]. J. Hirsch, Spin Hall Effect, Physical Review Letters, vol.68, issue.9, p.1834, 1999.
DOI : 10.1103/PhysRevLett.68.1383

]. A. Hoffmann, Spin Hall Effects in Metals, IEEE Transactions on Magnetics, vol.49, issue.10, p.5172, 2013.
DOI : 10.1109/TMAG.2013.2262947

]. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Reviews of Modern Physics, vol.117, issue.4, p.1213, 2015.
DOI : 10.1103/PhysRevB.71.064420

]. I. Miron, K. Garello, G. Gaudin, P. Zermatten, M. Costache et al., Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection, Nature, vol.97, issue.7359, p.189, 2011.
DOI : 10.1063/1.3502596

URL : https://hal.archives-ouvertes.fr/cea-00903394

L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. Buhrman, Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect, Physical Review Letters, vol.109, issue.9, 2012.
DOI : 10.1103/PhysRevLett.104.137205

C. Bi, L. Huang, S. Long, Q. Liu, Z. Yao et al., Thermally assisted magnetic switching of a single perpendicularly magnetized layer induced by an in-plane current, Applied Physics Letters, vol.105, issue.2, p.1, 2014.
DOI : 10.1103/PhysRevB.75.214423

]. X. Qiu, K. Narayanapillai, Y. Wu, P. Deorani, D. Yang et al., Spin???orbit-torque engineering via oxygen manipulation, Nature Nanotechnology, vol.105, issue.4, p.333, 2015.
DOI : 10.1063/1.4899122

URL : http://arxiv.org/pdf/1511.08868

J. C. Rojas-sánchez, P. Laczkowski, J. Sampaio, S. Collin, K. Bouzehouane et al., Perpendicular magnetization reversal in PtAl multilayers via the spin Hall effect of Pt, Appl. Phys. Lett, vol.3, issue.108, p.82406, 2016.

D. Wu, G. Yu, Q. Shao, X. Li, H. Wu et al., In-plane current-driven spin-orbit torque switching in perpendicularly magnetized films with enhanced thermal tolerance, Applied Physics Letters, vol.108, issue.21, p.212406, 2016.
DOI : 10.1103/PhysRevLett.112.106602

L. Liu, C. Pai, Y. Li, H. W. Tseng, D. C. Ralph et al., Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum, Science, vol.93, issue.16, p.555, 2012.
DOI : 10.1103/PhysRevLett.93.166603

URL : http://arxiv.org/pdf/1203.2875

C. Zhang, S. Fukami, H. Sato, F. Matsukura, and H. Ohno, Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO, Applied Physics Letters, vol.107, issue.1, p.12401, 2015.
DOI : 10.1038/nmat2804

Y. M. Hung, L. Rehm, G. Wolf, and A. D. Kent, Quasistatic and Pulsed Current-Induced Switching with Spin-Orbit Torques in Ultrathin Films with Perpendicular Magnetic Anisotropy, IEEE Magn. Lett, vol.6, 2015.

C. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph et al., Spin transfer torque devices utilizing the giant spin Hall effect of tungsten, Applied Physics Letters, vol.101, issue.12, p.122404, 2012.
DOI : 10.1103/PhysRevB.62.570

URL : http://arxiv.org/pdf/1208.1711

Q. Hao and G. Xiao, Structure with Perpendicular Magnetic Anisotropy, Physical Review Applied, vol.3, issue.3, p.34009, 2015.
DOI : 10.1103/PhysRevLett.112.197201

S. Cho, S. C. Baek, K. Lee, Y. Jo, and B. Park, Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures, Scientific Reports, vol.112, p.14668, 2015.
DOI : 10.1103/PhysRevLett.112.236601

URL : http://www.nature.com/articles/srep14668.pdf

M. S. Gabor, T. Petrisor, R. B. Mos, A. Mesaros, M. Nasui et al., FeAl/MgO structures, Journal of Physics D: Applied Physics, vol.49, issue.36, p.365003, 2016.
DOI : 10.1088/0022-3727/49/36/365003

J. Rojas-sánchez, N. Reyren, P. Laczkowski, W. Savero, J. Attané et al.,

L. George, H. Vila, and . Jaffrès, Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces, Phys. Rev. Lett, vol.112, p.106602, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02042890

W. Zhang, W. Han, X. Jiang, S. Yang, and S. S. Parkin, Role of transparency of platinum???ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect, Nature Physics, vol.5, issue.6, p.496, 2015.
DOI : 10.1103/PhysRevB.89.214406

J. C. Rojas-sánchez, S. Oyarzún, Y. Fu, A. Marty, C. Vergnaud et al., -Sn Films, Physical Review Letters, vol.116, issue.9, p.96602, 2016.
DOI : 10.1038/nmat3301

