓD ∪ ΓN = ∅, ΓD and ΓN denoting the parts of ∂Ω for the
enforcement of Dirichlet and Neumann boundary conditions, respectively, and η is the
outward unit normal to ∂Ω.

This problem can be expressed in the form: to find u ∈ U = L2(Ω) and σ ∈
V = {q ∈ H(div,Ω) : q · η|ΓN

= −g}, such that ∀ϕ ∈ U and ∀q ∈ H(div,Ω), with
q · η|ΓN

= 0,
a(σ,q) + b(q, u) = c(q),

b(σ, ϕ) = `(ϕ),
(1)

where

a(σ,q) =

∫
Ω
σ · q dΩ, b(q, u) = −

∫
Ω
u∇ · q dΩ,

c(q) = −
∫

Γd

ud q · η ds, `(ϕ) = −
∫

Ω
f ϕ dΩ.

In typical H(div)-conforming discretized versions of this formulation, approximate
solutions σT and uT are searched in finite dimensional spaces VT ⊂ V and UT ⊂ U ,
and the weak formulation (1) is enforced with test functions in the corresponding spaces
ϕ ∈ UT and q ∈ VT , with vanishing normal components over ∂Ω.

The natural functional context for the analysis of the mixed formulation (1), and
of its discretized versions, is of saddle-point problems, for which the celebrated inf-sup
condition (also known as LBB condition, for Ladyženskaja-Babuška-Brezzi) is neces-
sary and sufficient for well-posedness determination. The verification of the inf-sup
condition requires a careful choice of the approximation spaces VT and UT , by enforc-
ing the property ∇ · V̂ = Û of the associated spaces on the master element. This fact
allows the definition of a projection π̂ over V̂ commuting the de Rham diagram

Hα(Ω)
∇·−→ L2(Ω)

↓ π̂ ↓ λ̂
V̂

∇·−→ Û

(2)

where λ̂ is the usual L2-projection over Û . These projections are globally extended to
ΠT over VT , and ΛT over UT .

For such stable finite element approximation spaces, the following estimates hold
for the approximate solutions σT ∈ VT and uT ∈ UT [19, 28]:

||σ − σT ||L2 . ||σ −ΠT σ||L2 ,
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||∇ · (σ − σT )||L2 . ||∇ · (σ −ΠT σ)||L2 ,

||u− uT ||L2 . {||σ −ΠT σ||L2 + ||u− ΛT u||L2}.

We also remark that, assuming elliptic-regularity (verified by convex polygons or
smooth regions Ω), and using duality arguments, enhanced order of accuracy can be
obtained for uT when enriched space configurations are used, as in the case of RT+

k

spaces described next.
Projection convergence rates in L2-norms for these finite element approximations

are usually determined by the largest total degree of polynomials included in the local
spaces V(K) = FdivK V̂ and Û(K) = FK(Û). For instance, assuming shape regular
meshes Th, with maximum element diameters h, and uniform polynomial distribution
all over the elements, if k and t are the largest natural numbers such that [Pk]2 ⊂ V(K),
and Pt ⊂ U(K), then for σ ∈ Hq(Ω) and u ∈ Hs(Ω), with integer indices 0 < q ≤ k+1,
and 0 < s ≤ t + 1, the next estimations hold for approximations based on affine and
for bilinearly mapped elements [19, 20]

||σ −Πhσ||L2(Ω) . hq+1|σ|Hk+1(Ω), (3)

||u− Λh||L2 . ht+1|u|Hs+1(Ω), (4)

the constants arising in the error estimates being depend on the ratio between the
outer and inner diameter of the elements.

In [29], Corollary 5.3, quasi-interpolation operators have been constructed for which
similar estimations hold for the cases of fractional Sobolev indices q and s, for affine
meshes. Consequently, high order approximation spaces based on affine meshes have
limited usefulness for problems with corner sigularities, with slow convergence deter-
mined by the low regularity of the solution u ∈ Hs(Ω), 0 < s < 1. For such problems,
methods using anisotropic mesh grading (with aspect ratio of elements growing to
infinity in a refined region close to the singularity) are capable of achieving better ac-
curacy. But for such frameworks, the above mentioned error analysis does not hold.
The works in [13, 14] are dedicated to the study of interpolation properties of Raviart-
Thomas elements for some specific anisotropic affine meshes, which are meant for the
approximation of this kind of singular solutions. In [13], error estimates for the mixed
formulation for approximations based on anisotropic meshes are obtained, showing first
order improvement.

