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On Random Distortion Testing Based Sequential Non-Parametric
Hypothesis Testing∗

Prashant Khanduri1, Dominique Pastor2, Vinod Sharma3 and Pramod K. Varshney1

Abstract— In this work, we propose a new method for
sequential binary hypothesis testing. The approach is non-
parametric in the sense that it does not assume any knowledge
of signal distributions under each hypothesis. The proposed
framework is based on Random distortion testing (RDT) which
addresses the problem of testing whether or not a random
signal, Ξ, deviates by more than a specified tolerance, τ , from a
fixed value, ξ0. We first state the problem setup and then discuss
earlier approaches to solve the problem. We then propose a new
sequential algorithm, T-SeqRDT, which is shown to control the
probabilities of error while reducing the number of samples
required to make a decision compared to the fixed-sample-
size version of RDT. Finally, via simulations we compare T-
SeqRDT to other algorithms and show its robustness compared
to standard likelihood ratio based approaches.

I. INTRODUCTION

Standard binary hypothesis testing problems, tests for the
null (H0) against the alternate (H1) hypothesis based on
a fixed number of samples [1]. However, many decision
problems encountered in practical scenarios are inherently
sequential [2]–[4]. In his seminal works [5], [6], Wald
proposed a likelihood ratio based approach, Sequential Prob-
ability Ratio Test (SPRT). Optimality of SPRT was shown
in the sense that it is faster on average compared to all the
procedures with same error probabilities. Which implies that
it also improved on decision making time compared to the
standard fixed-sample-size tests. However, fixed-sample-size
tests with same error probabilities can turn out to be faster
than SPRT in some cases [7], [8]. A truncated version of
SPRT was proposed in [9] to avoid such scenarios. The
algorithm guaranteed the average stopping time to always
stay below the fixed-sample-size tests at the expense of little
increase in error probabilities.

All the approaches discussed above are based on likeli-
hood ratio tests and computing the likelihood ratio requires
complete knowledge of the distributions of observations
under both hypotheses. In many practical scenarios, it might
not be possible to model these distributions with precision.
In such cases, guaranteeing performance becomes even more
challenging [10]. Moreover, a majority of approaches for
sequential testing make independent and identically dis-
tributed (i.i.d) assumptions on the observations under each
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hypothesis [11]. But, this assumption might not necessarily
hold true in many practical systems like radar, sonar and
communication systems, where the signals of interest are
distorted by environment and observed in noise. Solutions
in the literature aimed at relaxing i.i.d assumptions are still
based on likelihood ratio tests [11]–[14] which may suffer
from lack of robustness. This suggests the need for designing
approaches that assume little knowledge of the underlying
signals to be tested.

In this work, we propose an alternative formulation to
binary hypothesis testing which is different from the like-
lihood ratio based approaches. The proposed approach does
not assume knowledge of the signal distributions and also
avoids the i.i.d. assumption. Specifically, we consider the
hypothesis test H0 : ξ = ξ0 versus H1 : ξ 6= ξ0. We
observe one dimensional Y , whose probability distribution
is parameterized by ξ. Therefore, the motive is to figure out
whether Y is a corrupted version of some specified deter-
ministic model, ξ0. However, this ξ0 in practical situations
will itself be distorted because of measurement errors and
environmental fluctuations other than noise [10]. Therefore,
it is justifiable to allow the null hypothesis H0 to test for
the signal in neighborhood of ξ0. In this regard, we assume
the signal to be tested, Ξ, as the distorted version of ξ0. The
hypothesis testing problem then becomes:

H0 : |Ξ− ξ0| 6 τ vs H1 : |Ξ− ξ0| > τ (1)

where, τ ∈ [0,∞) models the possible distortion. This
problem was first considered in [10] where Ξ with unknown
distribution, was embedded in i.i.d. Gaussian noise. The
authors showed that the optimal tests (under certain criteria)
didn’t need the computation of the likelihood ratios and are
therefore independent of signal distributions. To improve
the detection performance, the authors extended RDT to
fixed-sample-size tests, BlockRDT [15]. They generalized the
RDT formulation by replacing Ξ with its empirical mean
over time. Later, in [16], [17] the authors further extended
RDT framework for sequential testing where SeqRDT was
proposed to guarantee both false alarm and missed detection
probabilities below certain levels, while making a decision
faster on average compared to BlockRDT. In this work, we
first briefly review BlockRDT and SeqRDT and then propose
the truncated version of SeqRDT: T-SeqRDT. Just like the
truncated version of SPRT, we show that T-SeqRDT guaran-
tees the average stopping time to always stay below the fixed-
sample-size test, BlockRDT, at the expense of little increase
in error probabilities.



