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SUMMARY
Weakly nonlinear viscoelastic Landau’s theory, widely used in acoustical physic, is introduced into a
Finite Element formulation to model the nonlinear behaviour of finite amplitude shear waves in soft
solids, typically, in biological tissues. Numerical models for plane waves are developed and compared
to transient elastography experiments. A good agreement is achieved as we observe the generation
of odd harmonics. Simulation results are confronted to an existing analytical model; we show that
the numerical model is an extension of the analytical formulation and helps identifying non-linear
parameters in a wider range of experimental conditions.
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1 INTRODUCTION

Transient elastography is a medical imaging technique which characterizes the elastic properties of
biological tissues in vivo by observing shear wave propagation. These mechanical properties provide
useful clinical information for diagnostic process. Assuming that the soft tissue is homogeneous,
isotropic and linear elastic, the shear modulus µ can be estimated by µ = ρc2s where ρ is the mass
density and cs is the shear wave speed. Although the measurement could be affected by multiple
factors, such as boundary conditions, frequencies or geometries, this technique has been clinically
proven to be able to evaluate many diseases, such as cancers and liver fibrosis. Lately, experimental
efforts have been made to determine the nonlinear properties of biological soft tissues [1, 2, 3]. At
the same time, theoretical work is necessary to support experimental results. In the work of [4, 5, 6],
analytical models are established but the solutions can be achieved only under simple cases. Thanks
to its possibility to represent real geometries and its flexibility, Finite Element Method (FEM) could
be a performing tool for analyzing shear wave propagation in elastography.

In this work, the weakly nonlinear elastic theory of the third- (forth-) order Landau’s law is developed
in the Finite Element formulation; viscosity is considered by Voigt model in finite strain domain.
Secondly, the FE simulations are carried out to model the nonlinear dynamic response of nearly-
incompressible soft tissues and comparison with experimental results [2] is performed.

2 MATERIAL AND METHODS

2.1 Material modeling

In seismology and physic acoustics, non-linear elasticity is usually modeled using Landau’s weakly
nonlinear theory [7]. Assuming that W can be approximated by a series expansion, at the third order
and in the decoupled form, we have [8]:



Density ρ (kg/m3) 1000

Shear modulus µ (kPa) 4.4

Third-order elastic param. A (kPa) 41.1

Fourth-order elastic param. D (kPa) 0

Bulk modulus K (kPa) 104

Shear viscosity η (kPa s) 0.6× 10−3

Bulk viscosity ξ (kPa s) 0.5× 10−5

Table 1: Material parameters

W = W dev +W vol with W dev = µI2 +
A

3
I3 +DI22 (1)

with Ik = tr(Ek) for k = 1, 2, 3, µ, A and D represent the shear moduli at the second, third and
fourth order. They all have the same order of magnitude (kPa) in soft solids, and they play a key
role in nonlinear shear wave propagation. In the following, we will consider the nonlinear parameter
γ = µ+ A

3 +D.

Viscosity also needs to be taken into account. Indeed in finite amplitude wave propagation, nonlinear
elasticity generates higher harmonics of the fundamental frequency. On the other hand, the absorption
of the medium decreases the amplitude of deformation which limits the generation of these harmon-
ics. As a result, nonlinear wave propagation cannot be modeled without considering viscosity. In
nonlinear acoustic, the viscoelasticity of soft solids is often described by the Voigt model [9]. In finite
strain the formulation becomes [4]:

Svisco = 2ηĖdev
+ ξĖvol

(2)

where η and ξ are the shear and bulk viscosity coefficients, respectively, Svisco the PK2 stress tensor
and Ėdev

is given by [10]:

Ėvol
=

1

3
(Ė : C−1)C, Ėdev

= Ė− Ėvol
(3)