For the current applications using quarter-point elements, the quadratic geomet-
ric mappings are not affine nor bilinear. However, the mapped approximation spaces
inherit the singular behavior of the geometric map, which is in accordance with the
targeted problem solution. As shall be verified, due to the adopted particular refine-
ment procedure, by a global mapping of uniform partitions on the master element, the
resulting meshes based on eight-noded quadrilateral quarter-point elements are shape
regular, and graded anisotropic meshes occur for collapsed quadrilateral quarter point
elements.
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3 Space configurations based on h, p and hp-adaptive
curved meshes

Let Ω ⊂ R2 be a Lipschitz computational domain, with boundary ∂Ω, and denote by
η its outward unit normal. Let T be a partition of Ω formed by elements K. We shall
be concerned with elements mapped from rectangular master element by quarter-point
quadratic geometric transforms, and T does not have, in principle, any limitation on
hanging sides and approximation order distribution k = (kK).

Approximation vector spaces

Vk
T ⊂ H(div,Ω) =

{
q ∈ L2(Ω)2;∇ · q ∈ L2(Ω)

}
,

which are defined piecewise over the elements of T , require that the local pieces
qK = q|K should be assembled by keeping continuous normal components across com-
mon element edges. For potential approximations, scalar spaces Uk

T ⊂ L2(Ω) are also
piecewise defined over the elements of T , but without any continuity constraint across
element interfaces.

3.1 Construction of hp-adaptative spaces

The adoted methodology for the assembly of hp-adaptive H(div)-conforming spaces
based on curved meshes has been proposed in [27] for three dimensional problems. It
follows a sequence of steps.

1. To each element K, there is a bijective geometric mapping FK : K̂ → K,
associating each point (ξ, η) ∈ K̂ of the rectangular master element K̂ to a point
(x, y) = FK(ξ, η) ∈ K. Usually, it is assumed that FK is differentiable, and that
the determinant of its Jacobian matrix does not vanish. An isomorphism FK :
ϕ̂→ ϕ, mapping scalar functions ofH1(K̂) to scalar functios ofH1(K), is induced
by the geometric mapping. It also induces a contravariant Piola transformation
FdivK : q̂ → q, an isomorphism mapping vector fields q̂ ∈ H(div, K̂) to vector
fields q ∈ H(div, K). It is defined by the formula

q = FdivK q̂ = FK [
1

JK
DFK q̂], (5)

where DFK is the Jacobian of the geometric mapping FK , and JK = det DFK .
There is also an isomorphism G : µ̂ → µ mapping functions µ̂ ∈ H1/2(∂K̂)
to functions µ ∈ H1/2(∂K) such that µ = FK [ 1

Jn
µ̂], Jn = JK |tDF−1

K n̂|, tDF−1
K

being the transpose of the inverse of DFK . Throughout this paper, n denotes
the outward unit normal to the faces of an element K ∈ T .

2. Vector polynomial spaces V̂kK are defined in K̂. For the cases to be considered,
the parameter kK refers to the maximum degree of the normal components q̂ ·
n̂|∂K̂ , and to the full polynomial space [Qk(K),k(K)]

2 contained in V̂kK .

3. A family of hierarchical bases BK̂
kK

= {Φ̂} for V̂kK is given, as proposed in [24].
The principle is to choose appropriate constant vector fields v̂, based on the
geometry of the master element, which are multiplied by an available hierarchic
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set of H1 scalar basic functions ϕ̂ in order to get Φ̂ = ϕ̂v̂. There are shape
functions of interior type, with vanishing normal components over all element
faces. Otherwise, the shape functions are classified of edge type. The normal
component of an edge function coincides on the corresponding edge with the
associated scalar shape function, and vanishes over the other edges.

4. A hierarchic family of vector bases BK
kK

= {Φ} is defined over K by the Piola
transformation Φ = FdivK (Φ̂). They inherit the classification of their counterparts
on the master element: there are shape functions of interior type, with vanishing
normal components over all element edges. Otherwise, Φ is classified as of edge
type, its normal component on the associated edge coinciding with the multipli-
cation of the scalar shape function ϕ = FKϕ̂ by the normal component of the
Piola mapped vector used in its definition, and vanishing over the other edges.

5. Approximation spaces Vk
T ⊂ H(div,Ω) are formed by functions q ∈ [L2(Ω)]

2,
which are defined piecewise over the elements of T by local functions qK = q|K ∈
span BK

kK
⊂ H(div, K). They can be assembled to get continuous normal com-

ponents on the elements interfaces. This property is obtained as a consequence
of the particular properties verified by the proposed vector shape functions and
of the continuity of the scalar shape functions used in their construction.

