V. Raghunathan, A. Kansai, J. Hse, J. Friedman, and M. Srivastava, Design considerations for solar energy harvesting wireless embedded systems, Proceedings of the IPSN, pp.457-462, 2005.

A. Richelli, L. Colalongo, and K. Zsolt, A 30 mV-2.5 V DC/DC converter for energy harvesting, J. Low Power Electron, vol.11, p.190, 2015.

G. Boccalero, C. Boragno, R. Morasso, and D. D. Caviglia, Efficiency issues for a wind-driven energy harvesting device, J. Low Power Electron, vol.14, p.140, 2018.

D. Karolak, T. Taris, Y. Deval, J. B. Bégueret, and A. Mariano, Design of high sensitivity radiofrequency energy harvesters dedicated to low-power applications, J. Low Power Electron, vol.10, p.72, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01242585

, On: Thu, Delivered by Ingenta Morel et al. Dielectric Losses Considerations for Piezoelectric Energy Harvesting, 201820-08-30.

Y. Wanderoild, A. Morel, A. Capitaine, and G. Pillonnet, A 50 W microbial fuel cell isolated energy harvesting interface based on air coupled inductors, J. Low Power Electron, vol.14, p.170, 2018.

C. Knight, J. Davidson, and S. Behrens, Energy options for wireless sensor nodes, Sensors, vol.8, p.8037, 2008.

S. J. Roundy, Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, 2003.

S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, vol.26, p.1131, 2003.

E. Arroyo, A. Badel, F. Formosa, Y. Wu, and J. Qiu, Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments, Sensors and Actuators A: Physical, vol.183, p.148, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00782490

G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Transactions on Power Electronics, vol.17, p.669, 2002.

A. Nechibvute, A. Chawanda, and P. Luhanga, Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors, Smart Materials Research, p.853481, 2012.

T. Xu, E. J. Siochi, J. H. Kang, L. Zuo, W. Zhou et al., Energy harvesting using a PZT ceramic multilayer stack, Smart Mater. Struct, vol.22, p.65015, 2013.

M. Kang, W. Jung, C. Kang, and S. Yoon, Recent progress on PZT based piezoelectric energy harvesting technologies, Actuators, vol.5, p.5, 2016.

B. A. Seddik, G. Despesse, and E. Defay, Autonomous wideband mechanical energy harvester, IEEE International Symposium on Industrial Electronics, pp.1122-1127, 2012.

A. Morel, G. Pillonnet, and A. Badel, Regenerative synchronous electrical charge extraction for highly coupled piezoelectric generators, IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS, pp.237-240, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01575848

A. Badel and E. Lefeuvre, Wideband piezoelectric energy harvester tuned through its electronic interface circuit, Journal of Physics: Conference Series, vol.557, p.12115, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01322280

A. Morel, R. Grézaud, G. Pillonnet, P. Gasnier, G. Despesse et al., Active AC/DC control for wideband piezoelectric energy harvesting, Journal of Physics: Conference Series, vol.773, p.12059, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01574297

A. Morel, A. Badel, P. Gasnier, Y. Wanderoild, and G. Pillonnet, Short circuit synchronous electric charge extraction
URL : https://hal.archives-ouvertes.fr/hal-02013371

A. ,

, He received his electrical engineering degree from the National Institute of Applied Sciences of Lyon (INSA Lyon) and his M.Sc. degree in integrated systems from the University of Lyon, A. Morel was born in Valenciennes, France, 1993.

G. Pillonnet,

G. Pillonnet, D. and habilitation degrees from INSA Lyon, France in 2007 and 2016, respectively. Following an early experience as analog designer in STMicroelectronics in 2008, he joined the University of Lyon in the Electrical Engineering department. During the 2011-12 academic year, he held a visiting researcher position at the University of California at Berkeley. Since 2013, he has been a full-time researcher at the CEA-LETI, a major French research institution. His research focuses on low-power electronics using heterogeneous devices including modeling, circuit design and control techniques, He received his Master's degree in Electrical Engineering from CPE Lyon, 1981.
URL : https://hal.archives-ouvertes.fr/tel-01273150

S. Sherrit and B. K. Mukherjee, Characterization of piezoelectric materials for transducers, 2007.

M. W. Hooker, Properties of PZT-based piezoelectric ceramics between ?150 and 250 C, National Aeronautics and Space Administration, 1998.

A. M. González, Á. García, C. Benavente-peces, and L. Pardo, Revisiting the characterization of the losses in piezoelectric materials from impedance spectroscopy at resonance, Materials, vol.9, p.72, 2016.

. Sinoceramics, Piezo Ceramics Specifications, 2017.

, Sensor Technology, Piezoelectric Ceramics, 2018.

Z. Yang and J. Zu, Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting, Energy Conversion and Management, vol.122, p.321, 2016.

A. Piezo, Physical and Piezoelectric Properties of APC Materials, Datasheet, 2017.

K. Kim, D. K. Hsu, B. Ahn, Y. Kim, and D. J. Barnard, Fabrication and comparison of PMN-PT single crystal, PZT and PZTbased 1-3 composite ultrasonic transducers for NDE applications, Ultrasonics, vol.50, p.790, 2010.

A. Badel and E. Lefeuvre, Nonlinear conditioning circuits for piezoelectric energy harvesters, Nonlinearity Energy Harvest. Syst, pp.321-359, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02042560

N. G. Stephen, On the maximum power transfer theorem within electromechanical systems, Proceedings of the Institution of Mechanical Engineers, vol.220, p.1261, 2006.

J. Liang and W. Liao, Impedance modeling and analysis for piezoelectric energy harvesting systems, IEEE/ASME Trans. Mechatronics, vol.17, p.1145, 2012.

A. Richter, A. Strobel, N. Joram, F. Ellinger, L. Gopfert et al., Tunable interface for piezoelectric energy harvesting, Proc. 11th Int. Multi-Conf. on Systems, Signals and Devices, 2014.

H. Abdelmoula and A. Abdelkefi, Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling, The European Physical Journal Special Topics, vol.224, p.2733, 2015.

Y. C. Shu and I. C. Lien, Analysis of power output for piezoelectric energy harvesting systems, Smart Mater. Struct, vol.15, p.1499, 2006.