In the following, we summarize the main contributions of
the work:
• We review the RDT framework for fixed-sample-size

tests, BlockRDT and its sequential extension, SeqRDT.
• We propose the truncated version of SeqRDT: T-

SeqRDT.
• We derive bounds on false alarm and missed detection

probabilities for the proposed algorithm and show that
they stay below pre-specified levels.

• We compare different algorithms via simulations and
show the robustness of the proposed framework com-
pared to likelihood ratio based approaches.

In Section II, we state the testing problem. In Section III,
we review the fixed-sample-size test BlockRDT to solve the
testing problem. In Section IV, we review the untruncated
sequential approach SeqRDT to solve the testing problem
stated in Section II. Then in Section V, we introduce the
truncated version of SeqRDT. In Section VI, we compare
T-SeqRDT to other algorithms via simulations. Finally in
Section VII, we conclude the paper.

Next we define the notations before stating the problem.

Notation: All the random variables encountered below are
defined on the same probability space (Ω,F ,P). As usual,
for any given ξ ∈ R and any σ ∈ [0,∞), Z ∼ N (ξ, σ2)
means that Z is Gaussian distributed with mean ξ and
variance σ2. In what follows, Q1/2 denotes the Generalized
Marcum Function [18] with order 1/2. Basically, we have:
P
[
|Z| > η

]
= Q1/2(|ξ|, η) for any given Z ∼ N (ξ, 1).

Given γ ∈ (0, 1) and ρ ∈ [0,∞), λγ(ρ) is defined as the
unique solution in x to Q1/2(ρ, x) = γ [10, Lemma 2,
statement (ii)], so that:

Q1/2(ρ, λγ(ρ)) = γ. (2)

We also recall that the Marcum function increases with
its first parameter and decreases with the second one [18].
The set of all real random variables defined on (Ω,F) is
denoted by M(Ω,R). Accordingly, M(Ω,R)N is the set of
all real valued sequences or random processes defined on N
(resp. J1, NK = {1, 2, . . . , N}). Given U in M(Ω,R)N, a
realization of U for n ∈ N (resp. n ∈ J1, NK) is called a
sample of U and denoted by Un. Each Un is an element of
M(Ω,R). The empirical mean of U ∈ M(Ω,R)N defined
as: 〈U〉N = 1

N

∑N
n=1 Un.

II. PROBLEM STATEMENT

Let Ξ = (Ξn)n∈N the signal to be tested be an element of
M(Ω,R)N. This random process models the random mixture
of a distorted signal of interest and possible interferences. No
assumption is made on the stationarity or the distribution of
Ξ = (Ξn)n∈N. Therefore, the samples Ξn are not neces-
sarily i.i.d. No knowledge of underlying signal distributions
makes the likelihood ratio based tests (SPRT) unsuitable
for such problems. As a substitute to likelihood ratio based
approaches, we propose RDT based tests [10] as follows. The
observation process is Y = (Yn)n∈N with Yn = Ξn+Xn for
all n ∈ N and we write Y = Ξ +X . Noise, X = (Xn)n∈N,

is assumed to be independent and Gaussian distributed. In
the absence of any distortions Ξ = ξ0, but this will not be
true in practical scenarios as discussed earlier. Therefore, we
consider the signal, Ξ, as random which models distortion
around a fixed model ξ0. We expect the empirical mean
〈Ξ〉N to remain close to ξ0 under H0 and drift away from
ξ0 under H1 for all N > N0. Therefore, the problem is then
of testing the null event |〈Ξ〉N − ξ0| 6 τ against alternate
event |〈Ξ〉N − ξ0| > τ on the basis of observations Y . The
hypothesis testing problem is then given as:

Observation : Y = Ξ +X ∈M(Ω,R)N

with


Ξ = (Ξn)n∈N ∈M(Ω,R)N,

X1, X2, . . .
iid∼ N (0, 1),

Ξ and X are independent.

∃N0 ∈ N,
{
H0 : ∀N > N0, |〈Ξ〉N − ξ0| 6 τ (a-s)
H1 : ∀N > N0, |〈Ξ〉N − ξ0| > τ (a-s)

(3)
where, τ ∈ [0,∞) is the tolerance. Here, N0 and the toler-
ance τ are known a priori based on some prior knowledge
about the signal1. Note, that instead of knowing the complete
distribution of Ξ under each hypothesis we only need to
know a few parameters to perform the test. In earlier works,
the authors have proposed two methods to solve problem
(3). First is BlockRDT proposed in [15], which solves this
problem for a fixed-sample-size test, i.e., for a fixed N . And
the second is SeqRDT proposed in [16], [17], which solves
the problem using a sequential approach.