3.2 Basic facts about the Piola transformation
As already mentioned, the geometric mapping FK induces the contravariant Piola
transformation FdivK : q̂→ q, mapping vector-valued functions q̂ ∈ H(div, K̂) to map-
ping vector-valued functions Φ ∈ H(div, K). Furthermore, if ϕ = FKϕ̂ ∈ H1(K), the
following identities are valid∫

K
q · ∇ϕ dx dy =

∫
K̂

q̂ · ∇̂ϕ̂ dξ dη, (6)∫
K
ϕ ∇ · q dx dy =

∫
K̂
ϕ̂ ∇̂ · q̂ dξ dη, (7)∫

∂K
q · nϕ ds =

∫
∂K̂

q̂ · n̂ϕ̂ dŝ. (8)

Property (7) says that the divergence of a transformed vector-valued function is given
by the the expression

∇ · q = FK
[

1

JK
∇̂ · q̂

]
, (9)

and property (8) means that the normal trace Φ · n over ∂K is the image by the
mapping G of the normal trace q̂ · n̂ over ∂K̂:

q · n|∂K =
1

Jn
q̂ · n̂|∂K̂ . (10)

Specific details for quarter-point maps shall be given in Section 4.
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3.3 Approximation space configurations

Following the developments in [25, 30], we shall consider two stable configurations
for approximation spaces to be used for primal u and dual σ variables in discretized
versions of the mixed formulation.

• The first case corresponds to the celebrated Raviart-Thomas configuration RTk,
where for a given k = kK , the polynomial space on the master element is
V̂RTk = Qk+1,k × Qk,k+1. The scalar space ÛRTk = Qk,k is chosen such that
the compatibility property ∇ · V̂RTk = ÛRTk is verified.

• Another type of space configuration, denoted by RT+
k , corresponds to an en-

riched version of RTk. The flux space V̂RT+
k

is formed by including in V̂RTk the
internal shape functions of V̂RTk+1

, while keeping the edge functions with normal
components of degree k. The scalar primal approximations are also enriched to
ÛRT+

k
= Qk+1,k+1, such that the compatibility property ∇· V̂RT+

k
= ÛRT+

k
is kept.

For sufficiently smooth solutions, uniform polynomial degree distribution k(k) = k, and
shape regular rectangular meshes, it is well know that convergence rates for the mixed
finite element approximations based on the RTk space configuration is of order k + 1
for the flux variable, measured by the H(div)-norm, and for L2-errors of the potential
variable. As shown in [30], for general bilinearly mapped quadrilateral elements, and
for enriched RT+

k space configurations, the flux error in H(div)-norm is also of order
k + 1, and the potential accuracy enhances to order k + 2 when the Ω is convex.

The computational effort in mixed formulations can be reduced by the application
of static condensation, the condensed system being solved only for flux edge terms
and a constant value for u in each element, all internal fluxes and potential degrees
of freedom, excepting a constant value in each element, are condensed. Thus, the
dimension of the static condensed matrix coincides for the approximations spaces of
types RTk and RT+

k .

4 Quarter-point geometry

Following [7], let K̂ = [−1, 1]× [−1, 1] be the master element, and consider the nodes
(ξi, ηi) ∈ K̂ defined in the next Table 1.

i 1 2 3 4 5 6 7 8
coordinates Vertices Mid-side nodes

ξi −1 1 1 −1 0 1 0 −1
ηi −1 −1 1 1 −1 0 1 0

Table 1: Vertices and mid-point nodes of the master element K̂.

Let Ni(ξ, η) be the quadratic Lagrange shape functions

Ni(ξ, η) =
[
(1 + ξξi)(1 + ηηi)− (1− ξ2)(1 + ηηi)− (1− η2)(1 + ξξi)

] ξ2i η2i
4

+(1− ξ2)(1 + ηηi)(1− ξ2
i )
η2i
2 + (1− η2)(1 + ξξi)(1− η2

i )
ξ2i
2 ,
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at the nodes (ξi, ηi). Precisely, for the vertices (ξi, ηi), where ξ2
i = η2

i = 1,

Ni(ξ, η) =


1
4(1− ξ)(1− η) [−1− ξ − η] , at node 1,
1
4(1 + ξ)(1− η) [−1 + ξ − η] , at node 2,
1
4(1 + ξ)(1 + η) [−1 + ξ + η] , at node 3,
1
4(1− ξ)(1 + η) [−1− ξ + η] , at node 4.

