P. E. Castillo, T. J. Younts, A. E. Chávez, and Y. Hashimotodani, Endocannabinoid signaling and synaptic function, Neuron, vol.76, pp.70-81, 2012.
DOI : 10.1016/j.neuron.2012.09.020

URL : https://doi.org/10.1016/j.neuron.2012.09.020

A. Araque, P. E. Castillo, O. J. Manzoni, and R. Tonini, Synaptic functions of endocannabinoid signaling in health and disease, Neuropharmacology, vol.124, pp.13-24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01826136

R. Cachope, K. Mackie, A. Triller, J. O'brien, and A. E. Pereda, Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids, Neuron, vol.56, pp.1034-1047, 2007.

P. J. Zhu and D. M. Lovinger, Persistent synaptic activity produces long-lasting enhancement of endocannabinoid modulation and alters long-term synaptic plasticity, J. Neurophysiol, vol.97, pp.4386-4389, 2007.

J. Xu, J. Zhang, and C. Chen, Long-lasting potentiation of hippocampal synaptic transmission by direct cortical input is mediated via endocannabinoids, J. Physiol, vol.590, pp.2305-2315, 2012.

Q. Lin, Hippocampal endocannabinoids play an important role in induction of long-term potentiation and regulation of contextual fear memory formation, Brain Res. Bull, vol.86, pp.139-145, 2011.

G. Carlson, Y. Wang, and B. E. Alger, Endocannabinoids facilitate the induction of LTP in the hippocampus, Nat. Neurosci, vol.5, pp.723-724, 2002.

M. Navarrete and A. Araque, Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes, Neuron, vol.68, pp.113-126, 2010.

W. Wang, A primary cortical input to hippocampus expresses a pathway-specific and endocannabinoid-dependent form of long-term potentiation, vol.3, pp.10049-10053, 2016.

W. Wang, Atypical endocannabinoid signaling initiates a new form of memory-related plasticity at a cortical input to hippocampus, Cereb. Cortex, vol.28, pp.2253-2266, 2018.

Y. Cui, S. Perez, and L. Venance, Endocannabinoid-LTP mediated by CB1 and TRPV1 receptors encodes for limited occurrences of coincident activity in neocortex, Front. Cell. Neurosci, vol.12, p.182, 2018.

Y. Cui, Endocannabinoids mediate bidirectional striatal spike-timing dependent plasticity, J. Physiol, vol.593, pp.2833-2849, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141205

Y. Cui, Endocannabinoid dynamics gate spike-timing dependent depression and potentiation, vol.5, p.13185, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01279901

H. H. Yin, Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill, Nat. Neurosci, vol.12, pp.333-341, 2009.

A. C. Koralek, X. Jin, J. D. Long, . Ii, R. M. Costa et al., Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills, Nature, vol.483, pp.331-335, 2012.

Q. Shan, M. Ge, M. J. Christie, and B. W. Balleine, The acquisition of goaldirected actions generates opposing plasticity in direct and indirect pathways in dorsomedial striatum, J. Neurosci, vol.34, pp.9196-9201, 2014.

P. E. Rothwell, Input-and output-specific regulation of serial order performance by corticostriatal circuits, Neuron, vol.88, pp.345-356, 2015.

S. L. Hawes, Multimodal plasticity in dorsal striatum while learning a lateralized navigation task, J. Neurosci, vol.35, pp.10535-10549, 2015.

Q. Xiong, P. Znamenskiy, and A. M. Zador, Selective corticostriatal plasticity during acquisition of an auditory discrimination task, Nature, vol.521, pp.348-351, 2015.

A. Pasupathy and E. K. Miller, Different time courses of learning-related activity in the prefrontal cortex and striatum, Nature, vol.433, pp.873-876, 2005.

A. Koralek, R. Costa, and J. Carmena, Temporally precise cell-specific coherence develops in corticostriatal networks during learning, Neuron, vol.79, pp.865-872, 2013.

W. Schultz, Neuronal reward and decision signals: from theories to data, Physiol. Rev, vol.95, pp.853-951, 2015.

D. J. Surmeier, S. M. Graves, and W. Shen, Dopaminergic modulation of striatal networks in health and Parkinson's disease, Curr. Opin. Neurobiol, vol.29, pp.109-117, 2014.

