N
N

N

HAL

open science

Distributing Relational Model Transformation on
MapReduce

Amine Benelallam, Abel Gémez, Massimo Tisi, Jordi Cabot

» To cite this version:

Amine Benelallam, Abel Gémez, Massimo Tisi, Jordi Cabot.
Transformation on MapReduce. Journal of Systems and Software, 2018, 142, pp.1-20.

10.1016/j.jss.2018.04.014 . hal-01863885

HAL Id: hal-01863885
https://hal.science/hal-01863885
Submitted on 29 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributing Relational Model

https://hal.science/hal-01863885
https://hal.archives-ouvertes.fr

Distributing Relational Model Transformation on
MapReduce

Amine Benelallam®*, Abel Gémez®, Massimo Tisi®, Jordi Cabot®:°

% DiverSE team (Univ Rennes, Inria, CNRS, IRISA) 263 Avenue Général Leclerc, 35000
Rennes, France
YIMT Atlantique, LS2N (UMR CNRS 6004). 4, Rue Alfred Kastler, 44300, Nantes, France
¢ Universitat Oberta de Catalunya. Av. Carl Friedrich Gauss, 508860 Castelldefells, Spain
dJCREA. Passeig de Lluis Companys, 23, 08010 Barcelona, Spain

Abstract

MDE has been successfully adopted in the production of software for several
domains. As the models that need to be handled in MDE grow in scale, it
becomes necessary to design scalable algorithms for model transformation (MT)
as well as suitable frameworks for storing and retrieving models efficiently. One
way to cope with scalability is to exploit the wide availability of distributed
clusters in the Cloud for the parallel execution of MT. However, because of the
dense interconnectivity of models and the complexity of transformation logic, the
efficient use of these solutions in distributed model processing and persistence is
not trivial.

This paper exploits the high level of abstraction of an existing relational
MT language, ATL, and the semantics of a distributed programming model,
MapReduce, to build an ATL engine with implicitly distributed execution. The
syntax of the language is not modified and no primitive for distribution is added.
Efficient distribution of model elements is achieved thanks to a distributed
persistence layer, specifically designed for relational MT. We demonstrate the
effectiveness of our approach by making an implementation of our solution
publicly available and using it to experimentally measure the speed-up of the
transformation system while scaling to larger models and clusters.

Keywords: Model Transformation; Distributed Computing; MapReduce; ATL;
NeoEMF

*Corresponding author. Note this work has been carried out during the PhD thesis of
Amine Benelallam within the AtlanModels team.
Email addresses: amine.benelallam@irisa.fr (Amine Benelallam), agomezlla@uoc.edu
(Abel Gomez), massimo.tisi@inria.fr (Massimo Tisi), jordi.cabot@icrea.cat (Jordi
Cabot)

Preprint submitted to Journal of Systems and Software August 29, 2018

10

15

20

25

30

35

40

1. Introduction

Model-Driven Engineering (MDE) has been successfully embraced in several
domains for automating software development and manufacturing maintainable
solutions while decreasing cost and effort. Indeed, recent work has shown the
benefits of MDE in applications for the construction industry [1] (for commu-
nication of building information and inter-operation with different tools and
actors), modernization of legacy systems [2], learning and Big Data analytics [3].
The AUTomotive Open System ARchitecture (AUTOSAR) used in the develop-
ment of automotive software systems, and the Building Information Modeling
(BIM [I]) are two successful standards involving MDE development principles
in the software lifecycle for more than ten years and twenty years respectively.
Model query and transformations are key operations to guarantee these benefits.

A model transformation (MT) is an operation responsible for translating one
model to another. A complex transformation written in one of the general purpose
languages (GPLs) can be extremely large and unmaintainable. Fortunately,
model query and transformation languages come to the rescue, having been
designed to help users in specifying and executing model-graph manipulation
operations efficiently. They provide adequate constructs and facilities to specify
modular and reusable transformations with less effort. The relational paradigm
is the most popular among MT languages, based on the declarative definition of
rules relating input and output model elements. Relational model transformations
use tracing mechanisms to instate these relations.

Despite all these promises, the MDE approach is not widely applied to large-
scale industrial systems. This is mainly due to the serious scalability issues that
the current generation of MDE tools is facing [4, B [6]. Indeed, according to
existing empirical assessments from industrial companies adopting MDE [4] [7],
the lack of tools and technologies supporting collaboration and scalability are
the substantial disadvantages in MDE. Such large systems exhibit a growing
complexity in design, as well as the need to handle an increasing amount of data.
For example, BIM contains a rich set of concepts (more than eight hundred) for
modeling different aspects of physical facilities and infrastructures. A building
model in BIM is typically made of several gigabytes of densely interconnected
graph nodes. The model has been growing in time by incrementally integrating
different aspects and stakeholders [8]. The AUTOSAR size has been similarly
growing [9, [10]. Therefore, there is a calling need to develop a new generation of
tools capable of coping with large models.

1.1. Problem statement

Foremost, MT operations involve mainly graph matching and traversing
techniques. Such operations are CPU-consuming, which raises serious scalability
issues as graphs grow in scale and complexity. Consequently, graph processing
problems in general, and MTs in particular, can exceed the resources of a single
machine (CPU). For example, in our experiments, we show how typical MT
tasks in the reverse-engineering of large Java code bases may take several hours
to compute in local.