(11)

For the nodes 5 and 7, with ξ2
i = 0 and η2

i = 1,

Ni(ξ, η) =

{
1
2(1− ξ2)(1− η), at node 5,
1
2(1− ξ2)(1 + η), at node 7. (12)

For the nodes 6 and 8, with ξ2
i = 1 and η2

i = 0,

Ni(ξ, η) =

{
1
2(1− η2)(1 + ξ), at node 6,
1
2(1− η2)(1− ξ), at node 8. (13)

Given a quadrilateral element K, with vertices (x1, y1), (x2, y2), (x3, y3), and (x4, y4),
consider mid-side nodes (x5, y5), (x6, y6), (x7, y7), and (x8, y8) placed on the edges
(x1, y1)-(x2, y2), (x2, y2)-(x3, y3), (x3, y3)-(x4, y4), and (x4, y4)-(x1, y1), respectively. De-
fine FK : K̂ → K by the formulae

x(ξ, η) =
8∑
i=1

Ni(ξ, η)xi, y(ξ, η) =
8∑
i=1

Ni(ξ, η)yi,

such that (xi, yi) = FK(ξi, ηi). According to [7], the name quarter-point element comes
when two mid-point nodes, namely, (x5, y5) and (x8, y8), of the sides sharing a vertex,
(x1, y1) for this case, are moved towards it, at one fourth of their associated side length,
while the other two mid-side nodes ((x6, y6) and (x7, y7)) are the middle points of the
corresponding sides.

4.1 Uniform subdivision of a quarter-point element

Given a quarter-point element K mapped by the quadratic transformation FK , its
refinement into four sub-elements Kj results after the following steps:

1. Let Sj be the four squares obtained by a uniform subdivision of K̂, and consider
affine transformations Lj : K̂ → Ŝj

2. The sub-elements in K correspond to Kj = FKŜj.

3. The quadratic mappings FKj
: K̂ → Kj associated to Kj are defined by the

composition FKj
= FK ◦ Lj.

Therefore, the vertices of the resulting 4 curved sub-elements in K are determined
by the four vertices of K, namely (x1, y1), (x2, y2), (x3, y3), and (x4, y4), the four side
nodes (x5, y5), (x6, y6), (x7, y7), and (x8, y8), and the central point (x9, y9) = FK(0, 0).
Note that

Ni(0, 0) = −ξ
2
i η

2
i

4
+ (1− ξ2

i )
η2
i

2
+ (1− η2

i )
ξ2
i

2
,
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giving Ni(0, 0) = −0.25 for the vertices i = 1, 2, 3 and 4, and Ni(0, 0) = 0.5, for the
mid-side nodes i = 5, 6, 7 and 8. Consequently

x9 = −0.25
∑4

i=1 xi + 0.5
∑8

i=5 xi,

y9 = −0.25
∑4

i=1 yi + 0.5
∑8

i=5 yi.

4.2 Example of quarter-point element with 8 nodes

Suppose that K = [0, 0.5]× [0, 0.5], with vertices and mid-side nodes given in Table 2,
and illustrated in Figure 1.

i 1 2 3 4 5 6 7 8
coordinates Vertices Mid-side nodes

xi 0 0.5 0.5 0 0.125 0.5 0.25 0
yi 0 0 0.5 0.5 0 0.25 0.5 0.125

Table 2: Example: vertices and mid-point nodes of a eight-noded quadrilateral quarter-
point element K.

3/4 l1/4 l
2

4

5

7

6

3

8

1 2

4

5

7

6

3

8

1
1/4 l

3/4 l

Figure 1: Example of quarter-poin-element K: mid-side node movement towards the
vertex (x1, y1) to one quarter of the correspondind side length l = 0.5 (left side), and
the result of one subdivision of K (rigth side).

For this element, the quarter-point map becomes

x =
1

16
(3 + 4ξ + η + ξ2 − ξ2η), y =

1

16
(3 + ξ + 4η + η2 − ξη2).

Observe that, along the line η = −1, the result of the the quarter-point map gives
x = 1

8
(1 + ξ)2, and y = 0. That is, over the side y = 0, the square root singular

function
√

8x = 1 + ξ is reproduced in the master element side η = −1 by a first order
polynomial. Take the more general square-root function w(r, θ) =

√
r = (x2 + y2)

1
4

restricted to K, as plotted in Figure 2 (left side). Its representation ŵ(ξ, η) back in the
master element K̂, i.e., ŵ(ξ, η) = w(FK(ξ, η)), has a Taylor expansion around (−1,−1)
is given by

ŵ(ξ, η) =
η + 1

2
√

2
+

(
1

4
√

2
− η + 1

8
√

2

)
(ξ + 1) +

1

16
√

2

(ξ + 1)2

(η + 1)

+ O(η + 1)3 +O(ξ + 1)3 +O((η + 1)3(ξ + 1)) +O((η + 1)3(ξ + 1)2).

