
HAL Id: hal-01865293
https://hal.science/hal-01865293

Submitted on 31 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Based Approach to Secure Multiparty
Distributed Systems

Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, Marius Bozga

To cite this version:
Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, Marius Bozga. A Model-Based Approach to
Secure Multiparty Distributed Systems. Leveraging Applications of Formal Methods, Verification and
Validation: Foundational Techniques - 7th International Symposium, ISoLA 2016, Oct 2016, Corfu,
Greece. �hal-01865293�

https://hal.science/hal-01865293
https://hal.archives-ouvertes.fr

A Model-Based Approach to Secure Multiparty
Distributed Systems ?

Najah Ben Said1, Takoua Abdellatif2, Saddek Bensalem1, and Marius Bozga1

1 Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France

2 Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia

Abstract. Within distributed systems with completely distributed in-
teractions between parties with mutual distrust, it is hard to control
the (illicit) flowing of private information to unintended parties. Un-
like existing methods dealing with verification of low-level cryptographic
protocols, we propose a novel model-based approach based on model
transformations to build a secure-by-construction multiparty distributed
system. First, starting from a component-based model of the system,
the designer annotates different parts of it in order to define the security
policy. Then, the security is checked and when valid, a secure distributed
model, consistent with the desired security policy, is automatically gener-
ated. To illustrate the approach, we present a framework that implements
our method and use it to secure an online social network application.

1 Introduction

Model-based development aims at both reducing development costs and increas-
ing the integrity of system implementations by using explicit models employed
in clearly defined transformation steps leading to correct-by-construction imple-
mentation artifacts. This approach is beneficial, as one can first ensure system
requirements by dealing with a high-level formally specified model that abstracts
implementation details and then derive a correct implementation through a series
of transformations that terminates when an actual executable code is obtained.

Nonetheless, ensuring end-to-end security requirements in distributed sys-
tems remains a difficult and error-prone task. In many situations, security re-
duces to access control to prevent sensitive information from being read or mod-
ified by unauthorized users. However, access control is insufficient to regulate
the propagation of information once released for processing by a program espe-
cially with non-trivial interactions and computations. Thus access control offers
no guarantees about whether an information is subsequently protected and de-
ciding how to set access control permissions in complex systems is a difficult
problem in itself. Equally, using cryptographic primitives that provides strong

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
ICT-318772 (D-MILS).

confidentiality and integrity guarantees, is also less helpful to ensure that the
system obeys an overall security policy.

Information flow control is a much robust alternative which tracks informa-
tion propagation in the entire system and prevent secret or confidential infor-
mation from being publicly released. Information flow control relies on annotat-
ing system data and/or actions with specific levels of security and use specific
methods for checking non-interference, that is, absence of leakage, between dif-
ferent security levels. Nonetheless, providing annotations and establishing their
correctness is equally difficult especially for distributed implementations, where
only code is available and no higher-level abstractions.

In this paper we introduce a model-based development approach for dealing
with information flow control in distributed systems. Our contribution can be
summarized as follows. First, we provide a high-level component-based model
and associated security annotations to allow system designers to configure the
system security in an intuitive way. They do not need to be experts in security
or cryptographic protocols. Second, we provide a security checker that applies
information flow techniques and verifies formally the correctness of the provided
configuration. Third, a distributed model is automatically generated and respects
the designer configured security policy. The mapping between the high-level
policy and the distributed model is formally proven.

In the paper, we use the secureBIP framework [1] as underlying component-
based modeling framework. secureBIP is an extension of the BIP framework
[2] with information flow security. Given security annotations for data and in-
teractions, secureBIP captures two types of non-interference, respectively event
and data non-interference. For events (that is, occurrences of interactions), non-
interference states that the observation of public events does not reveal any
information about the occurrence of secret events. For data, it states that there
is no leakage of secret data into public ones.

We provide model transformations allowing to transform high-level secure-
BIP models into a distributed models while preserving event and data non-
interference. In this way, information flow security needs to be verified once, for
the high-level model, and then it holds by construction on the distributed model
and later on the final implementation. The proposed transformation extends
previous work [3,4] on distributed implementation of BIP components models,
which essentially addressed functional and performance aspects, while being to-
tally agnostic about security-related issues.

The paper is structured as follows. Section 2 presents a running example to
be used along the paper. Section 3 recalls the main concepts of the secureBIP
framework, associated non-interference definitions and security conditions. Next,
section 4 contains the new automated distribution approach to derive secure dis-
tributed models. Finally, section 5 discusses related work and section 6 concludes
and presents some perspectives for future research. Proofs of technical results
are given in a technical report3.