50

55

60

65

70

75

80

85

One way to overcome these issues is exploiting distributed systems for paral-
lelizing model manipulation (processing) operations over computer clusters. This
is made convenient by the recent wide availability of distributed clusters in the
Cloud. MDE developers may already build distributed model transformations
by using a general-purpose language and one of the well-known distributed
programming models such as MapReduce [11] or Pregel [12]. However such
development is not trivial, especially since distributed programming requires
familiarity with concurrency and distribution theory that is not common among
MDE application developers, in particular when the set of possible execution
paths can be large, and transformation result can be non-deterministic. Dis-
tributed programming also introduces a completely new class of errors w.r.t.
sequential programming, which is linked to task synchronization and shared
data access. Finally, it entails complex analysis for performance optimization,
for instance, balancing computation load, and maximizing data locality. To
summarize, we argue that the growth in data and complexity that is being
experienced by the industry is ahead of the current generation of MT tools.
This hampers the adoption of MDE in industrial contexts. Therefore, a new
generation of MT engines should be provided.

1.2. A distributed platform for relational MTs

In previous work, Clasen et al. [I3] draw the first lines towards a conceptual
framework for handling the transformation of very large models (VLMs) in
the Cloud. Their vision includes essentially two bricks, a model transformation
engine and a model access and persistence framework, discussing different possible
alternatives. In this paper, we provide a practical solution for these bricks, opting
for the data-distribution scheme.

We introduce a distributed platform for running relational MT in the Cloud.
We show that relational MTs, thanks to their specific level of abstraction, can be
provided with semantics for implicit distributed execution. While we use the rule-
based language ATL (AtlanMod Transformation Language [14]) to exemplify our
approach, our distribution approach is applicable to the class of relational model
transformation languages. We show that thanks to the properties of the ATL
language, interactions among rule applications are reduced. The distribution in
our proposed framework is implicit, i.e. the syntax of the MT language is not
modified and no primitive for distribution is added. Hence developers are not
required to have any acquaintance with distributed programming. The semantics
we propose is aligned with the MapReduce computation model, thus, showing
that rule-based MT fits in the class of problems that can be efficiently handled
by the MapReduce abstraction.

Distributed computation models like MapReduce are often associated with
persistence layers for accessing distributed data. In our second contribution, we
propose a new model-persistence backend, NEOEMF /COLUMN, that provides
support for transparently decentralized persistence and access on top of a dis-
tributed column store. NEOEMF /COLUMN provides lightweight serialization/de-
serialization mechanisms of data communicated across the network and concur-
rent read/write from/to the underlying backend.

20

95

105

110

115

125

We demonstrate the effectiveness of the approach by making an implementa-
tion of our solution publicly availableﬂ and by using it to experimentally measure
the speed-up of the transformation system while scaling to larger models and
clusters, and more complex transformations. To do so, we use two well-known
model transformations, ControlFlow2Dataflow and Class2Relational. The paper
illustrates in detail the integration of two components introduced in our previous
work [I5], [16]. In particular, we extend this work by providing the big picture of
the ATL-MR approach, contributing precise definitions and propertieS(Section,
carefully analyzing ACID properties required by distributed MTs and implement-
ing them on top of NEOEMF /CoOLUMN (Section @, and deepening on failure
management and data distribution(Section. Finally, we evaluate the scalability
and performance of ATL-MR on top of NEOEMF /COLUMN (Section .

1.8. Outline of the paper

The rest of the paper is structured as follows. Section [2] discusses the
main related work in scalable MT and persistence. This section highlights the
main limitations of existing approaches and tools in terms of scalability, then
positions our framework w.r.t. them. Section [3] describes the running case
of the paper and uses it to introduce the syntax of ATL and its execution
semantics. Later, it briefly outlines the main concepts of the MapReduce
programming model. Afterwards, Section [4] gives an overview of our framework
for distributed MTs. It starts by presenting some definitions and properties
to simplify the understanding of our approach, then describes the different
steps of the distributed transformation process. Section [f] extends our previous
work on a distributed engine for MTs with ATL on MapReduce [I5]. Section []
introduces our distributed persistence framework and its support for the set
of ACID properties guaranteeing consistent model transformations. Section [7]
illustrates the integration of processing and persistence layer. Section [§| discusses
the evaluation results of our solution when applied to two use cases with different
complexity. Finally, Section [J] concludes our paper and outlines some future
work.

2. Related Work

Model transformation operations may involve intensive read/write from/to
models. These models are traditionally stored in a persistence backend. Hence,
the performance of a MT engine could be highly impacted by the performance
of the underlying persistence backend. For example, the latency due to read
and write operations may severely affect the execution time of a MT. In this
section, alongside approaches on scalable MTs, we present related work on
scalable persistence. First, we introduce related work attempting to improve
graph and model processing performance, namely, parallel and distributed
model/graph transformation approaches. Then, we review related work on

Thttps://github.com/atlanmod/ATL_MR/

https://github.com/atlanmod/ATL_MR/

130

135

140

150

155

160

165

170

scalable persistence organized by types of persistence backends, File-based, SQL-
based, and NoSQL-based. Finally, we discuss the limitations and drawbacks of
existing MT approaches and examine the appropriateness of current solutions
for model persistence to distributed MTs.

2.1. Distributed and parallel graph processing

Parallel and distributed graph transformation is a well-studied problem, and
well-defined fundamentals have been proposed in several works. In parallel
and distributed graph transformations, rule applications are structured in both
temporal and spatial dimensions. Graphs are split into sub-graphs for local
transformations, then joined again to form a global graph [I7]. Two main
families of approaches have been proposed, shared memory (parallel) and message
passing (distributed). In what follows, we examine existing solutions in parallel
and distribute MTs. Afterwards, we briefly discuss some alternative execution
semantics for scalable transformations, then we present some high-level languages
for distributed data-parallel computing.

2.1.1. Distribution for graph processing languages

Among distributed graph transformation proposals, a recent one is Mezei
et al. [18]. It is composed of a transformation-level parallelization and a rule-
level parallelization with four different matching algorithms to address different
distribution types. In another work [19], Izso et al. present a tool called IncQuery-
D for incremental query in the Cloud. This approach is based on a distributed
model management middleware and a stateful pattern matcher framework using
the RETE algorithm. The approach has shown its efficiency, but it addresses
only distributed model queries while we focus on declarative transformation
rules.

