K. Athenstaedt and G. Daum, Are Localized to Lipid Particles, Journal of Biological Chemistry, vol.12, issue.45, pp.37301-37309, 2005.
DOI : 10.1074/jbc.M306998200

F. Barka, M. Angstenberger, T. Ahrendt, W. Lorenzen, H. Bode et al., Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1861, issue.3, pp.239-248, 2016.
DOI : 10.1016/j.bbalip.2015.12.023

K. Bernhardt, S. Wilkinson, A. Weber, and N. Linka, A peroxisomal carrier delivers NAD+ and contributes to optimal fatty acid degradation during storage oil mobilization, The Plant Journal, vol.127, issue.1, pp.1-13, 2012.
DOI : 10.1104/pp.010550

N. Boyle, M. Page, B. Liu, I. Blaby, D. Casero et al.,

J. Shaw and S. Karpowicz, Three acyltransferases and nitrogen?responsive regulator are implicated in nitrogen starvation?induced triacylglycerol accumulation in Chlamydomonas, Journal of Biological Chemistry, vol.287, pp.15811-15825, 2012.

A. Dahlqvist, U. Stahl, M. Lenman, A. Banas, M. Lee et al., , 2000.

, Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl?CoA? independent formation of triacylglycerol in yeast and plants, Proceedings of the National Academy of Sciences, pp.6487-6492

C. De-marcos-lousa, C. Van-roermund, V. Postis, D. Dietrich, I. Kerr et al., Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids, Proceedings of the National Academy of Sciences, pp.1279-1284, 2013.
DOI : 10.1016/0003-2697(88)90002-4

Z. Du and C. Benning, Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae, SubCellular Biochemistry, vol.86, pp.179-205, 2016.
DOI : 10.1007/978-3-319-25979-6_8

P. Eastmond, SUGAR-DEPENDENT1 Encodes a Patatin Domain Triacylglycerol Lipase That Initiates Storage Oil Breakdown in Germinating Arabidopsis Seeds, THE PLANT CELL ONLINE, vol.18, issue.3, pp.665-675, 2006.
DOI : 10.1105/tpc.105.040543

URL : http://www.plantcell.org/content/plantcell/18/3/665.full.pdf

P. Eastmond, M. Hooks, and I. Graham, acyl-CoA oxidase gene family, Biochemical Society Transactions, vol.28, issue.6, pp.755-757, 2000.
DOI : 10.1042/bst0280755

J. Fan, C. Yan, R. Roston, J. Shanklin, and C. Xu, Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward ??-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis, The Plant Cell, vol.26, issue.10, pp.4119-4134, 2014.
DOI : 10.1105/tpc.114.130377

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247580

R. Farese, . Jr, and T. Walther, Lipid Droplets Finally Get a Little R-E-S-P-E-C-T, Cell, vol.139, issue.5, pp.855-860, 2009.
DOI : 10.1016/j.cell.2009.11.005

URL : https://doi.org/10.1016/j.cell.2009.11.005

M. Fulda, J. Schnurr, A. Abbadi, E. Heinz, and J. Browse, Peroxisomal Acyl-CoA Synthetase Activity Is Essential for Seedling Development in Arabidopsis thaliana, THE PLANT CELL ONLINE, vol.16, issue.2, pp.394-405, 2004.
DOI : 10.1105/tpc.019646

URL : http://www.plantcell.org/content/16/2/394.full.pdf

S. Goepfert, C. Vidoudez, C. Tellgren?roth, S. Delessert, J. Hiltunen et al., , 2008.

?. Peroxisomal, ?2?enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes, Plant Journal, vol.56, pp.728-742

U. Goodenough, I. Blaby, D. Casero, S. Gallaher, C. Goodson et al., ABSTRACT, Eukaryotic Cell, vol.13, issue.5, pp.591-613, 2014.
DOI : 10.1128/EC.00013-14

I. Graham, Seed Storage Oil Mobilization, Annual Review of Plant Biology, vol.59, issue.1, pp.115-142, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092938

J. Harwood and I. Guschina, The versatility of algae and their lipid metabolism, Biochimie, vol.91, issue.6, pp.679-684, 2009.
DOI : 10.1016/j.biochi.2008.11.004

Y. Hayashi, N. Sato, A. Shinozaki, and M. Watanabe, Increase in peroxisome number and the gene expression of putative glyoxysomal enzymes in Chlamydomonas cells supplemented with acetate, Journal of Plant Research, vol.34, issue.1, pp.177-185, 2015.
DOI : 10.1111/j.1749-6632.1982.tb21421.x