3 no. TR-2014-6 on http://www-verimag.imag.fr/Rapports-Techniques,28.html

2 Running Example

Throughout the paper, we consider a simplified social network application, called
Whens-App, and illustrated in Figure 1. The application is intended for organiz-
ing virtual events where participants can meet and exchange data.

Event−CreatorEC

Event−ReceiverER
ER EC

ER

ER

ER
EC

ER

ER

ER
EC

ER

ER

ER

EC

ER

EC

Internet

Fig. 1. Overview of the Whens-App application

As social network application, Whens-App entails several of security require-
ments. In this paper we focus on requirements related to information flow secu-
rity: assuming that components are trustful and the network is unsecure, (1) the
interception and observation of exchanged data messages must not reveal any
information about event organization and (2) confidentiality of classified data
is always preserved and kept secret inter- and intra-components. We will show
that both requirements are ensured by using security annotations for tracking
events and data in the system. Then, we show how the the annotated model can
be automatically and systematically transformed towards a distributed imple-
mentation while preserving the security properties.

3 Secure Component Model

Systems are constructed from atomic components, that is, finite state automata
or 1-safe Petri nets, extended with data and ports. Communication between
components is achieved using multi-party interactions with data transfer.

Definition 1 (atomic component). An atomic component B is a tuple (L,
X, P , T) where L is a set of locations, X is a set of variables, P is a set

of ports and T ⊆ L × P × L is a set of port labelled transitions. For every
port p ∈ P , we denote by Xp the subset of variables exported and available for
interaction through p. For every transition τ ∈ T , we denote by gτ its guard,
that is, a Boolean expression defined on X and by fτ its update function, that
is, a parallel assignment {x := exτ}x∈X to variables of X.

Let D be an universal data domain, fixed. A valuation of a set of variables Y
is a function y : Y → D. We denote by Y the set of all valuations defined on Y .
The semantics of an atomic component B is defined as the labelled transition
system sem(B) = (QB , ΣB ,−→

B
) where the set of states QB = L×X, the set of

labels ΣB = P ×X and transitions −→
B

are defined by the rule:

Atom
τ = `

p−→ `′ ∈ T x′′
p ∈ Xp gτ (x) x′ = fτ (x[Xp ← x′′

p])

(`,x)
p(x′′

p)
−−−−→
B

(`′,x′)

That is, (`′,x′) is a successor of (`,x) labelled by p(x′′p) iff (1) τ = `
p−→ `′ is a

transition of T , (2) the guard gτ holds on the current state valuation x, (3) x′′p
is a valuation of exported variables Xp and (4) x′ = fτ (x[Xp ← x′′p]) that is,
the next-state valuation x′ is obtained by applying fτ on x previously modified
according to x′′p . Whenever a p-labelled successor exists in a state, we say that
p is enabled in that state.

open

cancel

invite

c3

c2

c0

c1

open

invite

x
receive

enter

r1

r2

r0

receive

enter

report store

report

store

s

y push

get r

pushget
s:=f(y)

Fig. 2. Example of atomic components

Figure 2 presents the
atomic components used
in the Whens-App appli-
cation model. The Event
Creator (left) coordinates
an event lifetime (invite,
open and cancel tran-
sitions), get raw infor-
mation from participants
(store) and delivers some
information digests (re-
port). The Event Receiver
(right) enters an event
(receive, enter), share in-
formation (push) and re-
ceive event digests (get). [Colors are explained later]

Composite components are obtained by composing atomic components Bi =
(Li, Xi, Pi, Ti)i=1,n through multiparty interactions. We consider that atomic
components have pairwise disjoint sets of locations, ports, and variables i.e., for
any two i 6= j from {1..n}, we have Li ∩ Lj = ∅, Pi ∩ Pj = ∅, and Xi ∩Xj = ∅.

A multiparty interaction a is a triple (Pa, Ga, Fa), where Pa ⊆
⋃n
i=1 Pi is a

set of ports, Ga is a guard, and Fa is a data transfer function. By definition, Pa
uses at most one port of every component, that is, |Pi∩Pa| ≤ 1 for all i ∈ {1..n}.
Therefore, we simply denote Pa = {pi}i∈I , where I ⊆ {1..n} contains the indices

of the components involved in a and for all i ∈ I, pi ∈ Pi. Ga and Fa are both
defined on the variables exported by the ports in Pa (i.e.,

⋃
p∈Pa

Xp).

Definition 2 (composite component). A composite component C = γ(B1,
. . . , Bn) consists of the composition of B1, . . . , Bn by a set of interactions γ.