Two approaches map a high-level graph transformation language to the Pregel
programming model [20, 2I]. Krause et al. [20] proposed a mapping of a graph
transformation language and tool, Henshin, to the "BSP model transformation
framework" on top of the BSP model. The approach is based on a code generator
that translates the graph transformation rules and transformation units into a
Pregel program. The matching phase is split into a series of local steps. A local
step inspects if a local constraint is satisfied and generates, extends, or merges a
set of partial matches. A search plan generation algorithm is responsible for the
generation of local steps.

In a similar approach, Tung et al. [2I] implemented their own DSL for the
specification of graph transformations. This DSL is also compiled into a Pregel
program and executed over a distributed cluster. The DSL inherits most of
its constructs from UnCAL, a query language and algebra for semi-structured
data based on structural recursion. The semantics of UnCAL was improved to
support the basic Pregel skeletons. In contrast to the previous approach, this
one supports successive applications of queries/transformations. In particular,
both approaches implemented their framework on top of Giraph, an open-source
implementation of the Pregel model.

Besides our work, the only other proposal addressing relational MT dis-
tribution is Lintra, by Burguetio et al. [22], based on the Linda coordination
language. Lintra uses the master-slave design pattern, where slaves are in charge
of executing in parallel the transformation of sub-models of the input model. The
same authors propose a minimal set of primitives to specify distributed model
transformations, LintraP [23]. With respect to our approach, Lintra requires to
explicitly use distribution primitives, but it can be used in principle to distribute
any transformation language by compilation.

2.1.2. Shared-memory parallelization for graph processing languages

Shared-memory parallelization is a closely related problem to distribution. For
model transformation, Tisi et al. [24] present a systematic two-steps approach
to parallelize ATL transformations. The authors provide a multi-threaded
implementation of the ATL engine, where each rule is executed in a separate
thread for both steps. The parallel ATL compiler and virtual machine have been
adapted to enable a parallel execution and reduce synchronization overhead.

A similar approach for parallel graph transformations in multi-core sys-
tems [25] introduces a two-phase algorithm (matching and modifier) similar to
ours. Bergmann et al. propose an approach to parallelizing graph transforma-
tions based on incremental pattern matching [26]. This approach uses a message
passing mechanism to notify of model changes. The incremental pattern matcher
is split into different containers, each one is responsible for a set of patterns.
The lack of distributed memory concerns makes these solutions difficult to adapt
to the distributed computing scenario. Moreover, in these cases, the authors
investigate task distribution, while we focus on data distribution, especially for
handling VLMs.

2.1.8. Alternative execution semantics for scalable transformations

The idea of overloading the execution semantics of model transformation
languages in order to improve scalability is not new. In particular, several works
introduced incremental or streaming computation semantics.

Incremental computing is a software feature aiming at saving the program
re-computation time every time a piece of data changes. It identifies the outputs
which depend on the changed data, then updates their value. EMF-IncQuery [27,
28] is a declarative model query framework for EMF models using the graph
pattern formalism as a query specification language. It aims at bringing the
benefits of graph pattern-based queries and incremental pattern matching to
the EMF ecosystem. Bergmann et al. [29] proposed an approach to integrate
incremental pattern matching into existing legacy systems built over RDBs. It
translates graph patterns/rules into SQL triggers. Additional tables are added
to store cached relationships. Jouault et al. [30] introduced an approach for
incremental transformations in ATL. Neither ATL’s syntax nor its semantics
sustained any change, except for some minimal changes to the compiler. Giese et
al. [3T] proposed an approach to automatically induce automatic incremental
synchronization using Triple Graph Grammar (TGG).

235

240

245

250

Streaming computation is a computer programming paradigm equivalent to
event stream processing and reactive programming. Several approaches that
support reactive and streaming model transformation have been proposed [32, [33]
34]. VIATRA 3 [32] is a source incremental event-driven model transformation
platform based on the reactive programming paradigm. VIATRA 3 offers a
family of internal DSLs to specify advanced tool features built on top of existing
languages like EMF-IncQuery and Xtend. VIATRA-CEP [33] is an engine for
streaming model transformations by combining incremental transformation and
complex event processing. It includes a DSL for defining atomic event classes
and combining them into complex patterns and events. Martinez et al. [34]
introduced a reactive model transformation engine for ATL. This work combines
efforts on enabling incrementality and lazy evaluation of ATL transformations.
These approaches are well-suited to the model-driven applications involving
frequent runtime updates. The transformation engine takes care of re-executing
only the necessary computation affected by the update. For efficient execution
of one-shot transformation on VLMs, these approaches fail drastically.

2.1.4. High-level languages for distributed data-parallel computing

Many high-level languages for data-parallel computing targeting distributed
programming models have been proposed. However, these languages are not
designed for performing distributed model transformations.

Microsoft SCOPE [35], Pig Latin [36], and HiveQL [37] are high-level SQL-
like scripting languages targeting massive data analysis on top of MapReduce.
Pig Latin and SCOPE are hybrid languages combining both forces of a SQL-
like declarative style and a procedural programming style using MapReduce
primitives. They provide an extensive support for user-defined functions. Hive
is a data warehousing solution built on top of Hadoop. It comes with a SQL-like
language, HiveQL, which supports data definition statements to create tables
with specific serialization formats, and partitioning and bucketing columns.