Y. Hayashi and A. Shinozaki, Visualization of microbodies in Chlamydomonas reinhardtii, Journal of Plant Research, vol.16, issue.4, pp.579-586, 2012.
DOI : 10.1046/j.1365-313x.1998.00320.x

C. James, P. Horn, C. Case, S. Gidda, D. Zhang et al.,

K. Chapman, Disruption of the Arabidopsis CGI?58 homologue produces Chanarin?, 2010.

, Dorfman?like lipid droplet accumulation in plants, Proceedings of the National Academy of Sciences, pp.17833-17838

J. Juppner, U. Mubeen, A. Leisse, C. Caldana, H. Brust et al.,

P. Giavalisco, Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii, Plant Journal, vol.92, pp.331-343, 2017.

N. Kato, T. Dong, M. Bailey, T. Lum, and D. Ingram, Triacylglycerol mobilization is suppressed by brefeldin A in Chlamydomonas reinhardtii, Plant and Cell Physiology, vol.58, issue.10, pp.1585-1599, 2013.
DOI : 10.1111/j.1365-313X.2008.03758.x

URL : https://academic.oup.com/pcp/article-pdf/54/10/1585/17910847/pct103.pdf

J. Kato, T. Yamahara, K. Tanaka, S. Takio, and T. Satoh, Characterization of catalase from green algae Chlamydomonas reinhardtii, Journal of Plant Physiology, vol.151, issue.3, pp.262-268, 1997.
DOI : 10.1016/S0176-1617(97)80251-9

P. Keeling, The endosymbiotic origin, diversification and fate of plastids, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.16, issue.17, pp.729-748, 2010.
DOI : 10.1016/j.cub.2006.08.018

S. Kim, H. Kim, D. Ko, Y. Yamaoka, M. Otsuru et al., Rapid Induction of Lipid Droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A, PLoS ONE, vol.162, issue.12, p.81978, 2013.
DOI : 10.1371/journal.pone.0081978.s004

F. Kong, Y. Liang, B. Legeret, A. Beyly?adriano, S. Blangy et al.,

G. Peltier and Y. Li?beisson, Chlamydomonas carries out fatty acid beta?oxidation in ancestral peroxisomes using a bona fide acyl?CoA oxidase, Plant Journal, vol.90, pp.358-371, 2017.

C. Kurat, H. Wolinski, J. Petschnigg, S. Kaluarachchi, B. Andrews et al.,

C. , Cdc28?dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell?cycle progression, Molecular Cell, vol.33, pp.53-63

T. Kurusu, T. Koyano, S. Hanamata, T. Kubo, Y. Noguchi et al.,

T. Ohnishi and Y. Okazaki, OsATG7 is required for autophagy?dependent lipid metabolism in rice postmeiotic anther development, Autophagy, vol.10, pp.878-888, 2014.

K. Lauersen, R. Willamme, N. Coosemans, M. Joris, O. Kruse et al., Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii, Algal Research, vol.16, pp.266-274, 2016.
DOI : 10.1016/j.algal.2016.03.026

X. Li, C. Benning, and M. Kuo, ABSTRACT, Eukaryotic Cell, vol.11, issue.12, pp.1451-1462, 2012.
DOI : 10.1128/EC.00268-12

URL : https://hal.archives-ouvertes.fr/hal-01256309

X. Li, E. Moellering, B. Liu, C. Johnny, M. Fedewa et al., A Galactoglycerolipid Lipase Is Required for Triacylglycerol Accumulation and Survival Following Nitrogen Deprivation in Chlamydomonas reinhardtii, The Plant Cell, vol.24, issue.11, pp.4670-4686, 2012.
DOI : 10.1105/tpc.112.105106

X. Li, R. Zhang, W. Patena, S. Gang, S. Blum et al.,

S. Fitz?gibbon, An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii, Plant Cell, vol.28, pp.367-387, 2016.

Y. Li?beisson, F. Beisson, and W. Riekhof, The Plant Journal, vol.26, issue.3, pp.504-522, 2015.
DOI : 10.1105/tpc.114.124099

Y. Li?beisson, B. Shorrosh, F. Beisson, M. Andersson, V. Arondel et al., Acyl?lipid metabolism, Arabidopsis Book, vol.8, pp.1-65, 2013.