10



Its plot is shown in Figure 2 (right side), which looks much smoother than w, illus-
trating the capability of quarter-point map FK to well represent square-root type of
singularities.

Figure 2: Example: w(r, θ) =
√
r, restricted to K (left side), and its parametric

representation ŵ(ξ, η) in the master element (ξ, η) ∈ K̂.

Piola transformation

The Jacobian matrix of FK for this particular quarter-point element is

DFK =

[
1
4 + 1

8ξ(1− η) 1
16 + 1

16η
2

1
16(1− η2) 1

4 + 1
8η(1− ξ)

]
.

Note that, over the side y = 0, ∂x
∂ξ

= 1
4
(1 + ξ) = 1

4

√
8x, making the Jacobian singular

at the vertex (x1, y1) = (0, 0).
By the Piola transformation q = FdivK q̂, the parametrized version q̂ associated to a

vector function q has the formula

q̂(ξ, η) = JK(x̂)DFK(ξ, η)−1q =

[
∂y
∂η −∂x

∂η

−∂y
∂ξ

∂x
∂ξ

]
q.

Some examples of parametrized vector functions are shown in Table 3 for this particular
eight-noded quadrilateral quarter point element K. Observe that, for q = [1, 0]t and
q = [0, 1]t, q̂ ∈ V̂RT1 = Q(2, 1)×Q(1, 2), implying that VRT1(K) contains the constant
vectors.

q
q̂

Quadrilateral Q-P Collapsed quadrilateral Q-P[
1
0

] [
1
4 + 1

8η(1− ξ)
− 1

16 (1− η2)

] [
1
8 (1 + ξ)2

− 1
4η(1 + ξ)

]

[
0
1

] [
− 1

16 + 1
16ξ

2

1
4 + 1

8ξ(1− η)

] [
0

1
4 (ξ + 1)

]

Table 3: Parametrized vector functions q̂ associated to constant vector functions q
defined in quadrilateral eight-noded and collapsed quadrilateral six-noded quarter-point
elements K.
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Uniform refinement of K

Setting T K0 = K, a recursive application of the refinement procedure generates curved
refined meshes T Kj of the K obtained as the image of the uniformly refined mesh T K̂j ,
with spacing 2−j, by the global quarter-point mapping FK of the macro-element K.
The partition T K1 of the first subdivision step for this particular example of quarter-
point element K is illustrated on the right side of Figure 1, whose middle point is
(x9, y9) = FK(0, 0) = (0.1875, 0.1875). Illustrations of T Kj , for j = 2, 3, are shown in
Figure 3 (left side). It can be observed that the uniform refinement of the quarter-point
element K produces a directional refinement pattern pointing towards the singularity
point (x1, x1). Despite of their stretched aspect, the meshes T Kj are shape-regular, as
illustrated in Figure 6 (left side).
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0.2

0.3

0.4

0.5

Figure 3: Meshes T Kj , j = 2, 3, obtained by uniform subdivisions of eight-noded quarter
point element K.

4.3 Collapsed quadrilateral quarter-point element

Consider the node numbering on the master element in Table 4, as in [31].

i 1 3 5 7 2 4 6 8
coordinates Vertices Mid-points

ξi −1 1 1 −1 0 1 0 −1
ηi −1 −1 1 1 −1 0 1 0

Table 4: Numbering of vertices and mid-point nodes of the master element K̂ [31].

Suppose that K is the triangular element with six nodes shown in Table 5, which
can be interpreted by the collapse of the nodes 1 and 7 in the master element on the
singular node 8.

12



i 1 3 5 7 2 4 6 8
coordinates Vertices Mid-points

xi 0 0.5 0.5 0 0.125 0.5 0.125 0
yi 0 0 0.5 0 −0.125 0 0.125 0

Table 5: Example: vertices and mid-point nodes of a six-noded collapsed quadrilateral
quarter-point element K.