DryadLINQ is a language designed to target the Dryad [38] engine, a general-
purpose distributed execution engine for coarse-grain data-parallel applications.
Unlike Piglatin or SCOPE, which introduce new domain-specific languages,
DryadLINQ is embedded as constructs within existing programming languages. A
program written in Dryad LINQ is a sequential program composed of expressions
specified in LINQ, the .NET Language Integrated Query. The expressions
perform arbitrary side-effect-free operations on datasets and can be debugged
using standard .NET development tools.

2.2. Scalable persistence of VLMs

The interest on scalable model persistence has grown significantly in recent
years. Nonetheless, existing approaches are still not suitable to manage this kind
of artifacts both in terms of processing and performance.

2.2.1. XMI-based approaches
Models stored in XMI need to be fully loaded in memory for persistence. The
lack of support for lazy or partial loading of models hampers handling VLMs

260

265

270

275

280

285

290

205

300

not fitting in a memory of a single machine. Moreover, this persistence format
is not adapted to developing distributed MDE-based tools. One way to tackle
scalability issues while sticking to the XMI representation is by decomposing
the model into fragments. Amalio et al. [39] proposed a mathematical ground
for this, based on the ideas of modularity and separation of concerns. Below, we
investigate the state-of-the-art tools and frameworks for persisting EMF-based
models and draw down their limitations.

EMF fragments [40] is a hybrid persistence layer for EMF models aimed at
achieving fast storage and navigation of persisted data. EMF-Fragments uses
annotations to decompose a model into smaller documents. A similar approach
is EMF Splitter [41], it borrows the modularity structure used in Eclipse for
Java projects organization to decompose the models. Both approaches rely on
the proxy resolution mechanism used by EMF for inter-document relationships.
EMF Fragment supports MongoDB, Apache HBase, and regular files, while EMF
Splitter supports only XMI files.

2.2.2. Relational-based approaches

Connected Data Objects (CDO) model repository [42] is the de facto stan-
dard solution to handle large models in EMF by storing them in a relational
database. It was initially envisioned as a framework to manage large models in a
collaborative environment with a low memory footprint. However, different expe-
riences have shown that CDO does not scale well to very large models [43], 44, [45].
CDO implements a client-server architecture with transactional and notification
facilities where model elements are loaded on demand. CDO servers (usually
called repositories) are built on top of different data storage solutions. However,
in practice, only relational databases are commonly used.

2.2.8. NoSQL-based approaches

Barmpis and Kolovos [46] suggest that NoSQL databases would provide better
scalability and performance than relational databases due to the interconnected
nature of models. Morsa [44] was one of the first approaches to provide persis-
tence of large-scale EMF models using NoSQL databases. Specifically, Morsa
uses MongoDB [47], a document-oriented database, as its persistence backend.
Morsa can be used seamlessly to persist large models using the standard EMF
mechanisms. As CDO, Morsa is built using a client-server architecture. Morsa
provides on-demand loading capabilities together with incremental updates to
maintain a low workload. The performance of the storage backend and their
own query language (MorsaQL) have been reported in [44] and [45].

Mongo EMF [48] is another alternative to storing EMF models in MongoDB.
Mongo EMF provides the same standard API as previous approaches. However,
according to the documentation, the storage mechanism behaves slightly different
than the standard persistence backend (for example, when persisting collections of
objects or saving bi-directional cross-document containment references). Using
Mongo EMF to replace another backend in an existing system, requires an
adaptation process.

305

310

315

320

325

Table 1: Summary of distributed and parallel MTs approaches

Approach Paradigm Exec. Mode Concurrency EMF Integ.
Graph Rel. Shared Dist. Mem. Disk

VMTS-para) O ® O) O O
VMTS-dist () O O [O [O
ATL-para O [) [O (] O o
LinTra O]] o [J O O
Henshin ([J O O [J O ([J O
Tung et al. () O O [) O [] O

Legend: @ feature supported, O feature not supported

Table 2: Summary of model persistence approaches

Approach Store Lazy loading Access Conc. write
CDO SQL fine centralized yes
Mongo EMF NoSQL fine centralized yes
Morsa NoSQL fine local no

EMFSplit XMI coarse local diff. splits*

EMFfragments XMI coarse decentralized diff. splits

(*)Concurrent writes are not allowed at the file level. Permitted only on different files.

2.8. Current limitations to scalable MT and persistence

In this section, we reviewed existing approaches aiming at optimizing graph
processing, with a particular focus on graph transformation operations. Moreover,
we presented state-of-the-art tools for the persistence of VLMs in EMF. Tables
and [2] summarize the limitations of MT approaches and model persistence tools
respectively.

While most approaches in graph/model transformation focus on the paral-
lelization of the transformation using the graph paradigm, only two approaches
focus on relational model transformation, parallel-ATL [24] and LinTra [22].
Nonetheless, parallel-ATL is still limited to the resources of one machine, while
LinTra is not compatible with existing EMF-based applications, especially pre-
cluding some runtime interactions with EMF components. It translates the
transformation rules together with in-/output metamodels to a Linda-specific
format. As for the remaining approaches, visibly, none of them has a clear
support of concurrent write on target models, nor a clear support for complex
transformation rules (e.g. rules involving multiple input patterns). Our solution
is designed to address these missing features.

Concerning the solutions for persisting EMF models, we observed that,
while most of the existing approaches scale in some scenarios, they expose a
few limitations that are crucial to distributed model Transformations. EMF
Fragments and EMF Splitter require a good fragmentation from the user. They
support lazy loading only at the chunk level. As a consequence, complex queries
may lead to loading the whole model even though some elements are not accessed.
Moreover, EMF Fragments on top of HBase is not transparent with regard to

355

cfNext | % use dfNext | %
FlowInstr Var FlowInstr

txt : String def name : String txt : String
i ' i
[\ T [\
SimpleStmt localStmts | Method Param SimpleStmt localStmts | Method
* *
(a) ControlFlow metamodel excerpt (b) DataFlow metamodel excerpt

Figure 1: Simplified ControlFlow and DataFlow metamodels

model distribution. Queries and transformations need to explicitly take into
account that they are running on a part of the model and not the whole model.
These backends assume to split the model into balanced chunks. This may not
be suitable for distributed processing, where the optimization of computation
distribution may require uneven data distribution. Finally, existing solutions
using a client-server architecture (e.g. CDO over a distributed database) use a
single access point. Even when model elements are stored in different nodes,
access to model elements is centralized, since elements are requested from and
provided by a central server. This constitutes a bottleneck and does not exploit
a possible alignment between data distribution and computation distribution.
With a growing size of clients, the single access point can rapidly turn into a
limitation.

