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Abstract. As buildings contribute significantly towards global energy
consumption, it is essential that the occupants receive the best comfort
without utilising further energy. This work treats building, environment
and the occupants as a system, which presents the context and the occu-
pants also provide their comfort criteria to a black box for yielding the
a schedule of actions (opening/closing of doors/windows) for optimal
comfort. The physical state of an office, situated in France, is recorded
over a span of 100 days. This data is utilised by a physical model of the
building to simulate the indoor ambience based on random sets of user
actions from which an optimal schedule is obtained, representing equally
best trade-off among minimal thermal and CO2 based air quality dissat-
isfaction. Results indicate that adopting the proposed schedule of user
actions can efficiently enhance the occupants comfort.

Keywords: Differential Evolution, energy management, multi-objective
optimization, Pareto-optimality, smart buildings

1 Introduction

Considering the ever-growing energy demand and the depletion of non-renewable
energy resources, it is important to limit the energy usage in buildings which
constitute roughly about 40% of the global energy supply. Thus, it is imperative
to satisfy the demands of the building occupants without increasing the present
rate of energy consumption in buildings. Occupant, on the other hand, being an
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2 Efficient Scheduling of Actions

integral part of the building system, can affect the indoor environmental condi-
tion through their actions. By intelligently utilising these actions, positive effects
can be brought upon the indoor environment. Thus, guiding the occupant’s ac-
tions, like opening and closing of doors and windows, for significant period of
time, can help achieve better comfort in energy building at the same cost of
energy consumption.

Attempts have been considered to meet the comfort demands of the occu-
pants by improving building construction techniques and adding insulation to
walls and ceilings. Building regulations also play an important role in the overall
(both global and local) energy management. However, obtaining positive impacts
of occupant’s actions in the energy consumption can help to manage their own
comfort. It is therefore important to assist the occupants with an optimal energy
plan in order to explain that their expectations on comfort can be attained by
themselves to some extent.

The approach used in this work considers an office, situated in Grenoble In-
stitute of Technology, France, fitted with 27 sensors, for collection of data like
temperature, solar illuminance, wind speed, humidity, moisture, COs concentra-
tion, etc., to construct the physical context. Also a physical model of the office
is used which based on the physical context of outside environment and neigh-
bouring corridors, and a random set of actions can simulate the indoor ambience.
The indoor temperature and COs concentration are responsible for thermal and
air quality dissatisfaction of the occupants. This work uses a multi-objective op-
timization algorithm viz. Differential Evolution to obtain the schedule of user
actions that can lead to minimal thermal and air quality dissatisfaction. On pre-
senting the occupants with this optimal schedule, they can compare it with their
previous schedule and adopt the new schedule, after trial, if they find significant
improvement of comfort.

Depending on the weather changes, the optimal schedule is variable. How-
ever, rarely, there are day to day changes in the outside temperatures and CO,
concentrations. Hence, learning from past day’s environmental conditions and
occupant’s actions, the proposed optimal set of actions can be adopted for next
day.

Rest of the paper is organized as follows. Section 2 describes the information
flow to yield the schedule of actions corresponding to the trade-offs between
minimal thermal and air-quality dissatisfactions. Section 3 discusses the results
to assess the efficacy of the proposed approach. Section 4 presents the conclusion
while directing towards future research.

2 Experimental framework

This work presents optimal schedules of actions (opening/ closing of doors/ win-
dows) which the occupants can adopt to achieve better thermal and COy based
air quality comfort at no extra energy expenditure. As the proposed scheme
alms at improving occupant’s comfort without increasing energy consumption,
this can be considered as an energy management scheme. The general schema
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Fig. 1. General Schema of Energy Management in Smart Buildings.

of the work is shown in Fig. 1. In this section, the function of each of these
modules is explained in details along with the overall interconnection of the
modules to explain the information flow. It is to be mentioned that the environ-
ment, buildings and the occupants represent the smart building system where
the environment and buildings contribute to the physical context/state, and the
occupants, on the other hand, generate actions and provide their comfort criteria
to a black box. Finally, the occupants compare their actions with the optimal
actions generated by the black box in order to learn the scope of improvement
in their comfort. As the internal operation of the optimizer is unknown to the
occupant, it has been labeled as a black box.