J. C. Rojas-sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attané et al., Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials, Nature Communications, vol.80, issue.1, p.2944, 2013.
DOI : 10.1103/PhysRevB.80.113402

P. M. Haney, H. Lee, K. Lee, A. Manchon, and M. D. Stiles, Current-induced torques and interfacial spin-orbit coupling, Physical Review B, vol.5, issue.21, p.214417, 2013.
DOI : 10.1103/PhysRevB.87.041301

URL : http://repository.kaust.edu.sa/kaust/bitstream/10754/552861/1/PhysRevB.88.214417.pdf

V. P. Amin and M. D. Stiles, Spin transport at interfaces with spin-orbit coupling: Phenomenology, Physical Review B, vol.13, issue.10, p.104420, 2016.
DOI : 10.1103/PhysRevLett.88.236601

URL : https://link.aps.org/accepted/10.1103/PhysRevB.94.104420

V. P. Amin and M. D. Stiles, Spin transport at interfaces with spin-orbit coupling: Formalism, Physical Review B, vol.13, issue.10, p.104419, 2016.
DOI : 10.1103/PhysRevB.91.014417

URL : https://link.aps.org/accepted/10.1103/PhysRevB.94.104419

A. Thiaville, S. Rohart, É. Jué, V. Cros, and A. Fert, Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films, EPL (Europhysics Letters), vol.100, issue.5, p.57002, 2012.
DOI : 10.1209/0295-5075/100/57002

O. J. Lee, L. Q. Liu, C. F. Pai, Y. Li, H. W. Tseng et al., Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect, Physical Review B, vol.2, issue.2, p.24418, 2014.
DOI : 10.1103/PhysRevLett.64.1059

C. F. Pai, M. Mann, A. J. Tan, and G. S. Beach, Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy, Physical Review B, vol.5, issue.14, p.144409, 2016.
DOI : 10.1103/PhysRevB.93.014414

N. Mikuszeit, O. Boulle, I. M. Miron, K. Garello, P. Gambardella et al., Spin-orbit torque driven chiral magnetization reversal in ultrathin nanostructures, Physical Review B, vol.92, issue.14, p.144424, 2015.
DOI : 10.1016/j.jmmm.2014.01.061

URL : https://hal.archives-ouvertes.fr/cea-01734611

M. Baumgartner, K. Garello, J. Mendil, C. O. Avci, E. Grimaldi et al., Spatially and time-resolved magnetization dynamics driven by spin???orbit torques, Nature Nanotechnology, vol.88, issue.10, p.980, 2017.
DOI : 10.1103/PhysRevB.88.184422

URL : http://arxiv.org/pdf/1704.06402

K. Lee, S. Lee, B. Min, and K. Lee, Thermally activated switching of perpendicular magnet by spin-orbit spin torque, Applied Physics Letters, vol.104, issue.7, p.72413, 2014.
DOI : 10.1103/PhysRevB.87.054406

URL : http://arxiv.org/pdf/1401.2266

K. K. Lee, S. Lee, B. Min, and K. Lee, Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect, Applied Physics Letters, vol.102, issue.11, p.112410, 2013.
DOI : 10.1103/PhysRevB.87.041301

URL : http://arxiv.org/pdf/1210.3442

N. Roschewsky, T. Matsumura, S. Cheema, F. Hellman, T. Kato et al., Spin-orbit torques in ferrimagnetic GdFeCo alloys, Applied Physics Letters, vol.109, issue.11, p.112403, 2016.
DOI : 10.1103/PhysRevB.73.220402

URL : https://aip.scitation.org/doi/10.1063/1.4962812

K. Ueda, M. Mann, C. Pai, A. Tan, G. S. Beach et al., ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy, Applied Physics Letters, vol.109, issue.23, p.232403, 2016.
DOI : 10.1063/1.4962812

J. Finley and L. Liu, Spin-Orbit-Torque Efficiency in Compensated Ferrimagnetic Cobalt-Terbium Alloys, Physical Review Applied, vol.39, issue.5, p.1, 2016.
DOI : 10.1038/nature09124

URL : http://dspace.mit.edu/bitstream/1721.1/106653/1/PhysRevApplied.6.054001.pdf

N. Roschewsky, C. Lambert, and S. Salahuddin, Spin-orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo, Physical Review B, vol.96, issue.6, p.64406, 2017.
DOI : 10.1103/PhysRevB.93.144409

URL : https://link.aps.org/accepted/10.1103/PhysRevB.96.064406

W. S. Ham, S. Kim, D. Kim, K. Kim, T. Okuno et al., Temperature dependence of spin-orbit effective fields in Pt / GdFeCo bilayers Temperature dependence of spin-orbit effective fields in Pt / GdFeCo bilayers, Appl. Phys. Lett, vol.110, p.242405, 2017.