Remark 1: The RDT formulation as given in (1) performs
the binary hypothesis test given in (3) for N = 1 and the
BlockRDT formulation generalizes this to any fixed N > 1.
Note, that N > N0 in (3) makes it possible to generalize the
testing problem for sequential approaches.

Now, we define the following type of tests.
Given γ ∈ (0, 1), τ > 0 and N ∈ N we define TN,γ :

RN → {0, 1} for any sequence x = (xn)n∈N ∈ RN by :

TN,γ (x) =

{
0 if |〈x〉N − ξ0| 6 λγ(τ

√
N)/
√
N

1 otherwise.
(4)

where the threshold λγ(τ
√
N)/
√
N is defined by (2).

This type of tests are of special interest to us because of
their optimality properties described next. We first review
BlockRDT and SeqRDT before proposing the truncated ver-
sion of SeqRDT: T-SeqRDT.

III. BlockRDT

In this section, we discuss BlockRDT, we show how
BlockRDT naturally leads to the need to design sequential
approaches to test (3). BlockRDT framework tests the hy-
potheses defined in (3) for a fixed number of samples, i.e.,
Y = Ξ +X ∈M(Ω,R)J1,NK. A solution to this problem is
proposed in [15] & [19]. Next, we discuss the optimality

1This knowledge can be obtained by using some standard machine
learning procedures or based on some statistical knowledge of the signal.
Discussion of these procedures are beyond the scope of this work.



properties of the test defined in (4) for BlockRDT. First,
we define a test as, given N ∈ N, any (measurable) map
T : RN → {0, 1} is called an N -dimensional test. The size
of such a test T is defined as

αT =

sup
Ξ∈M(Ω,R)J1,NK: P[|〈Ξ〉N−ξ0|6τ ]6=0

P
[
T (Y ) = 1

∣∣ |〈Ξ〉N − ξ0| 6 τ
]

where the test T is said to have level γ ∈ (0, 1) if αT 6 γ.
Moreover, if we have an N -dimensional test T ∗ such that
αT ∗ 6 γ and P

[
T ∗(Y ) = 1 |〈Ξ〉N − ξ0| > τ

]
> P

[
T (Y ) =

1 |〈Ξ〉N − ξ0| > τ
]

for any N -dimensional test T , then T ∗
is said to be Uniformly Most Powerful (UMP). However,
no UMP test with level γ exists for BlockRDT. We therefore
show the subclass of BlockRDT-coherent tests, among which
a “best” test exists [19]. An N -dimensional test T is for
BlockRDT-coherent if it satisfies the following properties:

1) [Invariance in mean] For all y, y′ ∈ RN , if 〈 y〉N =
〈 y′〉N , then we should have T (y) = T (y′).

2) [Constant conditional power] If for all Ξ ∈
M(Ω,R)J1,NK such that Ξ and X are independent,
there exists a domain D of |〈Ξ〉N − ξ0| such that,
for any ρ ∈ D ∩ (0,∞), the decision P

[
T (Y ) =

1 | |〈Ξ〉N−ξ0| = ρ
]

is independent of P |〈Ξ〉N−ξ0|−1.
[Invariance in mean] implies that T should yield

the same decision for two different observation processes(
y, y′ ∈ RN

)
with same empirical mean (〈 y〉N = 〈 y′〉N ).

On the other hand, [Constant conditional power] implies
that T should yield same decision conditioned on |〈Ξ〉N −
ξ0| = ρ, irrespective of the distribution of |〈Ξ〉N − ξ0|.

Let us denote by Kγ the class of all BlockRDT-coherent
tests with level γ. This class of tests can be partially ordered
as: given T and T ′ in the set Kγ , we say T � T ′ if, for any
Ξ ∈M(Ω,R)J1,NK, T and T ′ satisfy [Constant conditional
power] on the same domain D and for all ρ ∈ D ∩ (τ,∞),
we have

P
[
T (Y ) = 1 | |〈Ξ〉N − ξ0| = ρ

]
6P
[
T ′(Y ) = 1 | |〈Ξ〉N − ξ0| = ρ

]
.

The N -dimensional test defined for all y ∈ RN given by (4)
is maximal in Kγ , i.e., for any T ∈ Kγ we have T � TN,γ
[15], [19].