Given sem(Bi) = (Qi, Σi,−−→
Bi

)i=1,n, the semantics of C is defined as the

labelled transition system sem(C) = (QC , ΣC ,−→
C

) where the set of states QC =

⊗ni=1Qi, the set of labels ΣC = γ and transitions −→
C

are defined by the rule:

Comp

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({xpi}i∈I) {x′′
pi}i∈I = Fa({xpi}i∈I)

∀i ∈ I. (`i,xi)
pi(x

′′
pi

)

−−−−−→
Bi

(`′i,x
′
i)∀i 6∈ I. (`i,xi) = (`′i,x

′
i)

((`1,x1), . . . , (`n,xn))
a−→
C

((`′1,x
′
1), . . . , (`′n,x

′
n))

For each i ∈ I, xpi above denotes the valuation xi restricted to variables of
Xpi . The rule expresses that C can execute an interaction a ∈ γ enabled in
state ((`1,x1), . . . , (`n,xn)), iff (1) for each pi ∈ Pa, the corresponding atomic
component Bi can execute a transition labelled by pi, and (2) the guard Ga of
the interaction holds on the current valuation xpi of exported variables on ports
in a. Execution of a triggers first the data transfer function Fa which modifies
exported variables Xpi . The new values obtained, encoded in the valuation x′′pi ,
are then used by the components’ transitions. The states of components that do
not participate in the interaction remain unchanged.

We call a trace any finite sequence of interactions w = a1a2 · · · ∈ γ∗ exe-
cutable from a given initial state q0. The set of all traces w from state q0 is
denoted by traces(C, q0).

store report

x x

y:=x

y:=x
y:=x

invite

open

invite

open

enter enterenter

EC23

receive receive receive

s s

r rr

r:=s

r:=s r:=s

r:=s

store report

push get push get push get

x

y:=x

y y

ER1 ER2 ER3

EC12

Fig. 3. Example of composite component

Figure 3 presents a simplified composite component for an instance of the
Whens-App application with two event creators and three event receivers. In-
teractions are represented using connecting lines between the interacting ports.
Binary interactions (push store) and (report get) include data transfers between
components, that is, assignments of data across interacting components.

3.1 Information Flow Security

We consider transitive information flow policies expressed on system variables
and we focus on the non-interference properties. We restrict ourselves to con-
fidentiality and we ensure that no illegal flow of information exists between
variables having incompatible security levels.

Formally, we represent security domains as finite lattices 〈S,v〉 where S de-
notes the security levels and v the flows to relation. For example, a security
domain with two levels High (H), Low (L) and where information is allowed to
flow from Low to High is 〈{L,H}, {(L,L), (L,H), (H,H)}〉.

Let C = γ(B1, . . . Bn) be a composite component, fixed. Let X (resp. P) be
the set of all variables (resp. ports) defined in all atomic components (Bi)i=1,n.
Let 〈S,v〉 be a security domain, fixed.

Definition 3 (security assignment σ). A security assignment for component
C is a mapping σ : X ∪ P ∪ γ → S that associates security levels to variables,
ports and interactions such that, moreover, the levels of ports and interactions
match, that is, for all a ∈ γ and for all p ∈ P it holds σ(p) = σ(a).

The security levels for ports and variables track the flow of information along
computation steps within atomic components. The security levels for interactions
track the flow of information along inter-component communication. We consider
that deducing event-related information represent a risk that should be handled
while controlling the system’s information flow in addition to data flows. End-
to-end security is defined according to transitive non-interference.

Let σ be a security assignment for C, fixed. For a security level s ∈ S, we
define γ ↓σs the restriction of γ to interactions with security level at most s that
is formally, γ ↓σs= {a ∈ γ | σ(a) v s}. For a security level s ∈ S, we define
w|σs the projection of a trace w ∈ γ∗ to interactions with security level lower or
equal to s. Formally, the projection is recursively defined on traces as ε|σs = ε,
(aw)|σs = a(w|σs) if σ(a) v s and (aw)|σs = w|σs if σ(a) 6v s. The projection
operator |σs is naturally lifted to sets of tracesW by takingW |σs = {w|σs | w ∈W}.

For a security level s ∈ S, we define the equivalence ≈σs on states of C.
Two states q1, q2 are equivalent, denoted by q1 ≈σs q2 iff (1) they coincide on
variables having security levels at most s and (2) they coincide on control states
having outgoing transitions labeled with ports with security level at most s.
We are now ready to define the two types of non-interference respectively event
non-interference (ENI) and data non-interference (DNI).