For this element, the quarter-point map (x, y) = FK(ξ, η), and the Jacobian matrix
of FK become

x =
1

8
(1 + ξ)2, y =

1

8
η(1 + ξ)2,

DFK =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 =

 1
4(1 + ξ) 1

2η (1 + ξ)

0 1
8(1 + ξ)2

 ,
with determinant JK = 1

32
(1+ξ)3. Parametrized vector functions q̂ associated to some

examples of vector functions q defined in K are displayed in Table 3, also showing that
VRT1(K) contains the constant vectors.

The parametric representation of the radial square-root function w = r1/2 restricted
to K is the infinitely smooth function

ŵ(ξ, η) =
1

2
√

2
(1 + ξ)(1 + η2)1/4,

which is plotted in Figure 4 (left side). For q = ∇w, restricted toK, the corresponding
parametric representation q̂ is given by the regular vector

q̂ =
1

4
√

2

[
(1+ξ)

(1+η2)
3
4

0

]
.

The first component of q̂ is represented in the Figure 4 (right side). These facts make
the collapsed quadrilateral quarter-point elements more efficient for the representa-
tion of radial square-root singularities of type

√
r than the quadrilateral eight-noded

quarter-point elements, as observed in [31] for linear elasticity, and illustrated by the
numerical simulations of the next section.

Figure 4: Parametric representation ŵ(ξ, η), −1 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, of w(r, θ) = r1/2

restricted to the collapsed quadrilateral six noded quarter point element K (left side),
and of the first component of q̂ associated to q = ∇u (the second gradient component
vanishess) (right side).
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Figure 5: Meshes T Kj , j = 1, 2, obtained by one and two uniform subdivisions of the
collapsed quadrilateral quarter-point element K.

The first and twice subdivisions of the collapsed quadrilateral quarter-point element
K are shown in Figure 5. Since x does not depend on η, and fixing constant the value of
ξ, the mapped curve is a vertical line. Otherwise, for constant value of η, the mapped
curve is the strait line y = ηx. Consequently, the resulting meshes T Kj , obtained by
applying j times the uniform refinement procedure to the original collapsed quadri-
lateral quarter-point element K, are formed by j triangles touching the singular point
(0, 0), and trapezoidal quadrilateral elements elsewhere. They are graded anisotropic
meshes, with growing aspect ratio, as shown in Figure 6 (right side).
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Figure 6: Aspect ration of the quarter-point meshes T Kj obtained by uniform quadri-
lateral element K, with 8 nodes (left side), and the collapsed quadrilateral quarter
point element K, with 6 nodes.

5 Numerical simulations
A model problem is considered with f = 0, and Ω = [−0.5, 0.5] × [0, 0.5], where the
exact solution, shown in Figure 7, is the harmonic function

u = 21/4√r cos(
θ

2
) = 2−1/4

√
x+

√
x2 + y2,

that presents a radial square root singularity at the boundary point (x, y) = (0, 0)
(r = 0), where there is a change from Dirichlet boundary condition u = 0, for x < 0, to
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Neumann condition ∇u ·η = 0, for x > 0. Elsewhere, Neumann boundary condition is
enforced. This problem has been used in [32] to compare the performance of different

Figure 7: Exact solution u = 21/4
√
r cos( θ

2
).

finite element formulations, including continuous, discontinuous, mixed and primal
hybrid finite element methods. As expected, the application of hp-refinement improves
considerably the performance of all methods. The purpose here is to evaluate the
efficiency of the mixed method applied to this singular problem when quarter-point
elements are used in the vicinity of the singularity.

5.1 Numerical results with uniform refinement

Two scenarios shall be considered for the generation of sequences of meshes Tj, j =
0, 1, 2, · · · , 5, by using uniform refinement procedures, as described in Section 4.1. Start-
ing from fixed macro quarter-point elements at the coarse level, they are refined by
mapping uniformly refined square meshes on the master element by the corresponding
geometric transforms.

Figure 8: Mesh scenarios: T2 starting with two eight-noded quarter-point elements
sharing the singularity point (left side), or starting with four triangular six-noded
quarter-point elements.

Mesh scenario 1

The coarsest mesh T0 is composed of two square elements K`
0, sharing the singular

point (0, 0) as one of their vertices, and eight-noded quarter-point maps are applied,
as described in the example in Section 4.2. The illustration of the mesh T2, obtained
by refining twice these coarse elements, is shown in Figure 8 (left side). As already
described in the previous section, the resulting sequence of meshes Tj is obtained by

15



mapping uniformly refined square meshes on the master element by the corresponding
geometric transform of the corresponding father elements K`

0. Consequently, Tj is
shape-regular. Furthermore, by their definition, the shape functions are produced by
the quarter-point geometric map are present in all the elements. However, only two
elements neighboring the singular node (0, 0) have a singular mapping.