L. Listenberger, X. Han, S. Lewis, S. Cases, R. Farese et al., , 2003.

, Triglyceride accumulation protects against fatty acid?induced lipotoxicity, Proceedings of the National Academy of Sciences, vol.100, pp.3077-3082

D. Mcmahon, A. Dinh, D. Kurz, D. Shah, G. Han et al., , 2014.

, Comparative gene identification 58/?/? hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity, Journal of Lipid Research, vol.55, pp.1750-1761

S. Merchant, S. Prochnik, O. Vallon, E. Harris, S. Karpowicz et al., The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions, Science, vol.435, issue.7038, pp.245-250, 2007.
DOI : 10.1038/nature03481

URL : https://hal.archives-ouvertes.fr/hal-00198837

R. Miller, G. Wu, R. Deshpande, A. Vieler, K. Gartner et al.,

A. Cornish and B. Liu, Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism, Plant Physiology, vol.154, pp.1737-1752, 2010.

E. Moellering and C. Benning, Eukaryotic Cell, vol.9, issue.1, pp.97-106, 2010.
DOI : 10.1128/EC.00203-09

H. Nguyen, M. Baudet, S. Cuiné, J. Adriano, D. Barthe et al., Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: With focus on proteins involved in lipid metabolism, PROTEOMICS, vol.154, issue.21, pp.4266-4273, 2011.
DOI : 10.1104/pp.110.165159

H. Nguyen, S. Cuiné, A. Beyly?adriano, B. Légeret, E. Billon et al.,

Y. Li?beisson, The green microalga Chlamydomonas reinhardtii has a single ??3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids, Plant Physiology, vol.163, pp.914-928, 2013.

V. Parthibane, S. Rajakumari, V. Venkateshwari, R. Iyappan, and R. Rajasekharan, Oleosin Is Bifunctional Enzyme That Has Both Monoacylglycerol Acyltransferase and Phospholipase Activities, Journal of Biological Chemistry, vol.12, issue.3, pp.1946-1954, 2012.
DOI : 10.1104/pp.010654

URL : http://www.jbc.org/content/287/3/1946.full.pdf

C. Plancke, H. Vigeolas, R. Hohner, S. Roberty, B. Emonds?alt et al., leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth, The Plant Journal, vol.214, issue.3, pp.404-417, 2014.
DOI : 10.1007/s004250100660

Y. Poirier, V. Antonenkov, T. Glumoff, and J. Hiltunen, Peroxisomal ??-oxidation???A metabolic pathway with multiple functions, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.12, pp.1413-1426, 2006.
DOI : 10.1016/j.bbamcr.2006.08.034

URL : https://doi.org/10.1016/j.bbamcr.2006.08.034

I. Pracharoenwattana, J. Cornah, and S. Smith, Arabidopsis peroxisomal malate dehydrogenase functions in ??-oxidation but not in the glyoxylate cycle, The Plant Journal, vol.127, issue.3, pp.381-390, 2007.
DOI : 10.1042/bj3190255

E. Rylott, M. Hooks, and I. Graham, Biochemical Society Transactions, vol.29, issue.2, pp.283-287, 2001.
DOI : 10.1042/bst0290283

V. Schwarz, A. Andosch, A. Geretschlager, M. Affenzeller, and U. Lutz?meindl, Carbon starvation induces lipid degradation via autophagy in the model alga Micrasterias, Journal of Plant Physiology, vol.208, pp.115-127, 2017.
DOI : 10.1016/j.jplph.2016.11.008

A. Shinozaki, N. Sato, and Y. Hayashi, Peroxisomal targeting signals in green algae, Protoplasma, vol.105, issue.1-4, 2009.
DOI : 10.1007/BF00260500

, Protoplasma, vol.235, pp.57-66

M. Siaut, S. Cuiné, C. Cagnon, B. Fessler, M. Nguyen et al., Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves, BMC Biotechnology, vol.11, issue.1, pp.7-22, 2011.
DOI : 10.1186/1472-6750-11-7

URL : https://bmcbiotechnol.biomedcentral.com/track/pdf/10.1186/1472-6750-11-7

H. Siegler, O. Valerius, T. Ischebeck, J. Popko, N. Tourasse et al., Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa, BMC Plant Biology, vol.1, issue.15, pp.98-105, 2017.
DOI : 10.1186/1756-0500-1-93

URL : https://hal.archives-ouvertes.fr/inserm-01536346

B. Silverberg, 3?diaminobenzidine (DAB) ultrastructural cytochemistry of Silverberg BA, Sawa T. 1974. Cytochemical localization of oxidase activities with diaminobenizidine in the green alga Chlamydomonas dysosmos, Protoplasma, vol.3, issue.81, pp.177-188, 1975.
DOI : 10.1007/bf01567960

R. Singh, S. Kaushik, Y. Wang, Y. Xiang, I. Novak et al., Autophagy regulates lipid metabolism, Nature, vol.46, issue.7242, pp.1131-1164, 2009.
DOI : 10.1093/jnen/64.2.113

URL : http://europepmc.org/articles/pmc2676208?pdf=render

H. Stabenau, Distribution of microbody enzymes from Chlamydomonas on sucrose gradients, Planta, vol.43, issue.1, pp.35-42, 1974.
DOI : 10.1007/BF00390501

H. Stabenau, Microbodies in Different Algae, 1984.
DOI : 10.1007/978-3-642-69686-2_20

, Compartments in algal cells and their interaction, pp.183-190

H. Stabenau, U. Winkler, and W. Saftel, ??oxidation in algal peroxisomes of the leaf and unspecialized type, Plant Physiology, vol.75, p.79, 1984.