Let PB-RDT
FA (N, γ) and PB-RDT

MD (N, γ) denote the false alarm
and missed detection probabilities of BlockRDT, respectively,
when the testing on Y is performed by TN,γ , so that
TN,γ(Y ) is the accepted hypothesis. We have the following
proposition.

Proposition 3.1: For any γ ∈ (0, 1) and τ > 0, we have
PB-RDT

FA 6 γ and PB-RDT
MD 6 1− γ.

Proposition 3.1 suggests that the tests defined in (4)
although optimal for BlockRDT, are unable to control both
false alarm and missed detection probabilities with a single
threshold designed for a fixed γ. It suggests the use of two
thresholds to control both false alarm and missed detection
probabilities, which naturally leads to a sequential approach.

In sequential algorithms, a decision is not made until there
is sufficient evidence to decide in favor of one hypothesis,
thereby, making the stopping time a random variable. More-
over, sequential approaches save on the number of samples
required to make a decision compared to fixed-sample-size
tests.

Next, we discuss an untruncated sequential approach to
solve (3).

IV. SeqRDT

In this section, we briefly review SeqRDT proposed in
[16], [17]. SeqRDT tests the hypothesis defined in (3) in
a sequential manner. Let us assume, α, β ∈ (0, 1/2) are
the prespecified levels for false alarm and missed detection
probabilities, respectively. The goal is then to design SeqRDT
such that the false alarm and missed detection probabilities
stay below α and β, respectively. To do so, next assumption
plays an important role in the design of SeqRDT.

Assumption 4.1 (Bounded behavior of |〈Ξ〉N − ξ0|):
There exist τ− ∈ [0, τ), τ+ ∈ (τ,∞) and τH ∈ (τ+,∞)
such that:{

Under H0 : ∀N > N0, 0 6 |〈Ξ〉N − ξ0| 6 τ− (a-s),
Under H1 : ∀N > N0, τ

+ 6 |〈Ξ〉N − ξ0| 6 τH (a-s).

Remark 2: In [16], [17], SeqRDT used this assumption to
design a buffer, M , which made it possible to control the
false alarm and missed detection probabilities below α and
β, respectively. The assumption implies that the empirical
mean of the signal under the two hypotheses is bounded
away from τ .

Now, we define the test. Given any natural number M >
N0−1, SeqRDT for testing H0 against H1 in (3) is specified
by defining the stopping time:

T = min
{
N ∈ N : DM (N) 6=∞

}
, (5)

with:



DM (1) = DM (2) = . . . = DM (M) =∞,

for N > M,

DM (N) =


0 if |〈Y 〉N − ξ0| 6 λL(N),

∞ if λL(N) < |〈Y 〉N − ξ0| 6 λH(N),

1 if |〈Y 〉N − ξ0| > λH(N).
(6)

where λL(N) and λH(N) were designed from (2) as:

λL(N) = λ1−β(τ
√
N)/
√
N and λH(N) = λα(τ

√
N)/
√
N

This choice of thresholds guaranteed λL(N,wL) 6
λH(N,wH). Here, DM (N) represents the decision variable.
DM (N) = 0 implies H0 is decided, DM (N) = 1 implies
H1 is decided and DM (N) =∞ is equivalent to saying that
no decision is made at the N th time sample and that the
algorithm will update the statistic and repeat the test with
N + 1 samples. Note that the buffer size, M > N0 − 1, is
the number of samples SeqRDT waits for before starting the
test. This M was chosen based on the knowledge of τ−,
τ+ and τH given in Assumption 4.1, which subsequently



guaranteed that the false alarm and missed detection prob-
abilities stay below levels α and β, respectively. Moreover,
it was shown via simulations that SeqRDT makes a decision
faster compared to BlockRDT and is robust to mismatches
unlike likelihood ratio based approaches.

Next we, propose T-SeqRDT, truncated version of
SeqRDT, which relaxes Assumption 4.1 and at the same time
eliminates the need for the buffer, M .

V. T-SeqRDT

Assumption 4.1 played a crucial role in the design of
SeqRDT. Next we relax this assumption and present a milder
assumption required for designing T-SeqRDT.

Assumption 5.1 (Behavior of |〈Ξ〉N − ξ0| under H1):
There exist τ+ ∈ (τ,∞) such that:

Under H1 : ∀N > N0, |〈Ξ〉N − ξ0| > τ+(a-s).