We extended an existing multi-layer persistence backend for VLMs in EMF
with support for concurrent read-write. The distribution is completely trans-
parent for EMF-based tools, and the alignment between data distribution and
computation distribution is alleviated. Moreover, our solution relies on the
CAP (Consistency, Availability and Partitioning tolerance) principle, where we
sacrifice some ACID properties in order to achieve better global performance
while guaranteeing full consistency.

3. Background

Before going into the details of our proposal, in this section, we present the
necessary background. First, we introduce the ATL transformation language by
means of a case study. We discuss a set of properties that reduces inter-rules
communication. Later, we introduce the MapReduce programming model and
describe its properties and features.

8.1. The ATL transformation language

While our distribution approach is applicable to the class of relational model
transformation languages, in this paper, we refer to the ATL language to exem-
plify this class. To elucidate the discussion of our approach, we refer throughout
the paper to a single case study related to the analysis of dataflows in Java
programs. The case study is well-known in the MDE community, being proposed

10

int fact(int a)

int fact (int a)

int fact(int a) {

int r = 1;
while (a>0) {
r *= a--;

}
return r;
}

(a) Java code

Figure 2: ControlFlow2DataFlow transformation example

by the Transformation Tool Contest (TTC) 2013 [49] as a benchmark for MT
engines.

Excerpts of the source and target metamodels of this step are shown in Fig.
In a control-flow diagram (Fig. [1a), a FlowInstruction (Flowlnstr) has a field
trt containing the textual code of the instruction, a set of variables it defines or
writes (def), and a set of variables it reads (use). A method may contain a set
of simple statements localStmts. A FlowInstruction points to the potential set
of instructions that may be executed after it (c¢fNext). Method signatures and
SimpleStatements (SimpleStmt) are kinds of FlowInstruction. A Parameter is a
kind of Variable that is defined in method signatures.

The dataflow diagram (Fig. has analogous concepts of FlowlInstruction,
Method and SimpleStatements but a different topology based on the dataflow
links among instructions (dfNext). For every flow instruction n, a dfNext link
has to be created from all nearest control-flow predecessors m that define a
variable which is used by n.

Fig. 2] shows an example of models for each metamodel, derived from a small
program calculating a number factorial. For readability reasons, and in order
not to congest our graphs, containment references are omitted. As it can be
seen in the figure, the transformation changes the topology of the model graph,
the number of nodes and their content, and therefore can be regarded as a
representative example of general transformations. In this paper we refer to an
ATL implementation of the transformation named ControlFlow2DataFlow and
available at the tool website?

Languages like ATL are structured in a set of transformation rules encapsu-
lated in a transformation unit. These transformation units are called modules
(Listing [1} line [I). The query language used in ATL is the OMG’s Object

%https://github.com/atlanmod/ATL_MR/

11

https://github.com/atlanmod/ATL_MR/

Constraints Language (OCL) [50]. A significant subset of OCL data types and
operations is supported in ATL. Listing [I| shows a subset of the rules in the
ControlFlow2DataFlow transformation.

Input patterns are fired automatically when an instance of the source pattern
(a match) is identified, and produce an instance of the corresponding target
pattern in the output model. Implicitly, transient tracing information is built to
associate input elements to their correspondences in the target model.

Source patterns are defined as OCL guards over a set of typed elements, i.e.
only combinations of input elements satisfying that guard are matched. In ATL,
a source pattern lays within the body of the clause ’from’ (Listing (1} line [15)
For instance, in the rule SimpleStmt, the source pattern (Llstlngl line (16}
matches an element of type SimpleStmt that defines or uses at least a Varlable
Output patterns, delimited by the clause ’to’ (Listing ' 1} line [1§] B) describe how
to compute the model elements to produce when the rule is fired, starting from
the values of the matched elements. E.g., the SimpleStmt rule produces a single
element of type SimpleStmt. A set of OCL bindings specify how to fill each of
the features (attributes and references) of the produced elements. The binding
at line 20| copies the textual representation of the instruction, the binding at
line [21] fills the dfNext link with values computed by the computeNextDataFlows
OCL helper. The rule for transforming methods is similar (Listing |1} lines .

ATL matched rules are executed in two phases, a match phase and an apply
phase. In the first phase, the rules are applied to source models’ elements
satisfying their guards. This execution strategy is recognized in the community
as Map Entities before Relations/Objects before Links model transformation
design pattern [51]. Each single match corresponds to the creation of an explicit
traceability link. This link connects three items: the rule that triggered the

Listing 1: ControlFlow2DataFlow - ATL transformation rules (excerpt)

1 module ControlFlow2DataFlow;

2 create 0UT : DataFlow from IN : ControlFlow;
3 rule Method {

4 from

5 s : ControlFlow!Method

6 to

7 t : DataFlow!Method (

8 txt <— s.txt,

9 localStmts <— s.localStmts,

10 dfNext <— s.computeNextDataFlows ()

11)

12}

13

14 rule SimpleStmt {

15 from

16 s : ControlFlow!SimpleStmt (not(s.def—>
17 isEmpty () and s.use—>isEmpty()))
18 to

19 t : DataFlow!SimpleStmt (

20 txt <— s.txt,

21 dfNext <— s.computeNextDataFlows ()

22

23}

12

420

425

430

435

440

445

application, the match, and the newly created output elements (according to the
target pattern). At this stage, only output pattern elements type is considered,
bindings evaluation is left to the next phase.