B. N. Mathur and D. M. Lovinger, Endocannabinoid-dopamine interactions in striatal synaptic plasticity, Front. Pharmacol, vol.3, p.66, 2012.

D. Filippo and M. , Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory, Behav. Brain Res, vol.199, pp.108-118, 2009.

E. Fino and L. Venance, Spike-timing dependent plasticity in the striatum, Front. Synaptic Neurosci, vol.2, p.6, 2010.

D. E. Feldman, The spike-timing dependence of plasticity, Neuron, vol.75, pp.556-571, 2012.

W. Shen, M. Flajolet, P. Greengard, and D. J. Surmeier, Dichotomous dopaminergic control of striatal synaptic plasticity, Science, vol.321, pp.848-851, 2008.

V. Pawlak and J. N. Kerr, Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity, J. Neurosci, vol.28, pp.2435-2446, 2008.

E. Fino, J. Glowinski, and L. Venance, Bidirectional activity-dependent plasticity at corticostriatal synapses, J. Neurosci, vol.25, pp.11279-11287, 2005.
DOI : 10.1523/jneurosci.4476-05.2005

URL : http://www.jneurosci.org/content/25/49/11279.full.pdf

E. Fino, Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity, J. Physiol, vol.588, pp.3045-3062, 2010.

V. Paillé, GABAergic circuits control spike-timing-dependent plasticity, J. Neurosci, vol.33, pp.9353-9363, 2013.

N. X. Tritsch and B. L. Sabatini, Dopaminergic modulation of synaptic transmission in cortex and striatum, Neuron, vol.76, pp.33-50, 2012.

X. Zhuang, P. Mazzoni, and U. J. Kang, The role of neuroplasticity in dopaminergic therapy for Parkinson disease, Nat. Rev. Neurol, vol.9, pp.248-256, 2013.

S. Valtcheva, Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum, Neuropharmacology, vol.121, pp.261-277, 2017.

J. M. Schulz, P. Redgrave, and J. N. Reynolds, Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways, Front. Synaptic Neurosci, vol.2, p.23, 2010.

E. Fino, J. Deniau, and L. Venance, Brief subthreshold events can act as Hebbian signals for long-term plasticity, PloS One, vol.4, p.6557, 2009.

A. P. Strafella, T. Paus, M. Fraraccio, and A. Dagher, Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex, Brain, vol.126, pp.2609-2615, 2003.

Z. Juranyi, M. J. Zigmond, and L. G. Harsing, 3H]Dopamine release in striatum in response to cortical stimulation in a corticostriatal slice preparation, J. Neurosci. Methods, vol.126, pp.57-67, 2003.

C. Quiroz, Key modulatory role of presynaptic adenosine A 2A receptors in cortical neurotransmission to the striatal direct pathway, ScientificWorldJournal, vol.9, pp.1321-1344, 2009.

M. Mahn, M. Prigge, S. Ron, R. Levy, and O. Yizhar, Biophysical constraints of optogenetic inhibition at presynaptic terminals, Nat. Neurosci, vol.19, pp.554-556, 2016.

B. K. Atwood, D. M. Lovinger, and B. N. Mathur, Presynaptic long-term depression mediated by Gi/o-coupled receptors, Trends Neurosci, vol.37, pp.663-673, 2014.
DOI : 10.1016/j.tins.2014.07.010

URL : http://europepmc.org/articles/pmc4252515?pdf=render

P. Calabresi, B. Picconi, A. Tozzi, V. Ghiglieri, and M. Di-filippo, Direct and indirect pathways of basal ganglia: a critical reappraisal, Nat. Neurosci, vol.17, pp.1022-1030, 2014.

S. M. Hersch, Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents, J. Neurosci, vol.15, pp.5222-5237, 1995.

S. R. Sesack, C. Aoki, and V. M. Pickel, Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets, J. Neurosci, vol.14, pp.88-106, 1994.

H. Wang and V. M. Pickel, Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus, J. Comp. Neurol, vol.442, pp.392-404, 2002.

N. S. Bamford, Dopamine modulates release from corticostriatal terminals, J. Neurosci, vol.24, pp.9541-9552, 2004.

P. F. Durieux, D2R striatopallidal neurons inhibit both locomotor and drug reward processes, Nat. Neurosci, vol.12, pp.393-395, 2009.