In contrast, SeqRDT [16], [17] required additional assump-
tions on the signal (see Assumption 4.1). Now, we show that
unlike the likelihood based approaches, T-SeqRDT can be
designed with only the knowledge of this τ+ and τ instead
of knowing the complete distribution of the signal. The test
is truncated at a specified time if a decision has not been
reached yet. At truncation time the decision is forced using
BlockRDT (Section III). We define the stopping time T of
T-SeqRDT as:

T = min
{
N 6 N0 +W − 1, N ∈ N : DN0(N) 6=∞

}
,

with:



DN0
(1) = DN0

(2) = . . . = DN0
(N0 − 1) =∞,

for N0 6 N < N0 +W,

DN0(N) =


0 if |〈Y 〉N − ξ0| 6 λL(N)

1 if |〈Y 〉N − ξ0| > λH(N)

∞ if λL(N) < |〈Y 〉N − ξ0| 6 λH(N)

for N = N0 +W,

DN0
(N) =

{
0 if |〈Y 〉N − ξ0| 6 λB-RDT(N)

1 if |〈Y 〉N − ξ0| > λB-RDT(N)

where N = N0 + W is the truncation time. With W ∈ N
defined as the truncation window. DN0

(N) represents the
decision made at the N th time instant and if a decision is
not made at time N the algorithm will update the statistic
and repeat the test with N + 1 samples. The algorithm waits
for N0 samples before starting the test, note that this N0

is different from the buffer, M designed for SeqRDT. N0

is given a priori as defined in (3) whereas the buffer M
was designed using Assumption 4.1. The thresholds λL(N),
λH(N) and λB-RDT(N) must be designed jointly so as to
guarantee false alarm and missed detection probabilities to be
bounded below fixed levels. Also, λH(N) and λL(N) must
be such that λL(N) 6 λH(N). For notational simplicity we
use the same notations for the thresholds here although these
thresholds are different than the ones defined in Section IV.

We now define the False Alarm Probability of T-
SeqRDT as:

PFA(DN0
)

def
= P [DN0

(T ) = 1 ] , under H0.

Similarly, the Missed Detection Probability is defined as:

PMD(DN0)
def
= P [DN0(T ) = 0 ] , under H1.

The goal of any sequential algorithm is to design the thresh-
olds so that PFA(DN0) and PMD(DN0) stay below certain pre-
specified levels α and β, respectively. Moreover, we want to
make a decision faster compared to BlockRDT, the fixed-
sample-size counterpart of T-SeqRDT. We now define the
thresholds for T-SeqRDT.

A. Thresholds

Now we define the thresholds used for T-SeqRDT based
on the tests defined in (4). The goal is to get rid of the
buffer required by SeqRDT [16], [17], while maintaining a
fixed level for false alarm and missed detection probabilities
and at the same time making a decision faster compared
to fixed-sample-size test, BlockRDT. One way to get rid of
this buffer is to increase the upper and decrease the lower
threshold. This can be achieved by defining the thresholds
as:

λH(N) = λ α
2W

(τ
√
N)/
√
N

λL(N) = λ1− β
2W

(τ
√
N)/
√
N (7)

λB-RDT(N) = λα
2

(τ
√
N)/
√
N

Note that the thresholds λH(N) and λL(N) depend on
the window size, W as defined earlier. Now the goal is
to select an appropriate W such that the PFA(DN0

) and
PMD(DN0) are bounded below α and β, respectively. But,
before that we first make the case that these thresholds
actually satisfy the properties desired for T-SeqRDT in the
following proposition.

Proposition 5.2: We have, λL(N) 6 λB-RDT(N) 6
λH(N), for all N ∈ N.

Now we have stated that the thresholds defined in (7)
follow the properties desired by T-SeqRDT. Next, we use
Assumption 5.1 to design W and show that the PFA(DN0)
and PMD(DN0) are bounded below α and β, respectively.

B. Truncation window

As discussed in the introduction section we base the
choice of the truncation window W on BlockRDT. It follows
from Proposition 3.1 that PB-RDT

FA of BlockRDT is always
bounded below by α/2 for threshold λB-RDT(N) given in
(7). However, without any additional knowledge one cannot
control PB-RDT

MD of BlockRDT. To control this PB-RDT
MD we

need Assumption 5.1, which is then used to design W
for T-SeqRDT. The next proposition shows how PB-RDT

MD for
BlockRDT behaves under Assumption 5.1.