Definition 4 (event/data non-interference). The assignment σ ensures event
(ENI) and data non-interference (DNI) of γ(B1, . . . , Bn) at security level s iff,

(ENI) ∀q0 ∈ Q0
C : traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σs)(B1, . . . , Bn), q0)

(DNI) ∀q1, q2 ∈ Q0
C , ∀w1 ∈ traces(C, q1), w2 ∈ traces(C, q2), ∀q′1, q′2 ∈ QC :

q1 ≈σs q2 ∧ w1|σs = w2|σs ∧ q1
w1−−→
C

q′1 ∧ q2
w2−−→
C

q′2 ⇒ q′1 ≈σs q′2

Moreover, σ is said secure for a component γ(B1, . . . , Bn) iff it ensures both
event and data non-interference, at all security levels s ∈ S.

Both variants of non-interference express some form of indistinguishability
between several states and traces of the system. For instance, an attacker that
can observe the system’s variables and occurences of interactions at security level
s1 must not be able to distinguish neither changes on variables or occurrence of
interactions having higher or incomparable security level s2.

The running example presented in Figures 2 and 3 is annotated with two
levels of security Low (in black) and High (in red). With this assignement, the
exchange of information during the event and some related data are High whereas
the event initiation is Low.

3.2 Noninterference Checking

In our previous work [1], we established sufficient syntactic conditions that re-
duce the verification of non-interference to local constrains checking on tran-
sitions (intra-component) and interactions (inter-components). We recall these
conditions hereafter as they are going to be used later in section 4 for estab-
lishing security correctness of the decentralized component model. Indeed, these
conditions offer a syntactic way to ensure both event and data non-interfrence
and therefore to obtain preservation proofs for along decentralization.

Definition 5 (security conditions). Let C = γ(B1, . . . , Bn) be a compos-
ite component and let σ be a security assignment. We say that C satisfies the
security conditions for security assignment σ iff:

(i) the security assignment of ports, in every atomic component Bi is locally
consistent, that is, for every pair of causal transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `2

p2−→ `3 ⇒ (`1 6= `2 ⇒ σ(p1) v σ(p2))
and for every pair of conflicting transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `1

p2−→ `3 ⇒ σ(p1) = σ(p2)
(ii) all assignments x := e occurring in transitions within atomic components

and interactions are sequential consistent, in the classical sense:
∀y ∈ use(e) : σ(y) v σ(x)

(iii) variables are consistently used and assigned in transitions and interactions:
∀τ ∈ ∪ni=1Ti, ∀x, y ∈ X : x ∈ def(fτ), y ∈ use(gτ)⇒ σ(y) v σ(pτ) v σ(x)
∀a ∈ γ, ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga)⇒ σ(y) v σ(a) v σ(x)

(iv) all atomic components Bi are port deterministic:

∀τ1, τ2 ∈ Ti : τ1 = `1
p−→ `2, τ2 = `1

p−→ `3 ⇒ (gτ1 ∧ gτ2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s conditions [5] for
excluding causal and conflicting places for Petri net transitions having different
security levels. Similar conditions have been considered in [6,7] and lead to more
specific definitions of non-interferences and bisimulations on annotated Petri
nets. The second condition (ii) represents the classical condition needed to avoid
information leakage in sequential assignments. The third condition (iii) tackles
covert channels issues. Indeed, (iii) enforces the security levels of the data flows
which have to be consistent with security levels of the ports or interactions

(e.g., no low level data has to be updated on a high level port or interaction).
Such that, observations of public data would not reveal any secret information.
Finally, condition (iv) enforces deterministic behavior on atomic components.

The following result, proven in [1], states that the security conditions are
sufficient to ensure both event and data non-interference.

Theorem 1. Whenever the security conditions hold, the security assignment σ
is secure for the composite component C.

For example, the security conditions hold for the security assignment consid-
ered for the running example in Figures 2 and 3. Notice that local consistency
is ensured in both atomic components: the security level can only increase from
Low to High along causal transitions and no choices exist between Low and High
transitions. Equally, notice that no High data is assigned on Low interactions.

4 Automatic Decentralization Method

In this section, we describe the decentralization method for our component-based
model and provide formal proofs for information-flow security preservation. The
decentralization method extends the method for decentralization of BIP models
[3,4]. The existing method transforms BIP models with multiparty interactions
(and priorities) into functionally equivalent BIP models using only send/receive
(S/R) interactions. S/R interactions are binary, point-to-point, directed inter-
actions from one sender component (port), to one receiver component (port)
implementing asynchronous message passing.

