S. Becker, E. J. Candès, and M. Grant, Templates for convex cone problems with applications to sparse signal recovery, Mathematical Programming Computation, vol.1, issue.1, 2010.
DOI : 10.1137/070703983

T. Bendory, Y. C. Eldar, and N. Boumal, Non-Convex Phase Retrieval From STFT Measurements, IEEE Transactions on Information Theory, vol.64, issue.1, pp.467-484, 2018.
DOI : 10.1109/TIT.2017.2745623

E. J. Candès, Y. Eldar, T. Strohmer, and V. Voroninski, Phase retrieval via matrix completion, SIAM Rev, vol.57, issue.2, p.225251, 2015.

E. J. Candes, X. Li, and M. Soltanolkotabi, Phase Retrieval via Wirtinger Flow: Theory and Algorithms, IEEE Transactions on Information Theory, vol.61, issue.4, pp.1985-2007, 2015.
DOI : 10.1109/TIT.2015.2399924

URL : http://arxiv.org/pdf/1407.1065

J. R. Fienup, Reconstruction of an object from the modulus, In Opt. Lett, vol.3, p.2729, 1978.
DOI : 10.1364/ol.3.000027

J. R. Fienup, Phase retrieval algorithms: a comparison, Applied Optics, vol.21, issue.15, p.27582769, 1982.
DOI : 10.1364/AO.21.002758

URL : http://digitus.itk.ppke.hu/~matyi/optika/Phase_Diversity/AO82_PRComparison1.pdf

R. Gerchberg and W. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik, vol.35, p.237246, 1972.

D. Griffin and J. Lim, Signal estimation from modified short-time Fourier transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.32, issue.2, pp.236-243, 1984.
DOI : 10.1109/TASSP.1984.1164317

URL : http://hil.t.u-tokyo.ac.jp/~kameoka/SAP/papers/Griffin1984__Signal_Estimation_from_Modified_Short-Time_Fourier_Transform.pdf

R. Hamon, V. Emiya, and C. Fvotte, Convex nonnegative matrix factorization with missing data, 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), p.2016
DOI : 10.1109/MLSP.2016.7738910

URL : https://hal.archives-ouvertes.fr/hal-01346492

K. Jaganathan, Y. C. Eldar, and B. Hassibi, STFT Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms, IEEE Journal of Selected Topics in Signal Processing, vol.10, issue.4, pp.770-781, 2016.
DOI : 10.1109/JSTSP.2016.2549507

URL : https://doi.org/10.1109/jstsp.2016.2549507

J. , L. Roux, H. Kameoka, N. Ono, A. De-cheveigné et al., Computational auditory induction as a missing-data model-fitting problem with bregman divergence, Speech Communication, 2010.

P. Netrapalli, P. Jain, and S. Sanghavi, Phase Retrieval Using Alternating Minimization, IEEE Transactions on Signal Processing, vol.63, issue.18, pp.2796-2804, 2013.
DOI : 10.1109/TSP.2015.2448516

URL : http://arxiv.org/pdf/1306.0160

Z. Prusa, P. Balazs, and P. Sondergaard, A non-iterative method for reconstruction of phase from stft magnitude, IEEE/ACM Transactions on Audio, Speech, and Language Processing, pp.1154-1164, 2017.
DOI : 10.1109/taslp.2017.2678166

URL : https://doi.org/10.1109/taslp.2017.2678166

P. Smaragdis, B. Raj, and M. Shashanka, Missing data imputation for spectral audio signals, 2009 IEEE International Workshop on Machine Learning for Signal Processing, 2009.
DOI : 10.1109/MLSP.2009.5306194

I. Waldspurger, A. , and S. Mallat, Phase recovery, MaxCut and complex semidefinite programming, Mathematical Programming, vol.16, issue.3, pp.47-81, 2015.
DOI : 10.1137/04061341X

URL : https://hal.archives-ouvertes.fr/hal-00907535

Z. Wen, D. Goldfarb, and K. Scheinberg, Block Coordinate Descent Methods for Semidefinite Programming, Handbook on Semidefinite, Conic and Polynomial Optimization, 2012.
DOI : 10.1007/978-1-4614-0769-0_19