Proposition 5.3: For any γ ∈ (0, 1) the tests of type
TN,γ(Y ) for the hypotheses testing problem as defined in



(3), PB-RDT
FA and PB-RDT

MD under Assumption 5.1 are bounded
as {

PB-RDT
FA 6 γ

PB-RDT
MD 6 1−Q1/2

(
τ+
√
N,λγ(τ

√
N)
)

where the upper bound on PB-RDT
MD decreases to 0 with N .

Remark 3: Without Assumption 5.1 PB-RDT
FA and PB-RDT

MD
are bounded as given in Proposition 3.1.

Proposition 5.3 states that the upper bound on PB-RDT
MD is

decreasing in N . We use this and propose to choose the
truncation window such that the upper bound on PB-RDT

MD stays
below β/2. Thus we define W ∗(α, β) as the smallest W such
that,

1−Q1/2

(
τ+
√
N0 +W,λα

2
(τ
√
N0 +W )

)
6
β

2
, (8)

Therefore, the thresholds λH(N) and λL(N,wL) be-
come: λH(N) = λ α

2W∗ (τ
√
N)/
√
N and λL(N) =

λ1− β
2W∗

(τ
√
N)/
√
N .

Next, we analyze the PFA(DN0
) and PMD(DN0

) perfor-
mance of T-SeqRDT designed with the thresholds as defined
in (7) and the truncation window, W = W ∗(α, β).

Theorem 5.4 (Bounds on PFA(DN0
) and PMD(DN0

)):
We have: PFA(DN0

) 6 α and PMD(DN0
) 6 β.

This theorem states that for the thresholds defined in (7)
the testing problem (3) can be solved using T-SeqRDT. The
algorithm will guarantee levels α and β for false alarm and
missed detection probabilities, respectively, irrespective of
the underlying signal distributions. The error probabilities
guaranteed by T-SeqRDT are a little higher than that of
BlockRDT (α/2 and β/2), this loss in error performance is
compensated by the faster decision making of T-SeqRDT as
shown in the next section. Moreover, we know that the
average stopping time of T-SeqRDT will always be smaller
than or equal to that of BlockRDT as T-SeqRDT will stop
at the truncation time N0 + W ∗ if a decision is not made
until that time. More importantly, this is achieved with T-
SeqRDT without Assumption 4.1 and without the need to
design a buffer, M , although T-SeqRDT required a milder
Assumption 5.1. Next, we perform some simulations to
analyze the performance of T-SeqRDT.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare T-SeqRDT to BlockRDT,
SeqRDT and SPRT via simulations. We first present the
detection problem considered to perform the experiments.
Then we carry out the comparison of the algorithms for
different parameter values.

A. Detection with signal distortions

We consider the case when Yn = Ξn + Xn, for n ∈ N,
with Ξn = ξ0 under H0 and Ξn = ξ1 under H1. Here
ξ0 and ξ1 are deterministic constants and Xn ∼ N (0, 1)
for any n ∈ N. If ξ0 is known precisely, this model can
be formulated in the framework of (3) with τ = 0 and

N0 = 1. However, in many practical systems ξ0 might
not be known precisely and there might be a mismatch
between the model and the signal observed in practice. In
such cases, the signal, Ξn, will not be a constant ξ0 or ξ1
under each hypothesis, but a distorted version of these values.
These distortions are difficult to model in a parametric setup,
therefore, likelihood ratio based tests will fail to guarantee
reliable performance [10]. However, the testing framework
proposed in (3) for BlockRDT, SeqRDT and T-SeqRDT is
not limited by these drawbacks. Therefore, instead of dealing
with a precise model, we consider the case when Ξn =
ξi + ∆n under Hi for i ∈ {0, 1} and for all n ∈ N. Here,
∆ns model the possible additive distortions. We thus want
to experimentally compare different algorithms for testing
Ξ = (Ξn)n∈N when we observe Y = (Yn)n∈N. We focus
on algorithms guaranteeing false alarm and missed detection
probabilities below specified levels α and β, respectively. For
the sake of conciseness, we simply say that these algorithms
guarantee α and β.

B. Experimental setup

First, we list the parameters required to design each
algorithm: BlockRDT needs τ , T-SeqRDT needs τ and τ+,
SeqRDT needs τ−, τ , τ+ and τH whereas, SPRT requires
complete knowledge of the signal distributions under both
hypotheses. For the experimental setup, we consider ξ1 and
ξ0 such that |ξ1 − ξ0| > 4τ−, we set τ+ = |ξ1 − ξ0| − τ−
and τH ∈ [|ξ1 − ξ0| + τ−,∞). Assume that the distortion
∆ = (∆n)n∈N satisfies: |∆n| 6 τ− and τ+ 6 |∆n +
ξ1 − ξ0| 6 τH . The first inequality captures the behavior of
the signal under H0 and the second inequality captures the
behavior of the signal under H1. Using these, the problem
of testing Ξ can be written as:{

under H0 : 0 6 |〈Ξ〉N − ξ0| 6 τ− < τ, ∀N > 1,

under H1 : τ < τ+ 6 |〈Ξ〉N − ξ0| 6 τH , ∀N > 1.