2.1 Building and Environment

Through an array of sensors, the physical state of the outdoor, indoor and neigh-
bouring zones are recorded. Here, physical state refers to temperature, CO5 con-
centration, humidity, etc. The inertia of these physical quantities from the out-
side environment and neighbouring zones like corridors, staircase, etc. influence
the physical quantities inside the room of the occupant. Hourly samples of such
quantities are recorded in the database for future reference. Here, as a testbed, an
office room at Grenoble Institute of Technology, France, where four researchers
work, are fitted with 27 sensors for recording the physical state/context and
usual schedule of actions. This acts as the smart building system for the pro-
posed work.

2.2  Occupants

Occupants are the integral part of the entire system. On one hand, they provide
the optimization criteria like comfort, energy consumption, etc. for obtaining an
optimal schedule of actions and on the other hand, their actions influence the
system which in turn affects the optimization criteria. In absence of controllable
HVAC (Heating, Ventilation and Air Conditioning) system, the only actions
of the occupants which can influence the indoor ambient conditions (and hence,
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their comfort) are opening and closing of doors and windows. The occupants can
compare the optimal schedules with their usual schedule and adopt the proposed
schedules as per need. For example, if the difference in comfort is negligible the
occupant might not prefer to change their schedule, whereas if the occupant
observes significant improvement in comfort, the occupant is expected to adopt
the proposed schedules of actions.

After the basic building block viz. the smart building system, and its purpose,
has been explained, the next step is to obtain the optimal schedules of actions.
The optimizer module, as explained next, helps in searching for best trade-offs
among the objectives provided by occupants.

2.3 Optimizer

The role of the optimizer is to yield a few optimal schedules of actions. The essen-
tial specifications for the optimization module are as follows: the representation
of the solution vector in order to decode the result, the optimization algorithm,
the objectives and their relation to the solution vector, the stopping condition
and the algorithmic parameters.

A solution of the optimization problem represents a set of actions. The al-
lowed actions for the occupants are opening and closing of doors and windows.
As the data are recorded in an office environment, the actions are noted over
12 working hours i.e. from 8am to 8pm. Hence, the solution is represented by
a 24-dimensional binary vector where the first 12 entries imply opening/closing
(open = 1, close = 0) of windows and the later 12 entries are for opening/closing
of doors for each of the 12 working hours, respectively.

Given the environmental context of the room, the primary objective of the
work is to obtain various schedules, such that each of the schedules represent
trade-offs among several conflicting objectives like minimizing thermal dissatis-
faction, minimizing COs based air quality dissatisfaction, minimizing humidity
based air quality dissatisfaction, minimizing energy consumption, etc. Due to
the presence of multiple objectives, a multi-objective version of an optimization
algorithm viz. Differential Evolution [4, 3] has been employed.

Assuming a physical context (indoor and outdoor environmental variables
like CO2 concentration, temperature, etc.) and a set of actions (opening/closing
of doors/windows) as inputs to the smart building system (outdoor environ-
ment and building with occupants), it outputs some effects (like thermal and
air quality comfort). A physical model [1, 5] representing this system has been
used which can simulate the effects corresponding to random sets of actions,
in the same context as obtained from the database. These random sets of ac-
tions generate various sets of effects. Several best trade-offs among the effects
(generating the Pareto-Front) are chosen. Then, the occupants can compare the
schedule of actions corresponding to these trade-offs with their usual schedules
to analyze the difference. Hence, evaluation of objectives is a two-step process.
The first step uses the physical model of the office to evaluate indoor environ-
mental variables depending on a true context and a randomly assumed schedule
of actions. The model is represented by Eq. (1) and (2) where the variables
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are defined in Table 1. Some of these variables represent sensor measurements
whereas the remaining ones are learned by repeated simulation of the physical
model to match the office room. The second step evaluates effects (here, thermal
and CO2 based air quality dissatisfaction) from the simulated indoor physical
variables. These effects are shown in Eq. (4) and (5) which represent thermal
and air quality dissatisfaction at the i-th hour, respectively. The objectives are
formulated keeping in mind that the indoor temperature is preferred between
21°C to 23°C and the indoor CO5 concentration is preferred between 400 ppm
to 1500 ppm. The purpose of the optimizer is to optimize (minimize) the effects
(dissatisfaction levels) as formulated by Eq. (3).

