Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation

Daniel H. Baffet 1 Marcus Grote 1 Sébastien Imperiale 2, 3 Maryna Kachanovska 4
2 M3DISIM - Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine
LMS - Laboratoire de mécanique des solides, Inria Saclay - Ile de France
4 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In [25, 26], a PML formulation was proposed for the wave equation in its standard second-order form. Here, energy decay and L 2 stability bounds in two and three space dimensions are rigorously proved both for continuous and discrete formulations. Numerical results validate the theory.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [36 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01865484
Contributor : Maryna Kachanovska <>
Submitted on : Monday, September 3, 2018 - 10:07:28 AM
Last modification on : Friday, April 19, 2019 - 4:55:29 PM
Document(s) archivé(s) le : Tuesday, December 4, 2018 - 2:29:06 PM

File

preprnit_pml (1).pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01865484, version 1

Citation

Daniel H. Baffet, Marcus Grote, Sébastien Imperiale, Maryna Kachanovska. Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation. 2018. ⟨hal-01865484⟩

Share

Metrics

Record views

187

Files downloads

115