(9)

with τ ∈ (τ−, τ+). For simulations, we set τ = 2τ−.
BlockRDT, SeqRDT and T-SeqRDT can be designed us-
ing (9). However, all types of distortion may not satisfy
(9) with probability 1, we therefore consider the case
when ∆1,∆2, · · ·

iid∼ N (0, σ2). The algorithms BlockRDT,
SeqRDT and T-SeqRDT are still able to guarantee α and β
when (9) is satisfied only with high probability [15]–[17].
This indicates that the proposed algorithms are flexible as
well as robust to model mismatches. Next, we discuss the
algorithms for testing of the distorted signal as defined above.

BlockRDT: For the rest of the section we choose τ− = σ.
Since the distortion distribution is assumed to be Gaussian,
we can compute the probabilities associated with (9). We
have for tolerance τ , P[|〈∆〉N | 6 τ ] > 0.9545 and P[|〈∆〉N +
ξ1 − ξ0| > τ ] > 0.9772 for all N > 1 and |ξ1 − ξ0| > 2τ ,
with equality for N = 1 and |ξ1 − ξ0| = 2τ . Although
the above probabilities are not equal to 1, BlockRDT can
be experimentally shown to guarantee α and β [15]. From
Proposition 3.1, we know that the threshold λα(τ

√
N)/
√
N



SNR = |ξ1 − ξ0| 4 5 6 8

BlockRDT Number of samples, NB-RDT 39 10 5 2

SeqRDT Average stopping time, E[TSeqRDT ] 3.98 3.28 3.04 2.90

T-SeqRDT Average stopping time, E [T ] 6.3318 4.4941 3.7770 3.1204

SPRT Average stopping time, E [TSPRT ] 2.44 1.73 1.34 1.05

SPRT-MM Average stopping time, E [TSPRT-MM ] 1.57 1.24 1.10 1.01

PSPRT-MM
FA 6.2× 10−3 3.5× 10−3 1.8× 10−3 2.88× 10−4

PSPRT-MM
MD 6.2× 10−3 3.6× 10−3 1.8× 10−3 3.05× 10−4

TABLE I
T-SeqRDT, SeqRDT, SPRT VS BlockRDT FOR α = β = 0.001.

will guarantee the false alarm probability to stay below
α. However, it does not guarantee the missed detection
probability to stay below β. However, Proposition 5.3 shows
that with the knowledge of τ+, we can control the missed
detection probability by choosing an appropriate block-size
such that the missed detection probability stays below pre-
specified level β.

SeqRDT: For the same choice of tolerances τ , τ− and τ+,
we have P[|〈∆〉N | 6 τ−] > 0.6827 and P[|〈∆〉1 + ξ1− ξ0| >
τ+] > 0.8413 for all N > 1 and |ξ1−ξ0| > 2τ , with equality
when N = 1 and |ξ1 − ξ0| = 2τ . Again, although these
probabilities are not exactly one, SeqRDT, will perform the
testing while guaranteeing α and β. For SeqRDT, we need
to know all τ−, τ , τ+ and τH where, τ is used to design the
threshold, τ+, τ− and τH are used to choose an appropriate
buffer size, M , such that the algorithm guarantees α and
β. As shown in [16], [17] for the above model, thresholds
λH(N) = λα(τ

√
N)/
√
N , λL(N) = λ1−β(τ

√
N)/
√
N

and M = 0 will guarantee α and β for the algorithm. We
denote by E[TSeqRDT ] the average stopping time of SeqRDT.

T-SeqRDT: Similar to BlockRDT, T-SeqRDT guarantees
α and β by the knowledge of only τ and τ+. We choose
the same τ and τ+ as for SeqRDT. Hence, the probabilities
P[|〈∆〉N | 6 τ ] and P[|〈∆〉1 +ξ1−ξ0| > τ+] remain the same
as for both BlockRDT and SeqRDT. Therefore, the testing
of the distorted signal as described above can be performed
using T-SeqRDT by casting the problem in the framework as
defined in (3). The truncation window, W ∗, for T-SeqRDT is
selected via (8). This W ∗ along with α and β is then used
to design the thresholds as defined in (7). Theorem 5.4 then
ensures that T-SeqRDT will guarantee α and β.