The apply phase deals with the initialization of output elements’ features.
Every feature is associated to a binding in an output pattern element of a
given rule application. Indeed, a rule application corresponds to a trace link.
Features initialization is performed in two steps, first, the corresponding binding
expression is computed. Resulting in a collection of elements, it is then passed
to a resolution algorithm (called resolve algorithm) for final update into the
output model. The resolve algorithm behaves differently according to the type
of each element. If the type is primitive (in case of attributes) or target, then it
is directly assigned to the feature. Otherwise, if it is a source element type, it is
first resolved to its respective target element — using the tracing information —
before being assigned to the feature. Thanks to this algorithm we are able to
initialize the target features without needing to navigate the target models. The
resolveTemp, a generalization of the resolve algorithm, is also invoked on a
source element but returns a specific target model element identified by a name
of the rule and a name of a target pattern belonging to this rule. A normal
resolve can be regarded as a resolveTemp call having as parameters a default
rule name and the name of the first target pattern element.

As result of ATL’s execution semantics, especially four specific properties
of the language (below), inter-rule communication is made discernible and the
odds of running into race conditions are minimized. More precisely, interaction
among ATL transformation rules are reduced to bindings resolution, where a
target element’s feature needs to link to other target elements created by other
rules:

Property 1. Locality: Fach ATL rule is the only one responsible for the
computation of the elements it creates, i.e., the rule that creates the element is
also responsible for initializing its features. In the case of bidirectional references,
responsibility is shared among the rules that create the source and the target ends
of the reference.

Note that if a transformation language does not satisfy this property, a way
to lower the data communication cost would be by making sure that different
rules sharing update task reside on the same machine.

Property 2. Single assignment on target properties: The assignment
of a single-valued property in a target model element happens only once in the
transformation execution. Multi-valued properties can be updated only by adding
values but never deleting them.

If a language does not guarantee this property, one way of communicating
less data is by local aggregating operations. Let’s take for instance the example
of a rule that, for every rule application increments a variable, instead of sending
a bunch of increment values, it would be recommended to aggregate them and
send only a single value that sums up all the increment operations.

13

460

470

475

Map Reduce

Log0 <, 1>
Record N ‘ + 1 —
logl |2 nals Local e Re"’oter <%, 1>
 Read split v write | <¥,1> w <¥, 1> N <¥, 3>
Log2 <¥, 1> K Wwrite | <X, 2>
<X, 1> N result

wnds

Log3 <X, 1> <X, 1>
Loga <, 1>
- <¥, 1> <I, 1>
08 <, 1> -
, <, 4>
<X, 1> <, 1>

e
Log8 <, 1>

Worker

Figure 3: MapReduce programming model overview

Property 3. Non-recursive rule application: Model elements that are
produced by ATL rules are not subject to further matches. As a consequence, new
model elements cannot be created as intermediate data to support the computation.

This differentiates ATL from typically recursive graph-transformation lan-
guages. The property should not be confused with recursion in OCL helpers
that are responsible for intermediate computations over the source models only
but not the target ones.

Property 4. Forbidden target navigation: Rules are not allowed to nav-
igate the part of the target model that has already been produced, to avoid
assumptions on the rule execution order.

This property is possible thanks to the resolve algorithm. A way to workaround
the non-satisfaction of this property is by making sure that the target elements
creation and update happen in two different phases.

3.2. MapReduce

MapReduce is a programming model and software framework developed at
Google in 2004 [II]. It allows easy and transparent distributed processing of big
data sets while concealing the complex distribution details a developer might
cross. MapReduce is inspired by the map and reduce primitives that exist in
functional languages. Both Map and Reduce invocations are distributed across
cluster nodes, thanks to the Master that orchestrates jobs assignment.

Input data is partitioned into a set of chunks called Splits as illustrated
in Fig. 8] The partitioning might be monitored by the user through a set of
parameters. If not, splits are automatically and evenly partitioned. Every split
comprises a set of logical Records, each containing a pair of (key, value).

Given the number of Splits and idle nodes, the Master node decides the
number of workers (slave machines) for the assignment of Map jobs. Each
Map worker reads one or many Splits, iterates over the Records, processes the
(key, value) pairs and stores locally the intermediate (key, value) pairs. In the

14

480

meanwhile, the Master receives periodically the location of these pairs. When
Map workers finish, the Master forwards these locations to the Reduce workers
that sort them so that all occurrences of the same key are grouped together.
The mapper then passes the key and list of values to the user-defined reduce
function. Following the reduce tasks achievement, an output result is generated
per reduce task. Output results do not need to be always combined, especially if
they will subsequently be processed by other distributed applications.

Let’s take a closer look at the MapReduce programming model by means of
a simple example, depicted in Fig. [5] Assume we have set of log entries coming
from a git repository. Each entry contains information about actions performed
over a particular file (creation — 4+ , deletion — X, or modification — *). We
want to know how many times each action was performed, using MapReduce.
The master evenly splits the entries among workers. For every record (log entry),
the map worker extracts the action type and creates a (key,value) pair with a
key the action itself and value ’1’. In the reduce phase, pairs with the same key
are grouped together. In our example, the modification and deletion go to the
first reducer, while the creation goes to the second one. For each group, the
reducer combines the pairs and creates a (key,value) pair, but this time with
value the sum of the values with the same key. This value refers to how many
times the action occurred in the logs.