Having in mind the example discussed in Section 4.2, the exact singular solution
u` = u|K`

0
can be represented back in the master element by smoother functions

û`(ξ, η) = u`(FK`
0
(ξ, η)) obtained by composing u` with the quarter-point mappings

of the two coarse elements FK`
0
. Consequently, the application of the mixed method

to solve the model test problem using stable approximation spaces based on Tj are
expected to give better convergence rates than using full square uniform meshes. As
remarked in the introduction, this behavior is in accordance with the underlying idea of
mapped element methods [16, 17], in the context of H1 conforming methods for linear
elasticity of crack problems, by interpreting the method as a reparametrization of the
problem that removes the singularity, the corresponding smoother parametric solution
û, with lower gradients, being able to be accurately solved using approximations based
on standard affine uniform partitions in the parametric domain.

Figure 9 presents L2-error curves for the approximations of u and σ obtained with
the mixed method based on RTk and RT+

k space configurations based on the meshes
Tj, 1 ≤ j ≤ 5, with uniform polynomial degree distribution k = 1, 2 (indicated by QP
RTk or QP RT+

k ). The mesh size hj are for the associated uniform meshes on the mas-
ter element, whose images by FK`

0
form the refined meshes Tj restricted to each macro

element K`
0. Results for uniform square meshes are also included (denoted by Square

RTk). As expected for this kind of singular solution u ∈ H 3
2
−ε, ∀ε > 0, the convergence
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RTk, or RT+

k , with k = 1, 2, based on square meshes (S-dashed lines), on meshes formed
by quadrilateral quarter-point elements of 8 nodes (QP-continuous lines), or with just
two quadrilateral quarter-point elements of 8 nodes sharing the singular vertex (QP*).
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of flux and potential approximations given by the application of the RTk space con-
figuration based on uniform square meshes, are limited to rates of order 0.5 and 1.0,
respectively, independently of the polynomial degree k ≥ 1. When quarter-point ele-
ments are applied, enhanced approximations are observed, not only by increasing the
rates to order 1 for the flux and 2 for the potential, but also by the significant reduction
in error magnitudes. The enriched RT+

k space configurations based on quarter-point
meshes give more accurate solutions, specially for the potential variable. For instance,
the errors in u using RT+

2 on the most refined mesh T5 is about four orders of magnitude
less than using RT2 on the square mesh with the same resolution.

Figure 8 also includes plots for the results obtained with RT2 space configuration
based on meshes where only the two refined quadrilateral elements sharing the singu-
lar vertex are mapped by the quarter-point transformation (indicated by QP∗ RT2).
Confronted with the simulation for RT2 spaces on the full affine square meshes, the
introduction of these two quarter-point elements significantly reduces the error magni-
tudes, but the convergence rates do not improve. This behavior is in accordance with
the directions given in [17], where the singularities are localized in a fixed sector, where
they are properly parametrized, and approximated by uniform discretizations.

Mesh scenario 2

A second mesh scenario considers the coarsest mesh T0 composed of 4 triangular el-
ements K`

0 sharing the singularity point (0, 0), and six-noded quarter-point maps are
applied to them. The meshes Tj are constructed by the uniform refinement procedure
applied to K`

0, as described in the example in Section 4.3. The resulting anisotropic
mesh T2, obtained by refining twice the coarsest mesh, is shown in Figure 8 (right side).

As in the previous scenario, the exact singular solution u` = u|K`
0
, restricted to

each of the four coarse triangular elements, can be represented back in the master
element by smoother functions û`(ξ, η) = u`(FK`

0
(ξ, η)) obtained by composing u` with

the corresponding quarter-point mappings. However, opposed to the mesh scenario 1,
having a limited smoothness improvement, û`(ξ, η) are infinitely smooth in the mesh
scenario 2, as has been illustrated in Section 4.3. Consequently, the application of
the mixed method to solve the model test problem using stable approximation spaces
based on the meshes Tj of scenario 2 are expected to give better convergence rates than
using the meshes of scenario 1. Indeed, as confirmed by the error plots of Figure 10,
this property is crucial to compensate the effect of mesh anisotropy, and to produce
convergence rates of order k+1 for flux σ and potential u for RTk space configurations,
which is typical of standard regular scenarios (shape-regular affine quadrilateral meshes
and smooth solutions), and enhanced potential order of convergence k + 2 occurring
for the enriched space configuration RT+

k . In order to confirm this tendency to higher
polynomial degrees, the results in Figure 11 are for a p-refinement experiment based
on the coarse level T1, clearly showing an exponential error decay as k increases.