Sequential Probability Ratio Test (SPRT): For SPRT we
assume that complete knowledge of probability density func-
tions of the observations fi is available underHi for i = 0, 1.
For α, β ∈ (0, 1/2), and with initialization N = 1, SPRT is
defined as:

If ΛN 6 λSPRT
L , decide H0 and stop;

If ΛN > λSPRT
H , decide H1 and stop;

If λSPRT
L < ΛN < λSPRT

H , compute ΛN+1 and repeat;
(10)

where ΛN =
∑N
n=1 log f1(Yi)

f0(Yi)
is the log-likelihood ratio of

the observations, λSPRT
L = log β

1−α is the lower threshold and
λSPRT
H = log 1−β

α is the upper threshold. The probability of
false alarm PSPRT

FA and the probability of missed detection
PSPRT

MD of SPRT are guaranteed to stay below α and β,
respectively [5], [6], and the average stopping time is denoted
by E [TSPRT ]. In our case,

ΛN = N
ξ2
0 − ξ2

1

2(1 + σ2)
+
ξ1 − ξ0
1 + σ2

N∑
n=1

Yn.

This likelihood ratio can be computed only when the distor-
tion distribution is completely known. However, SPRT might
be unaware of this distortion in many practical scenarios.
We represent the algorithm by SPRT-MM in such cases and
denote by E[TSPRT-MM], PSPRT-MM

FA and PSPRT-MM
MD , its average

stopping time, false alarm and missed detection probabilities,
resp. The thresholds for SPRT-MM are same as for SPRT,
however, since it is unaware of the distortion, its log-
likelihood is updated with σ = 0 in the above as

ΛN = N
ξ2
0 − ξ2

1

2
+ (ξ1 − ξ0)

N∑
n=1

YN . (11)

C. Comparison: T-SeqRDT, SeqRDT, BlockRDT and SPRT

We define |ξ1 − ξ0| as the Signal-to-Noise Ratio (SNR).
In Table I, we compare the average stopping times of T-
SeqRDT, SeqRDT and SPRT to the block size of Block-
RDT, for different SNR values, such that all the algorithms
guarantee α = β = 0.001. We choose τ− = σ = 1.
Note from Table I that SPRT-MM is fastest but it is unable
to guarantee α and β as PSPRT-MM

FA and PSPRT-MM
MD does not

stay below α and β, resp. This is a consequence of the
model mismatch as SPRT-MM is unaware of the distortion
distribution. SPRT is the fastest among the algorithms which
guarantee α and β, but it comes at the cost of knowing
precisely the complete distributions of the signal and the
distortion. Among the algorithms BlockRDT, SeqRDT and
T-SeqRDT, SeqRDT is the fastest on average, especially at
low SNR values, but needs most information (all τ−, τ and
τ+) about the distorted signal. BlockRDT is the slowest and
to guarantee α and β, it requires the same information (τ and
τ+) as T-SeqRDT. However, T-SeqRDT is considerably faster



on average in comparison and only marginally slower than
SeqRDT, especially at low SNRs. Moreover, T-SeqRDT by
design eliminates the need for buffer, M , whereas SeqRDT
needs a buffer.

VII. CONCLUSION AND PERSPECTIVES

In this work, we proposed a novel framework for hy-
pothesis testing. We can test arbitrary signals with unknown
distributions, as long as the problem can be formulated in
the form of (3) and |〈Ξ〉N − ξ0| is lower bounded away for
τ (see Assumption 5.1). Instead of knowing the complete
distribution of the signals, we need to know only a few
parameters. We introduced new non-parametric algorithm,
T-SeqRDT, for sequential testing. The algorithm is truncated
version of SeqRDT [16], [17]. SeqRDT, although marginally
faster than T-SeqRDT, needed more information about the
signal. Moreover, SeqRDT guaranteed α and β by use of a
buffer, M , which waits for the observations to accumulate
before starting the test. T-SeqRDT, by design eliminated the
need for this buffer while guaranteeing α and β. This was
made possible by theoretically choosing an appropriate trun-
cation window and thresholds. Finally, simulations showed
that T-SeqRDT, even with little knowledge of the signal,
is able to provide sufficient performance guarantees while
making a decision faster on average compared to BlockRDT.
Moreover, the algorithm was shown to be robust compared
to SPRT. In conclusion, we believe that the proposed testing
approach provides an appealing alternative to likelihood ratio
based frameworks.
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