From a functional viewpoint, the main challenge when transforming a BIP
model into a decentralized S/R BIP model is to enable parallelism for execu-
tion of atomic components and concurrently enabled interactions. That is, in a
distributed setting, every atomic component executes independently and com-
munication is restricted to asynchronous message passing. The existing method
for decentralizing BIP relies on structuring the distributed components according
to a hierarchical architecture with two4 layers:

– the atomic components layer includes transformed atomic components. When-
ever an atomic component needs to interact, it publish an offer, that is the
list of its enabled ports, then wait for a notification indicating which inter-
action has been chosen, and then resume its execution.

– the interaction protocols (IP) layer deals with distributed execution of inter-
actions by implementing specific protocols. Every IP component handles a
subset of interactions, that is, check them for enabledness and schedule them
for execution accordingly. The interface between this layer and the compo-
nent layer provides ports for receiving offers and notifying the ports selected
for execution.

4 In general, a third conflict resolution layer is used, however, it has a confined impact
on information flow and is ommited here for the sake of simplicity of the presentation

The existing methods in [3,4] have been designed without taking into account
security concerns. In the following, we will show that they can be extended such
that to preserve information flow security. Roughly speaking, this is achieved
by using a slightly different transformation for atomic components as well as by
imposing few additional restrictions on the structure of the interaction protocol
layer. We show that the security assignment from the original model is naturally
lifted to the decentralized model and consequently, non-interference is preserved
along the transformation.

Let C = γ(B1, · · ·Bn) be a composite component and σ be a secure assign-
ment for C which satisfies the security conditions for non-interference.

4.1 Atomic Components Layer

The transformation of atomic components consists in breaking atomicity of tran-
sitions. Precisely, each transition is split into two consecutive steps: (1) an offer
that publishes the current state of the component, and (2) a notification that
triggers an update function and resume local computation. The intuition behind
this transformation is that the offer transition correspond to sending information
about component’s intention to interact to some IP component and the notifi-
cation transition corresponds to receiving the answer from an IP component,
once an interaction has been completed. Update functions can be then executed
concurrently and independently by components upon notification reception.

In constrast to the transformation proposed in [3], several changes are needed
to protect information flow. Distinct offer ports os and interaction counters ns are
introduced for every security level. Thus, offers and corresponding notifications
have the same security level, and moreover, no information about execution of
interactions is revealed through the observation of interaction counters.

Definition 6 (transformed atomic component). Let B = (L,X, P, T) be
an atomic component within C. The corresponding transformed S/R component
is BSR = (LSR, XSR, PSR, TSR):

– LSR = L ∪ L⊥, where L⊥ = {⊥` | ` ∈ L}
– XSR = X ∪ {ep}p∈P ∪ {ns|s ∈ S} where ep is a fresh boolean variable in-

dicating whether port p is enabled, and ns is a fresh integer variable called
interaction counter for security level s.

– PSR = P ∪ {os | s ∈ S}. The offer ports os export the variables Xos =
{ns}

⋃
{{ep} ∪Xp | σ(p) = s} that is the interaction counter ns, the newly

added variable ep and the variables Xp associated to ports p with security
level s. For other ports, the set of variables exported remains unchanged.

– For each state ` ∈ L, let S` be the set of security levels assigned to ports
labeling all outgoing transitions of `. For each security level s ∈ S`, we
include the offer transition τos = (⊥`

os−→ `) ∈ TSR, where the guard gos is
true and fos resets variables ep to false, for all ports p with security level s.

– For each transition τ = `
p−→ `′ ∈ T we include a notification transition

τp = (`
p−→ ⊥`′) where the guard gp is true and the function fp applies the

original update function fτ on X, sets er variables to gτr for every port r ∈ P
such that τr = `′

r−→ `′′ ∈ T and increments ns.

We introduce now the extended security assignment for transformed atomic
components BSR. Intuitively, all existing variables and ports from B keep their
original security level, whereas the newly introduced ones are assigned such that
to preserve the security conditions of the trasformed component.

Definition 7 (security assignement σSR for BSR). The security assignment
σSR is the extension of the original security assignment σ to variables XSR and
ports PSR from BSR as follows:

σSR(x) =

σ(p) if x = ep and p ∈ P
s if x = ns and s ∈ S
σ(x) otherwise, for x ∈ XSR

σSR(p) =

{
s if p = os and s ∈ S
σ(p) otherwise, for p ∈ PSR

As example, the component transformation and the extended security as-
signement for the Event Receiver are depicted in Figure 4. Variables nL, einvite, eopen
and the offer port oL are assigned to Low. Variables nH , epush, eget and the port
oH are assigned to High. Ones can check that this assignement obeys all the
(local) security conditions related to BSR.

invite

open

oLeinvite
eopen
nL

einvite := F
eopen := F

oL

oL

open

nL ++

invite
eopen := T
nL ++

einvite := F
eopen := F

get

push

epush
eget
nH

r

epush := T
eget := T

oH
epush := F
eget := F

get
epush := T
eget := T nH ++

push
epush := T

eget := T nH ++

x

x
roH

r0

r1

r2

⊥r0

⊥r1

⊥r2

Fig. 4. Transformation of atomic components illustrated on the Event Receiver

Actually, security conditions are preserved along the proposed transforma-
tion of atomic components with respect to extended security assignement. The
following lemma formalizes this result.