2.2 Numerical simulation of plane waves

In the following, all simulations are carried out by our in-house Finite Element codes implemented in
Fortran. Landau’s hyperelastic model and Voigt viscous model are implemented in the code. Bi-linear
quadrangular elements combined with selective integration strategy are used to handle the volumetric
locking and the hourglass effect at the same time. For these fast dynamic (wave propagation) simula-
tions, a classical explicit time integration scheme is used. However, the time step will be largely lim-
ited by the big value of the bulk modulus K. We consider the propagation of plane shear wave into a
soft solid, the experiment is described in [2]. The model is formulated in plane strain, it contains 4949
nodes and 4800 elements. To generate plane waves, a vertical displacement is prescribed (smoothed
harmonic excitation, frequency f ) on the rigid plate at the right side of the phantom. The simulation
time is chosen to establish nonlinear effect and avoid reflections. The time step is ∆t = 0.5× 10−6 s
to keep the stability of the explicit integration scheme. The material parameters are chosen to be close
to the values reported in the experiments, see Tab.1. Note that these parameters lead to a volumetric
wave speed cl = 100 m/s, and the shear wave speed cs = 2.1 m/s in infinitesimal deformation. The
realistic bulk modulus K (order of GPa) or realistic volumetric wave speed (cl ' 1500 m/s) is not
ensured. In this paper, we use the assumption that in a homogeneous medium the volumetric wave
does not play an important role to keep the time step reasonable. Besides, it should be noted that only
the nonlinear coefficient γ is given in [2], there is so far no effective way to discriminate the third and
fourth order shear moduli A and D separately. Herein, we set D = 0 to determine the value of A.



(a) Experimental set-up (b) Numerical model (half)

Figure 1: Nonlinear plane shear wave experiment [2] and the corresponding model.

2.3 Analytical model for harmonics amplitude

Zabolotskaya et al. [4] have proposed an analytical formulation for fundamental and first odd har-
monic amplitude as a function of the propagation distance. This expression is valid as long as Gold-
berg number Γ, a dimensionless coefficient function of γ characterizing the relative importance of
nonlinearity and viscosity, remains small. Besides this model does not give the expression of the
other odd harmonic components. We therefore compare the harmonic amplitudes obtained by the
plane wave numerical model with the ones determined by the analytical model, for different excitation
amplitudes, excitation frequencies, material non-linear elastic parameters and viscosity parameters.

3 RESULTS AND CONCLUSIONS

The results are displayed in terms of shear wave speed spectrum at the distance of propagation from
5 to 50 mm (Fig.2) and compared to experimental results reported in [2]. It can be seen that the
two results are very similar, they both exhibit the odd harmonic at 3f which penetrates the whole
measured zone. The experimental results looks more precise in spectrum, this is because that the
experiment has a longer duration which leads to a better Fourier transform.
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(a) Simulation results (b) Experimental results

Figure 2: Spectra of the vertical velocity v.s. propagation depth z

The comparison with the analytical model (Fig.3) shows that the numerical model extends the har-
monics amplitude modeling to larger Goldberg numbers Γ than the analytical form, that is to say to
larger application range. The comparison indicates that the analytical solution is accurate when Γ is
smaller than about 13. By measuring the harmonics amplitude in a plane wave experiment, one can
evaluate Γ using the analytical or numerical relationship between Γ and the harmonics amplitude,
then determine γ, which gives a first equation linking A and D. However a second type of test is
necessary to discriminate A and D.



(a) Varying amplitude (b) Varying viscosity (c) Varying elasticity (γ = µ + A
3
+

D)

Figure 3: Evolution of the third harmonic component along the propagation distance for varying parameters.
Lines: FEM simulations; circles: analytical model; number: Goldberg number.

FEM simulations of the nonlinear shear wave propagation by using Landau’s viscoelastic law are
presented. In plane wave, the numerical results show a good qualitative agreement with the experi-
mental work [2]. It is also consistent with the existing analytical model and extends its application.
Consequently, Landau’s hyperelastic model combined with Voigt model can be further used in the
numerical study of the nonlinear shear wave propagation in soft solids. It has already been applied to
non-plane shear waves. This FEM model has a broad perspective in numerical simulations of com-
plex nonlinear wave phenomena, such as real geometry, heterogeneity, diffraction and focalisation
effect.
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