A useful optimization feature shipped with MapReduce is the Combiner. It
is an optional class taking place right after the map phase, and before the shuffle
phase. It operates on pairs originating from the mapper running on the same
node. For each set of pairs sharing the same key, values are aggregated in order
to combine them into a single pair according to the Combiner class definition.
As you can notice, the main benefit using combiners is to reduce the volume of
data sent between the Map and Reduce phases, and therefore the time that is
taken to shuffle different pairs across the cluster. We use the combiner feature
in order to perform a local resolve, which allows us to send fewer traces to the
reduce phase.

It is to the Distributed File System (DFS) that the MapReduce framework
owes its ability to scale to hundreds of machines in a cluster. The master node
in MapReduce tends to assign workloads to servers where data to be processed
is stored to maximize data locality. An interest of MapReduce is due to its
fault-tolerant processing. The Master keeps track of the evolution of every
worker execution. If after a certain amount of time a worker does not react, it is
considered as idle and the job is re-assigned to another worker. Same for DFS,
data is divided into blocks, and copies of these blocks are stored in different
nodes across the cluster to achieve a good availability as nodes fail.

Hadoop [52] and Hadoop Distributed File System (HDFS) [53] are the most
well-known and widely used open-source implementations of MapReduce and
Google-DF'S respectively.

15

525

550

555

560

4. Conceptual Framework

In this section, we give a global overview of our distributed MT framework.
We first introduce some definitions and properties we believe would help better
grasp our data distribution approach. Later, we describe our distributed model
transformation process by means of a simple example.

4.1. Definitions

In typical relational MT engines (e.g., the standard ATL and ETL engines),
the transformation execution starts by loading the input model. Then the
engine applies the transformation by selecting each rule, looking for matches
corresponding to the input pattern, and finally generating the appropriate
output elements [54]. Each execution of a matched input pattern is called a rule
application.

From now on, we denote by £ a set of model elements, and M a set of
commodity machines in a distributed system S.

Definition 1. Let R be a set of model transformation rules. A rule application
is defined by the tuple (r,in) where:

o r € R is the rule being applied

e in C & is the list of source elements matched by the rule r (i.e., the input
pattern)

In the context of distributed model transformations we define other two properties
of rule applications:

e ¢ €in (primary trigger) is a single element elected as the primary trigger
of the rule application

o ctx C & (context) is the subset of model elements accessed to evaluate
expressions in r for the rule application. These elements include the
elements of the input pattern

Given Definition[I} we consider a MT execution job as the union of elementary
rule application execution jobs, where each job is responsible for transforming a
single input pattern. In the case of rules with n-ary input pattern (matching a
sub-graph), we consider the job of applying the rule to be primarily triggered by
one input pattern element. Selecting a primary triggering element for each rule
application ensures that, after distributing the source model, a rule application
occurs on only one machine, i.e. the one responsible for transforming the triggering
element.

The distribution of a transformation based on a data-parallel distribution
approach over m machines (m = |M]|), consists of dividing the input model
into m splits and assigning disjoint sub-models of the input model to different
machines. Each machine will be then responsible for transforming the assigned
subset. In what follows we refer to this set of elements assigned to a machine ¢
by A;. Given a system S of m machines, the set of assigned elements has the
following property:

16

575

580

Property 5. Each element e € A; is assigned to one and only one set (Vi,j €
M, i#j = AiﬁAj:Q))

In order to transform its set of assigned elements A;, a machine ¢ needs to
access all the elements that are necessary for the transformation of its assigned
elements. We denote this set as:

D; = U dependencies(e)
ecA;

where dependencies(e) is the union of the contexts of all the rule applications
that are primarily triggered by e.

Consequently, every machine 7 needs to load all the elements £; belonging to
A; UD;.

Typical distributed graph processing presents a higher ratio of data access
to computation w.r.t. typical scientific computing applications. In particular,
most of the computational complexity of MT rules lies in the pattern matching
step, i.e. the exploration of the graph structure. With a naive data distribution
scheme, the execution time can be monopolized by the wait time for model
elements lookup. Hence, an intelligent assignment of elements to cluster nodes
should be performed. For instance, an intelligent data-distribution strategy may
try to minimize network traffic by an intelligent assignment (A;). In particular,
it may try to minimize the number of shared elements, i.e. elements that are
needed by multiple nodes (e.g. i and j share £; N L;). The problem is similar to
a well-known problem in the graphs community, Graph-Based Data Clustering
with Overlaps [55]. This problem allows clusters overlapping by duplicating (to
a given extent) graph vertices or edges. In related work [56], we discuss this
problem in more details. We have formalized the problem of model partitioning
for distributed model transformations in linear programming and proposed a
greedy algorithm for efficient data distribution.

4.2. Overview of the distributed transformation process

Figure [shows a global overview of our distributed transformation framework
by means of a simple example. The transformation is composed of a simple rule
that changes the shape of nodes (from Square to Hexagon) but keeps the same ID
as well as graph topology. Our distributed cluster is composed of a single master
node, data nodes, and task nodes. Data nodes and task nodes communicate with
each other through a distributed MOF-compliant model access and persistence
API. While task nodes are responsible for transforming the input model or
composing the output one, data nodes are responsible for hosting the partial
input/output models. Although in our illustration we differentiate between data
nodes and task nodes, in real-world clusters, data can be processed in the same
node it resides in.

Our distributed model transformation process is divided in three steps, (i)
data distribution, (ii) parallel local transformation, and (iii) parallel composition.
The coordination phase plays the role of a barrier in which task nodes share
their output data among each other for composition.