Lemma 1. BSR satisfies the security conditions with security assignment σSR.

Proof. easy check, security conditions hold by definition of BSR and σSR.

4.2 Interaction Protocol Layer

This layer consists of a set of components, each in charge of execution of a subset
of interactions from the original component model. Every such IP component is
a controller that, iteratively, receives offers from the transformed atomic com-
ponents, computes enabled interactions and schedule them for execution.

In this paper, we consider IP components handling a conflict-free partitioning
of interactions, as in [3]. Two interactions a1 and a2 are in conflict iff either (i)
they share a common port p (i.e p ∈ a1 ∩ a2) or (ii) there exist two conflicting
transitions at a local state ` of a component Bi that are labeled with ports p1 and
p2, where p1 ∈ a1 and p2 ∈ a2. Conflict-free partitioning allows IP components
to run fully independently of each other, that is, local decisions taken on every IP
component about executing one of its interactions do not interfere with others.

Moreover, in order to ensure information flow security, we impose an ad-
ditional restriction on partitioning, that is, the subset of interactions handled
within every IP component must have the same security level. Intuitively, this
restriction allows us to enforce by construction the security conditions for all IP
components and later, for the system composition.

Bearing this in mind, let us observe that if the original system satisfies the
security conditions then the partitioning of interactions according to their se-
curity level is conflict-free. That is, no conflict exists between interactions with
different security levels - this simply follows from the condition (i) on the labeling
of conflicting transitions. Therefore, for the sake of simplicity of presentation,
we restrict hereafter our construction to the partitioning according to security
levels. For every security level s we consider one IP component IPs handling the
subset of interactions γs = {a ∈ γ | σ(a) = s} with security level s.

Definition 8 (IPs component for γs). Interaction protocol component IPs
handling interactions γs is defined according to [3], Definition 7.

The extended security assignement σSR for IPs variables and ports is defined
as follows. All ports are annotated with security level s. Regarding variables, σSR

maintains the same security level for all variables having their level greater than
s in the original model and upgrades the others to s. That is, all variables within
the IPs component will have security level at least s. This change is mandatory
to ensure consistent transfer of data in offers (resp. notifications) between atomic
components and IPs.

Definition 9 (security assignment σSR for IPs). The security assignment
σSR is built from the original security assignment σ. For variables XIP and
ports P IP of the IPs component that handles γs, we define

σSR(x) =

{
σ(x) if x ∈ Xp and s v σ(x)

s otherwise
σSR(p) = s if p ∈ P IP

The above definition enforces the security conditions for IPs.

Lemma 2. IPs satisfies the security conditions with security assignment σSR.

Proof. Trivial check for conditions (i, iv). The condition (ii) on sequential con-
sistency is also valid, even if some (replicated) variables within IPs are upgraded
to level s. On one hand, these variables, if any, were exclusively used (e.g., within
guards, or left-hand sides of assignments) and never defined in interactions from
γs. On the other hand, all defined variables have the security level greater than
s. Same reasoning applies for the condition (iii) with respect to ports.

4.3 System Composition

As a final step, the decentralized model CSR is obtained as the composition
γSR(BSR1 , ..., BSRn , (IPs)s∈S) involving the transformed components BSRi and
components IPs. The set γSR contains S/R interactions and is defined as follows:

– for every component BSRi participating in interactions having security level
s, include in γSR the offer interaction (BSRi .os, IPs.oi) associated with the
transfer of data from the component port os to the IP component port oi.

– for every port p in component BSRi with security level s, include in γSR

the notification interaction (IPs.p, Bi.p) associated with the transfer of the
subset of Xp variables having security level at least s from the IP component
port p to the component port p. Actually, these are the only variables that
could have been modified by an interaction having level s.

oL

oL

receive
enter

invite

open

IPL

ECSR12 , ECSR23

inviteij receivei receivej

openij enteri enterj

ERSR1 , ERSR2 , ERSR3

push

get oH

oHreport

store

pushi storeij
geti reportij

IPH

x

s y

s s yy

y s

r

r

r

r x

Fig. 5. Decentralized model for the WhensApp example

The security assign-
ment σSR is naturally
lifted from offer/notification
ports to the interactions
of γSR. Intuitively, every
S/R interaction involving
component IPs has secu-
rity level s. The construc-
tion is illustrated for the
running example in Fig-
ure 5. We omitted the
representation of ports
and depict only the in-
teractions and their asso-
ciated data flow. In par-
ticular, consider the x
variable of Event Receiver
which is upgraded to H
when sent to IPH and
not sent back on the no-
tification of the push interaction.

