Finger-Knuckle-Print Image Enhancement Based On brightness preserving dynamic fuzzy histogram equalization and filtering Process

S. Hajiri F. Kallel A. Ben Hamida A. Nait-Ali 1
1 SYNAPSE
LISSI - Laboratoire Images, Signaux et Systèmes Intelligents
Abstract : Finger-knuckle-print (FKP) is considered as one of the emerging hand biometric traits due to its potentiality toward the identification of individuals. However, extracting features out of poor contrast FKP images is the most challenging problem faced in this area. We propose a method for personal recognition using FKP images based on a preprocessing step to improve the contrast of input FKP image and a processing step for features extraction. In the first part, we compared the performances of different histogram equalization-based contrast enhancement algorithms. The enhanced image with better performance is considered in a second step for feature extraction and personal identification. We experimentally compared the proposed approach to other existing approaches in literature using PolyU FKP database framework, and results show that our technique performed favorably.
Type de document :
Article dans une revue
Journal of Electronic Imaging, SPIE and IS&T, 2018, 27 (3)
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01865212
Contributeur : Lab Lissi <>
Soumis le : vendredi 31 août 2018 - 10:28:30
Dernière modification le : mercredi 27 février 2019 - 11:25:02

Identifiants

  • HAL Id : hal-01865212, version 1

Collections

Citation

S. Hajiri, F. Kallel, A. Ben Hamida, A. Nait-Ali. Finger-Knuckle-Print Image Enhancement Based On brightness preserving dynamic fuzzy histogram equalization and filtering Process. Journal of Electronic Imaging, SPIE and IS&T, 2018, 27 (3). 〈hal-01865212〉

Partager

Métriques

Consultations de la notice

20