H. Stabenau, U. Winkler, and W. Saftel, Enzymes of ??-Oxidation in Different Types of Algal Microbodies, PLANT PHYSIOLOGY, vol.75, issue.3, pp.531-533, 1984.
DOI : 10.1104/pp.75.3.531

H. Stabenau, U. Winkler, and W. Saftel, Compartmentation of enzymes of the ??oxidation pathway in different types of algae, Biological Chemistry Hoppe?Seyler, vol.369, p.19, 1988.

H. Stabenau, U. Winkler, and W. Säftel, Localization of glycolate dehydrogenase in two species of Dunaliella, Planta, vol.191, issue.3, pp.362-364, 1993.
DOI : 10.1007/BF00195694

N. Thazar?poulot, M. Miquel, I. Fobis?loisy, and T. Gaude, Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies, Proceedings of the National Academy of Sciences, pp.4158-4163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204172

E. Trentacoste, R. Shrestha, S. Smith, C. Glé, A. Hartmann et al.,

, Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth, Proceedings of the National Academy of Sciences, pp.19748-19753

M. Troncoso?ponce, X. Cao, Z. Yang, and J. Ohlrogge, Lipid turnover during senescence, Plant Science, vol.205, issue.206, pp.13-19, 2013.
DOI : 10.1016/j.plantsci.2013.01.004

C. Tsai, J. Warakanont, T. Takeuchi, B. Sears, E. Moellering et al., The protein Compromised Hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas, Proceedings of the National Academy of Sciences, pp.15833-15838, 2014.
DOI : 10.1186/gb-2010-11-2-r14

U. Winkler, W. Saftel, and H. Stabenau, ?-Oxidation of fatty acids in algae: Localization of thiolase and acyl-CoA oxidizing enzymes in three different organisms, Planta, vol.75, issue.1, pp.91-98, 1988.
DOI : 10.1007/BF00402885

K. Yoon, D. Han, Y. Li, M. Sommerfeld, and Q. Hu, Phospholipid:Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii, The Plant Cell, vol.24, issue.9, pp.3708-3724, 2012.
DOI : 10.1105/tpc.112.100701

M. Zhang, J. Fan, D. Taylor, and J. Ohlrogge, DGAT1 and PDAT1 Acyltransferases Have Overlapping Functions in Arabidopsis Triacylglycerol Biosynthesis and Are Essential for Normal Pollen and Seed Development, The Plant Cell, vol.21, issue.12, pp.3885-3901, 2009.
DOI : 10.1105/tpc.109.071795

URL : http://www.plantcell.org/content/21/12/3885.full.pdf

Z. Zhang, D. Sun, K. Cheng, and F. Chen, Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation, Bioresource Technology, vol.247, pp.610-615, 2018.
DOI : 10.1016/j.biortech.2017.09.133

L. Zhao, J. Dai, and Q. Wu, Autophagy-like processes are involved in lipid droplet degradation in Auxenochlorella protothecoides during the heterotrophy-autotrophy transition, Frontiers in Plant Science, vol.335, p.400, 2014.
DOI : 10.1007/978-3-642-00302-8_1

B. Zolman, I. Silva, and B. B. , The Arabidopsis pxa1 Mutant Is Defective in an ATP-Binding Cassette Transporter-Like Protein Required for Peroxisomal Fatty Acid beta -Oxidation, PLANT PHYSIOLOGY, vol.127, issue.3, pp.1266-1278, 2001.
DOI : 10.1104/pp.010550

J. Zones, I. Blaby, S. Merchant, and J. Umen, High?resolution profiling of a synchronized diurnal transcriptome from Chlamydomonas reinhardtii reveals continuous cell and metabolic differentiation, Plant Cell, vol.27, pp.2743-2769, 2015.

T. Van-zutphen, V. Todde, R. De-boer, M. Kreim, H. Hofbauer et al., Lipid droplet autophagy in the yeast Saccharomyces cerevisiae, pp.290-301, 2014.
DOI : 10.1002/yea.320110602