The following theorem states our main result, that is, the constructed two-
layer S/R model satisfies the security conditions by construction.

Theorem 2. The decentralized component CSR = γSR(BSR1 , ..., BSRn , (IPs)s∈S)
satisfies security conditions for the security assignment σSR.

Proof. From lemma 1 and 2 all security conditions related to transformed com-
ponents and IP components are satisfied. The only remaining condition (iii)
concerns the assignement of data along S/R interactions. As all the variables
in IPs have been eventually upgraded to level s, the assignment within offer
interactions is consistent. Similar for notifications at level s, their assignement
is restricted by construction to variables having security level at least s.

5 Related Work

Model-based security aims at simplifying security configuration and coding.
The work in [8] considers modeling security policies in UML and targets au-
tomating security code generation for business applications using JEE and .net.
The work of [9] uses a model-based approach to simplify secure code deployment
on heterogeneous platforms. Compared to these, our work is not restricted to
point-to-point access control and deals with information flow security. The work
on designing web services from [10] relies on Petri-nets for modeling composed
services and annotations for the flow of interactions. Our component model is
more general and deals with both data and event- non-interference.

Information flow control for programming languages dates back to
Denning who originally proposed a language for static information flow check-
ing [11]. Since then, information-flow control based on type systems and asso-
ciated compilation tools has widely developed [12,13,14]. Recently, it extends
to provably-secure languages including cryptographic functions[15,16,17,18,19].
With few exceptions, all these approaches are restricted to sequential impera-
tive languages and ignore distribution/communication aspects. Among the ex-
ceptions, JifSplit [20] takes as input a security-annotated program, and splits it
into threads by assuming that the communication through the network is secure.
Furthermore, in [21] the communication’s security is enforced by adding cryp-
tographic mechanisms. The drawback of these is that the security aspect guides
the system distribution. In practice, a separation of concerns is required and the
system architecture must be independent of security constraints. Our approach
is different since our starting point is a component-based model and the security
constraints are expressed with annotations at the architecture level.

Operating systems like Flume [22], HiStar [23] and Asbestos [24] ensure
information flow control between processes by associating security labels to pro-
cesses and messages. DStar [25] extends HiStar to distributed applications. These
approaches may appear attractive since transparent to the developer. Never-
theless, the granularity of processes may be too coarse to establish end-to-end
security for distributed applications with complex interactions.

Component-based design is appealing for verification of security since
the system structure and communications are explicitly represented. However,
existing work focus merely on point-yo-point access control. The work of [26]
considers dependencies between service components but not advanced proper-
ties like implicit information flow. In [27], authors provide APIs to configure the
security of component connectors. The work in [28] deals with non-interference

on component-based models using annotation propagation inside component
code. In our work, we achieve complete separation between the abstract high-
level component model on which non-interference is verified, and the low-level
platform-dependent model where security is enforced by construction.

6 Conclusion and Future Work

We introduced a tool-supported approach to automatically secure information
flow in distributed systems. Starting from an abstract component-based model
with multiparty interactions, we verify security policy preservation, that is, non-
interference property at both event and data levels. Then, we generate a dis-
tributed model where multiparty interactions are replaced with protocols based
on asynchronous message passing. The distributed model is proved ”secure-by-
construction”. This work is being extended towards code generation and deploy-
ment on distributed platforms. More specifically, we envisage to use web services
as a target for the S/R distributed model and to rely on web services security
standards to ensure the required protection of the information flow, following
idea from [29]. On longer term, we plan to to extend both the security model
and the associated transformations for relaxed versions of non-interference i.e,
allowing runtime re-labelling, declassification, intransitive.