5.2 hp-Adaptive simulations

Even though the singular solution being better represented by approximations based on
quarter-point elements, for uniformly refined partitions Tj, as discussed in Section 5.1,
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the experiments for the mesh scenario 1, using RTk and RT+
k space configurations using

eight-noded quadrilateral geometric maps, the improvements revealed to be limited to
order k = 1 for the flux, and k = 2 for the potential variables, already verified for k = 1.
Now the purpose is to explore an hp-adaptive strategy, combined with these kind of

18



quarter-point elements to enhance the convergence of the approximate solutions.

Figure 12: Illustration of the hp meshes. Affine meshes (left side), and quarter-point
meshes (right side), at refinement levels 1, 2, 5, and 6 (from top to bottom).

The construction of the hp-adaptive meshes is illustrated in Figure 12. Initially,
there is a mesh composed of 8 quadrilateral elements with uniform degree k = 2
distribution. The two quadrilaterals near the singularity are divided into 4 sub-elements
and their approximation order are set to k = 3. Then, the refinement process follows
the steps:

1. All elements have their approximation order increased by 1.

2. The elements near the singularity are divided and their approximation order are
increased by 1.

Two cases shall be compared: one with affine mapping applied to all elements, and
the other one for eight-noded quarter-point elements in the central region ΩC . Our
purpose is to use this kind of adaptive meshes, for the simulation of the test problem
by the mixed formulation using RTk and RT+

k space configurations, where k = (kK)
refers to the non-uniform polynomial degree distribution used in the construction of
the approximation spaces.

Figure 13 shows the calculated L2-norms of the dual and primal errors using these
sequences of hp-adaptive quarter-point curved meshes (continuous lines) versus the
number of equations solved after static condensation, using RTk and RT+

k (o) space
configurations. For comparison, results for similar square hp-meshes (dashed lines),
without using quarter-point elements, and for uniform meshes with constant k = 2
distribution (+) are plotted. The results demonstrate exponential rates of convergence
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when using hp-adaptive meshes. However, for the standard hp-adaptive method, based
on square elements, the results for RTk and RT+

k (o) space configurations are quite
the same. Furthermore, they only outperforms the uniform setting with quarter-point
elements and constant polynomial degree k = 2 at the very refined levels. Dramatic
error reduction is observed when the hp-adaptive strategy is combined with quarter-
point elements in the central region, the accuracy in the primal variable being further
improved when the RT+

k configuration is applied. Results for square hp-meshes, but
inverting the polynomial degree distribution (�) are also plotted. This type of degree
grading, using low order k = 2 on the two elements sharing the singularity point, and
increasing the degree as the elements are placed away from the singularity, has been
suggested in [11], Section 5.2, but for the present model problem the results are less
accurate than using the proposed opposite degree grading.

The effect of static condensation is also verified for size reduction of the global
system to be solved, being more significant with increasing order of approximation.
At the finest level of mesh refinement, the number of condensed equations amounts to
more than 94% of the total number of equations.
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space configurations. Uniform simulations (+) are for square and rectangular quarter-
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6 Final conclusions
This article presents an application of H(div) mixed approximations, combined with
singular geometric map applied to the approximation a problem exhibiting singular
behavior caused by a abrupt change in boundary conditions.
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It was shown that the quality of H(div) approximations of singular problems can
be improved dramatically by the use of well chosen geometric maps. This result is an
extension to H(div) conforming spaces of known results when using H1 approximation
spaces.

When approximating a problem with square root singularity, the well-known quarter
point geometric map leads to an increase in the convergence rate of pressure and
flux variables, from order 1 and 0.5 when using uniform meshes, to order 2, and 1,
respectively. It is shown that the combination of quarter point geometric maps with
h− p adaptive meshes leads to exponential convergence rates.

Even better approximation properties are obtained by using collapsed quadrilateral
elements combined with quadratic geometric maps with quarter point singularity. In
this case it is demonstrated that the solution in the inverse image of the geometric map
is regular. This property is reflected on the accuracy of the numerical results for flux
and pressure: rates of h- convergence equivalent to standard regular contexts, of smooth
solutions discretized on uniform affine meshes, and exponential rates of convergence
when applying uniform p refinements.

It is probable that the results obtained can be extended to three dimensional sim-
ulations of problems with singularities.
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