_ R 1 Cw 1 (b
Zri B ET + R (Rout + RVV) TOUt + R (Rn RD> Tﬂ (1)
Vdgti =— (QF"(t) + Q5" (t) + Cw () Qw + (p(t)Qp) Cin

+ (@5 (1) + Cw (DQw) Cour + (QF (1) + Co(1)QD) Coor )
+ SCOQ X n(t)

12 i 12 i
Minimize: D(actions) = [dy(Tin), d2(Cin)] = [Zi_l 4 Liz dﬂ (3)

12 7 12
where,
2t §f Ty, < 21
di(Tin) = {0 if 21 < Ty, <23 (4)
Tin—23
L3 T, > 23
. 0 if Cp, < 400
dQ(Cm) =y Cin—400 - (5)
actions = [CI%V?CI%V7 ) %,Cll)@%, ) 52]

Like most evolutionary optimization algorithms, the multi-objective version
of Differential Evolution is executed for a predetermined number of generations
by which the optimization algorithm is expected to have converged. The descrip-
tion of various parameters and their values for which best results are obtained
are noted in Table 1.

At the end of the optimization algorithm, a few optimal schedules of actions
are generated. The user can choose among these schedules based on their pref-
erence among the multiple objectives of optimality by comparing their usual
schedule with the chosen schedule.

2.4 Comparing Schedule of Actions

Based on any schedule of actions, the physical model can generate the corre-
sponding indoor ambience. The indoor ambience based on the usual schedule of
the occupant is in the available from the database. Occupants can compare the
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simulated ambience (what best could have happened) to their usual ambience
(what had actually happened) and understand the difference in effects to gain
better comfort.

After the description of the experimental setup, the next section discusses
various results in order to validate the proposed approach.

Table 1. Algorithmic Parameters and their Values.

Module [Parameters [Explanation [Values
Physical ¢w, Cp Status of window(W), door(D) |Open = 1, Close = 0
Model Tin, Tn, Tour |Temperatures of indoor, From database
adjacent corridor, outdoor
Rp, Rw Thermal resistances of door(D),|From database
window (W)
Ri, Rn, Rout |Resistance of walls, adjacent From database
corridor, outdoor
R Equivalent resistance R;||Rout || Rn |
Rw(When CW = 1)”
RD(When CD = 1)
T Thermal coefficient representing|From database
building inertia
v Volume of the room (office) From database
Cin, Cout, Ceor|CO2 concentrations indoor,
outdoor, in adjacent corridor  |[From database
Q°", Q" Air speed outdoor, in corridor [From database
Qw, Qb Air speed through window (W), [From database
door(D)
Sco, Breath production of CO2 From database
per occupant
n(t) Number of occupants at time ¢ |From database
Differential | NP Population size 20
Evolution |Gmax Maximum generations 300
(Optimizer)|F Scale Factor Randomly choosen
between 0 and 2
CR Crossover Rate 0.8
r Reference point for ranking Ideal point i.e.
and decision making (0,0)

3 Result and discussion

This section analyses the performance of the proposed approach using the var-
ious results. Dissatisfaction levels as obtained from various simulated schedules
are shown in a scatter plot. From these, the set of Pareto-optimal schedules ob-
tained using optimization techniques are marked. Next the variation of average
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indoor temperature and COs concentration, obtained from optimal schedules,
are compared with usual schedules. Finally, the variation of net dissatisfaction
resulting from the proposed optimal schedule is shown to validate the optimiza-
tion performance. The experimental data is collected for 100 days (1st April,
2015 to 9th July, 2015) and the analysis is conducted in 10 groups of 10 days
each as shown in Table 2.

Table 2. Groups of Experimental Data Recorded during Working Hours (8am to 8pm).

Group|Period Mean Outdoor Outdoor CO;
Temperature (°C)|concentration (ppm)

1 April 1 to April 10, 2015 10.1528

2 April 11 to April 20, 2015 17.8809

3 April 21 to April 30, 2015 17.1548

4 May 1 to May 10, 2015 20.7708

5 May 11 to May 20, 2015 20.1111 395

6 May 21 to May 30, 2015 15.9167

7 May 31 to June 9, 2015 24.8571

8 June 10 to June 19, 2015 21.5119

9 June 20 to June 29, 2015 23.5417

10 June 30 to July 9, 2015 28.7812

3.1 Pareto-front and optimal schedules

A set of Pareto-optimal solutions is obtained for every working day in the ex-
perimental duration. Depending on the occupant’s preference, any one of these
schedules can be chosen as the preferred optimal schedules. Considering equal
preference for both the objectives, the solution nearest to reference point (at the
minima for thermal and air-quality dissatisfaction i.e. at (0,0)) is considered as
the best schedule. The solution at the end of the Pareto-front are also analysed
further for comparison because these represent the best schedules with respect
to each objectives (minimal thermal or CO2 based air quality dissatisfaction),
independently. Hence, occupant’s usual schedule is compared with three other
schedules: best schedule, schedule for optimal thermal comfort and schedule for
optimal air quality comfort. Using the context from 16th April, 2015, the thermal
versus air quality dissatisfaction corresponding to various simulated schedules is
shown Fig. 2. It also shows the Pareto-front and the three optimal schedules of
interest, along with the usual level of dissatisfaction.