References

1. Ben Said, N., Abdellatif, T., Bensalem, S., Bozga, M.: Model-driven information
flow security for component-based systems. In: ETAPS/FPS’14 Proceedings. Vol-
ume 8415 of LNCS., Springer (2014) 1–20

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time systems in BIP.
In: SEFM’06 Proceedings, IEEE Computer Society Press (2006) 3–12

3. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated
conflict-free distributed implementation of component-based models. In: SIES’10
Proceedings, IEEE (2010) 108–117

4. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework for
automated distributed implementation of component-based models. Distributed
Computing 25(5) (2012) 383–409

5. Accorsi, R., Lehmann, A.: Automatic information flow analysis of business process
models. In: BPM’12 Proceedings. Volume 7481 of LNCS., Springer (2012) 172–187

6. Focardi, R., Rossi, S., Sabelfeld, A.: Bridging language-based and process calculi
security. In: FOSSACS’05 Proceedings. Volume 3441 of LNCS., Springer (2005)
299–315

7. Frau, S., Gorrieri, R., Ferigato, C.: Petri net security checker: Structural non-
interference at work. In: FAST’08 Proceedings. Volume 5491 of LNCS., Springer
(2009) 210–225

8. Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1) (2006)
39–91

9. Chollet, S., Lalanda, P.: Security specification at process level. In: SCC’08 Pro-
ceedings, IEEE Computer Society (2008) 165–172

10. Accorsi, R., Wonnemann, C.: Static information flow analysis of workflow models.
In: ISSS and BPSC’10 Proceedings. Volume 177 of LNI. (2010) 194–205

11. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM (1977) 504–513

12. Goguen, J., A. Meseguer, J.: Security policies and security models. In: 1982 IEEE
symposium on Security and Privacy, IEEE Computer Society (1982) 11–20

13. Heintze, N., Riecke, J.G.: The slam calculus: Programming with secrecy and in-
tegrity. In: POPL’98 Proceedings, ACM (1998) 365–377

14. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow
analysis. Journal of Computer Security 4(2/3) (1996) 167–188

15. Laud, P.: Semantics and program analysis of computationally secure information
flow. In: ESOP’01 Proceedings. Volume 2028 of LNCS., Springer (2001) 77–91

16. Adão, P., Fournet, C.: Cryptographically sound implementations for communicat-
ing processes. In: ICALP’06 Proceedings. Volume 4052 of LNCS., Springer (2006)
83–94

17. Courant, J., Ene, C., Lakhnech, Y.: Computationally sound typing for non-
interference: The case of deterministic encryption. In: FSTTCS’07 Proceedings.
Volume 4855 of LNCS., Springer (2007) 364–375

18. Laud, P.: On the computational soundness of cryptographically masked flows. In:
POPL’08 Proceedings, ACM (2008) 337–348

19. Fournet, C., Rezk, T.: Cryptographically sound implementations for typed
information-flow security. In: POPL’08 Proceedings, ACM (2008) 323–335

20. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure program partitioning.
ACM Trans. Comput. Syst. (2002) 283–328

21. Fournet, C., Le Guernic, G., Rezk, T.: A security-preserving compiler for dis-
tributed programs: From information-flow policies to cryptographic mechanisms.
In: CCS’09 Proceedings, ACM (2009) 432–441

22. Krohn, M.N., Yip, A., Brodsky, M.Z., Cliffer, N., Kaashoek, M.F., Kohler, E.,
Morris, R.: Information flow control for standard OS abstractions. In: SOSP’07
Proceedings, ACM (2007) 321–334

23. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: OSDI’06 Proceedings, Usenix Assoc. (2006) 263–278

24. Vandebogart, S., Efstathopoulos, P., Kohler, E., Krohn, M.N., Frey, C., Ziegler,
D., Kaashoek, M.F., Morris, R., Mazières, D.: Labels and event processes in the
Asbestos operating system. ACM Trans. Comput. Syst. 25(4) (2007)

25. Zeldovich, N., Boyd-Wickizer, S., Mazières, D.: Securing distributed systems with
information flow control. In: NSDI’08 Proceedings, Usenix Assoc. (2008) 293–308

26. Parrend, P., Frénot, S.: Security benchmarks of OSGi platforms: toward hardened
OSGi. Softw., Pract. Exper. 39(5) (2009) 471–499

27. Kuz, I., Liu, Y., Gorton, I., Heiser, G.: Camkes: A component model for secure
microkernel-based embedded systems. Journal of Systems and Software 80(5)
(2007) 687–699

28. Abdellatif, T., Sfaxi, L., Robbana, R., Lakhnech, Y.: Automating information flow
control in component-based distributed systems. In: CBSE’11 Proceedings, ACM
(2011) 73–82

29. Ben Said, N., Abdellatif, T., Bensalem, S., Bozga, M.: A robust framework for
securing composed web services. In: FACS’15, Revised Selected Papers. Volume
9539 of LNCS., Springer (2016) 105–122

	A Model-Based Approach to Secure Multiparty Distributed Systems