P. J. Sjöström, G. G. Turrigiano, and S. B. Nelson, Rate, timing, and cooperativity jointly determine cortical synaptic plasticity, Neuron, vol.32, pp.1149-1164, 2001.

Y. Cui, I. Prokin, A. Mendes, H. Berry, and L. Venance, Robustness of STDP to spike timing jitter, Sci. Rep, vol.8, p.8139, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788826

N. D. Volkow, J. S. Fowler, G. J. Wang, R. Baler, and F. Telang, Imaging dopamine's role in drug abuse and addiction, Neuropharmacology, vol.56, pp.3-8, 2009.

T. D. Barnes, Advance cueing produces enhanced action-boundary patterns of spike activity in the sensorimotor striatum, J. Neurophysiol, vol.105, pp.1861-1878, 2011.

V. Goubard, E. Fino, and L. Venance, Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing, J. Physiol, vol.589, pp.2301-2319, 2011.

M. Russell, S. Winitz, and G. L. Johnson, Acetylcholine muscarinic m1 receptor regulation of cyclic AMP synthesis controls growth factor stimulation of Raf activity, Mol. Cell. Biol, vol.14, pp.2343-2351, 1994.

Z. Wang, Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons, Neuron, vol.50, pp.443-452, 2006.

A. Tozzi, The distinct role of medium spiny neurons and cholinergic interneurons in the D2/A2A receptor interaction in the striatum: implications for Parkinson's disease, J. Neurosci, vol.31, pp.1850-1862, 2011.

A. C. Kreitzer and R. C. Malenka, Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models, Nature, vol.445, pp.643-647, 2007.

T. Lerner and A. Kreitzer, RGS4 is required for dopaminergic control of striatal LTD and susceptibility to Parkinsonian motor deficits, Neuron, vol.73, pp.347-359, 2012.

Y. Mateo, Endocannabinoid actions on cortical terminals orchestrate local modulation of dopamine release in the nucleus accumbens, Neuron, vol.96, pp.1112-1126, 2017.

S. D. Fisher, Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo, Nat. Commun, vol.8, p.334, 2017.

T. Shindou, M. Shindou, S. Watanabe, and J. Wickens, A silent eligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum, Eur. J. Neurosci, 2018.

S. Yagishita, A critical time window for dopamine actions on the structural plasticity of dendritic spines, Science, vol.345, pp.1616-1620, 2014.

M. Graupner and N. Brunel, Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location, Proc. Natl Acad. Sci. U.S.A, vol.109, pp.3991-3996, 2012.

H. Z. Shouval, M. F. Bear, and L. N. Cooper, A unified model of NMDA receptor-dependent bidirectional synaptic plasticity, Proc. Natl Acad. Sci. U.S. A, vol.99, pp.10831-10836, 2002.

M. E. Rice, J. C. Patel, and S. J. Cragg, Review dopamine release in the basal ganglia, Neuroscience, vol.198, pp.112-137, 2011.

P. F. Marcott, A. A. Mamaligas, and C. P. Ford, Phasic dopamine release drives rapid activation of striatal d2-receptors, Neuron, vol.84, pp.164-176, 2014.

Z. Brzosko, W. Schultz, and O. Paulsen, Retroactive modulation of spike timing-dependent plasticity by dopamine, vol.4, p.9685, 2015.

H. Planert, T. K. Berger, and G. Silberberg, Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine, PloS One, vol.8, p.57054, 2013.

M. Day, D. Wokosin, J. L. Plotkin, X. Tian, and D. J. Surmeier, Differential excitability and modulation of striatal medium spiny neuron dendrites, J. Neurosci, vol.28, pp.11603-11614, 2008.

M. Cazorla, U. J. Kang, and C. Kellendonk, Balancing the basal ganglia circuitry: a possible new role for dopamine D2 receptors in health and disease, Mov. Disord, vol.30, pp.895-903, 2015.

T. Buch, A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration, Nat. Methods, vol.2, pp.419-426, 2005.

E. P. Bello, Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors, Nat. Neurosci, vol.14, pp.1033-1038, 2011.

M. De-pittà, M. Goldberg, V. Volman, H. Berry, and E. Ben-jacob, Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes, J. Biol. Phys, vol.35, pp.383-411, 2009.

M. Graupner and N. Brunel, STDP in a bistable synapse model based on CaMKII and associated signaling pathways, PLoS Comput. Biol, vol.3, pp.2299-2323, 2007.