R. Mishra, J. Yu, X. Qiu, M. Motapothula, T. Venkatesan et al., Anomalous Current-Induced Spin Torques in Ferrimagnets near Compensation, Physical Review Letters, vol.118, issue.16, p.167201, 2017.
DOI : 10.1051/jphys:01990005105048300

URL : http://arxiv.org/pdf/1703.08263

M. Gottwald, M. Hehn, F. Montaigne, D. Lacour, G. Lengaigne et al., Magnetoresistive effects in perpendicularly magnetized Tb-Co alloy based thin films and spin valves, Journal of Applied Physics, vol.111, issue.8, p.111, 2012.
DOI : 10.1103/PhysRevLett.95.047202

S. Mangin, T. Hauet, P. Fischer, D. H. Kim, J. B. Kortright et al., Influence of interface exchange coupling in perpendicular anisotropy, Phys. Rev. B, vol.50, issue.78, p.24424, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01345254

C. Lambert, S. Mangin, B. S. Varaprasad, Y. K. Takahashi, and M. ,

K. Malinowski, Y. Hono, M. Fainman, E. E. Aeschlimann, and . Fullerton, All-optical control of ferromagnetic thin films and nanostructures, Science, vol.345, p.1337, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01282624

S. Mangin, M. Gottwald, C. Lambert, D. Steil, V. Uhlí? et al., Engineered materials for all-optical helicity-dependent magnetic switching, Nature Materials, vol.88, issue.3, p.286, 2014.
DOI : 10.1103/PhysRevB.88.020406

URL : https://hal.archives-ouvertes.fr/hal-01282629

P. Hansen, C. Clausen, G. Much, M. Rosenkranz, and K. Witter, Magnetic and magneto???optical properties of rare???earth transition???metal alloys containing Gd, Tb, Fe, Co, Journal of Applied Physics, vol.22, issue.2, p.756, 1989.
DOI : 10.1143/JJAP.27.1687

T. H. Pham, S. G. Je, P. Vallobra, F. Thibaud, D. Lacour et al., Thermal Contribution to the Spin-Orbit Torque in Metallic-Ferrimagnetic Systems, Physical Review Applied, vol.9, issue.6, 2017.
DOI : 10.1103/PhysRevB.95.054411

URL : https://hal.archives-ouvertes.fr/hal-01864006

T. W. Kim and R. J. Gambino, Composition dependence of the Hall effect in amorphous TbxCo1???x thin films, Journal of Applied Physics, vol.18, issue.4, p.1869, 2000.
DOI : 10.1063/1.30171

V. Khvalkovskiy, D. Cros, V. Apalkov, M. Nikitin, K. Krounbi et al., Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion, Physical Review B, vol.11, issue.2, p.20402, 2013.
DOI : 10.1016/j.mser.2011.04.001

A. Fert, R. Asomoza, A. Fert, R. Asomoza, S. Universite et al., Transport properties of magnetic amorphous alloys Transport properties of magnetic amorphous alloys, p.1886, 1979.

M. Binder, O. Weber, G. Mosendz, M. Woltersdorf, I. Izquierdo et al., Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum, Physical Review B, vol.66, issue.13, p.134404, 2006.
DOI : 10.1103/PhysRevB.73.220402

, AHE (i pulse ) at different cryostat temperatures. Cycles for x=0.78 (Co-rich at room temperature). b) The critical current to reverse M increases linearly when T decrease and saturate for T< 50 K. The extrapolation of the linear behavior at higher temperature for zero current is defined as T*

, S5-H x -I switching phase diagram in the W/Co x Tb 1-x

S. Figure, S7) presents a 2D plot summarizing the current?switching cycles performed under different external in-plane field H x (phase diagram) at room temperature for a channel width of w=, p.20

. ?m, Figure S6 are the results obtained for Si-SiO 286 Tb 14 (3.5 nm) /AlOx(3 nm) and fig. S7 for Si-SiO 2, AlOx

S. Figure, 2D-plot of current?switching cycles performed at room temperature on Si

, AlOx(3 nm) for a channel width of w = 20 ?m. The R(i pulse , H x ) cycles were carried out with different applied in plane field between ?3 kG and +3 kG. The red (blue) color region stand for Up (Down) magnetic configuration according the schematic Hall bar shown in Fig

S. Figure, 2D-plot of current?switching cycles performed at room temperature on Si

, AlOx(3 nm) for a channel width of w = 10 ?m. The R(i pulse , H x ) cycles were carried out with different applied in plane field between ?6.5 kG and +6.5 kG. The red (blue) color region stand for Up (Down) magnetic configuration according the schematic Hall bar shown in Fig