3.2 Comparison of physical variables for different schedules

As there are very less day to day changes in environmental conditions, the av-
erage of physical variables of 10 days (working hours only) are considered for
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Fig. 2. Pareto-Front and Schedules of Interest.

comparison of the various schedules. Variations in indoor temperature and CO,
concentrations due to various schedules are presented in Fig. 3 and 4 for all
the 10 groups of 10 days each as mentioned in Table 2. From the figures, it
can be noticed that the difference between usual and proposed indoor physical
variables (temperatures and COy concentrations) is more during earlier days of
experiment. In summer (group 7 to 10), it is difficult to maintain the physical
variables in preferred ranges just by varying the schedule of opening/closing of
doors/windows. Hence, in extreme cases where outdoor physical variables (Ta~
ble 2) are higher than preferred ranges, HVAC system is needed to regulate the
indoor physical variables. It is also to be noted that the best schedule usually
presents higher temperature than the schedules for optimal thermal comfort.
Similar observation is also noted for indoor CO5 concentration. This is due to
the fact the the best schedule presents a trade-off solution whereas the other
proposed schedules are optimal with respect to one objective at a time.

3.3 Performance analysis of optimization algorithm

Optimization algorithm, in this case, presents a set of solutions, called the
Pareto-optimal solution. The dissatisfaction values corresponding to these so-
lutions create the Pareto-Front. To assess the convergence of the best schedule
with respect to the ideal optimal solution, the city-block distance (sum of abso-
lute difference) [2] between the corresponding dissatisfaction levels are measured.
This distance represents the net dissatisfaction which is to be minimized. The
parameters required for this performance metric viz. the reference point, is noted
in Table 1. Box plots for the distribution of net dissatisfaction for the best sched-
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ule of the Pareto-front is noted in Fig. 5 for all the 10 groups which shows that
the median is close to 0 and the range of values is very less towards the ear-
lier group and becomes higher for later groups. For a general idea of the range
of dissatisfaction values, the theoretical variation of dissatisfaction are plotted
against indoor temperature and indoor COs concentration in Fig. 5 which fol-
lows from Eq. (4) and (5). As noted from these plots, a combined dissatisfaction
value around 2 or higher indicates that the indoor physical variables are not
within preferred ranges. This implies that the proposed optimization approach
is reproducible and efficient in yielding optimal schedules for this application
during those period when HVAC system is not needed and thus, managing en-
ergy efficiently in the studied scenario.
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Fig. 5. Variation in Net Dissatisfaction for the Best Schedule in the Experimental
Duration.

4 Conclusion

The objective of this work is to demonstrate an approach which considers the
occupant’s schedule of actions as the only controllable parameter of thermal
and CO5 based air quality comfort and yields several schedules of actions which
represent the best trade-offs between thermal and air quality dissatisfaction.



Efficient Scheduling of Actions 11

Among the several schedules, the schedule corresponding to the equally best
compromise of air quality and thermal comfort is analysed further. This optimal
schedule can lead to efficient energy management. This work also addresses the
need of HVAC system which arises when the environmental variables (here,
temperature and COy concentration) are too high from the preferred values
such that change in schedule of actions can negligibly influence the comfort level
of the occupants.

However, just presenting the optimal schedule might not convince the occu-
pants to change their schedule. In order to gain occupant’s trust on the system,
the effect of small changes in action and the internal working of the black box are
to be explained in non-technical terms. This can lead to better comfort without
depending on external devices like HVAC system. The authors are working on
the explanations and adding more context to improve the parameterization of
overall comfort. On the other hand, when several devices including HVAC sys-
tem (if required) are operational, their energy consumption and environmental
impact form other important effects to be considered along with the comfort
of the occupants. This forms open area of research along this domain of energy
management in smart buildings.
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