17

615

620

625

Data distribution Parallel local transformation Parallel global composition

N - Ryt @ & ®
1 = | @ =7
:%— [g 1
‘m gLy *ee—NR @ ® |
N R / g S :
' Q

| . s

[b - D [e bt N
N BEL o 5 e @ !
1 o 1 ' !
o i gme PO® L @ @

{:é:} Task node (worker) @ Data node 4mmmm) Concurrent Read/Write

Figure 4: A conceptual framework for distributed model transformation

In the first phase, the master node is responsible for assigning source model
elements to task nodes (data distribution) for computation. Each task node is
responsible for executing the rule application triggered by the assigned elements.
These subsets (a.k.a. chunks, splits, or partitions) are designed to avoid any
redundant computation in two separate nodes (respecting Property . Moreover,
since the master node is limited by its memory capacity, we consider a lightweight
and memory-friendly assignment mechanism of source model elements. In our
example, the master node assigns {a, b, ¢, d} to the upper node, and the
remaining to the second one (as shown in Figure [4)).

After assigning source model elements to task nodes, they start processing
the transformation in parallel. However, due to the complexity of the pattern
matching phase, a task node may have to load additional elements in order for
its local transformation to complete (parallel transformation). For instance, in
our example, each square needs to traverse the set of its direct neighboring nodes
to reproduce the graph topology. In particular, the upper task node needs the
elements "g" while the second node needs "d". Because the set of additional
elements is known only at runtime, our persistence framework transparently
provides task nodes with the ability to access any input element, identified
by its UUID, during the transformation execution. This is granted to an on-
demand lazy loading mechanism (see Sectiorff]). Additionally, all data requests
are transparently passed through the persistence layer and task nodes would not
be aware of the physical location of the model elements. However, the cost for
accessing data is not constant as it is likely influenced by the network I/0.

At the end of the parallel transformation phase, each task node will result
in a local output sub-model together with a set of tracing information that

18

645

650

Local match\apply Global resolve
Input Model Map 1 output Reduce output

int fact(int a)

int fact(int a)

int fact(int a)

‘| return r;

return r;

Figure 5: ControlFlow2DataFlow example on MapReduce

return r;

has a twofold role. This information does not only contain information about
computation already performed but also about the one that needs to be performed
in order to compose local output sub-models into a global output model.

The coordination phase plays the role of a synchronization barrier, where,
once all task nodes finish their parallel transformation, they exchange trace
information about the missing links in order to compose the global model. To
avoid network congestion, target sub-models are stored together with the traces,
and only a list of UUIDs identifying these traces is passed through the network.

In the final phase (parallel composition), missing tracelinks are evenly split to
task nodes, and relationships are established between the output sub-models to
compose the final output model. The persistence framework enables task nodes
to concurrently establish links between any given model elements. Similarly to
the previous phase, task nodes can transparently access, at any time, model
elements and the transformation traces.

5. Distributed Relational Model Transformation on MapReduce

Distributed model-to-model transformation inherits most of the well-known
challenges of efficient parallel graph processing, such as poor data locality and
unbalanced computational workloads. In particular, implicit data distribution is
not trivial for transformation languages where rules applied to different parts
of the model can interact in complex ways with each other. The higher is the
number of these interactions, the bigger is the volume of data communicated
across the network, both at inter and intra-phase levels. In MapReduce, this
turns into, more data to serialize, de-serialize, and less network throughput
due to congestion. Thanks to ATL properties introduced in Section [3] the
possible kinds of interaction among ATL rules is strongly reduced, which allows
to decouple rule applications and execute them in independent execution units.

In this section, we show how our distributed transformation process has
been mapped to the MapReduce programming model, then, we illustrate the
alignment of ATL execution semantics to the MapReduce.

19

655

5.1. ATL and MapReduce alignment

Mostly, distributed (iterative) graph processing algorithms are data-driven,
where computations occur at every node of the graph as a function of local
graph structure and its intermediate states. The transformation algorithm in
ATL could be regarded as an iterative graph processing algorithm with two
phases (match and apply described in Section |3)) and one intermediate state
(matched). Each node of the cluster that is computing in parallel takes charge
of transforming a part of the input model.

In our approach, we propose a mapping that aims at reducing cross-machine
communication cost. That is by adopting some good practices for scalable graph
processing in MapReduce. This is made possible, thanks to the alignment of the
ATL distributed execution semantics with MapReduce described below. The
proposed mapping is conceptually similar to the original ATL algorithm.

As an example, Figure [5] shows how the ATL transformation of our running
example could be executed on top of a MapReduce architecture comprising
three nodes, two maps and one reduce workers. The input model is equally
split according to the number of map workers (in this case each map node
takes as input half of the input model elements). In the map phase, each
worker runs independently the full transformation code but applies it only to
the transformation of the assigned subset of the input model. We call this phase
Local match-apply. Afterwards, each map worker communicates the set of model
elements it created to the reduce phase, together with trace information. These
trace links (grey arrows in Figure [5)) encode the additional information that will
be needed to resolve the binding, i.e. identify the exact target element that
has to be referenced based on the tracing information. The reduce worker is
responsible for gathering partial models and trace links from the map workers,
and updating properties value of unresolved bindings. We call this phase Global
resolve.

In the following, we briefly describe the distributed execution algorithm,
which is decomposed in two phases, the Local match-apply phase assigned to
mappers and the Global resolve phase assigned to reducers.

Local match-apply

At the beginning of the phase, input splits are assigned to map workers. Each
one of these splits contains a subset of the input model for processing. Despite
this, each worker can access the whole input models in case it needs additional
data for bindings computation. Thanks to our model data mapping, which
adheres to good practices in graph data representation [57], model elements
together with their adjacent nodes are stored as tuples. Adjacent model elements
are accessed lazily and on-demand when it is required by the transformation
execution logics. Algorithm [I] illustrates the pseudo-code of the Local match-
apply.

For every model element in the split, the map function verifies if a rule guard
matches and in this case instantiates the corresponding target elements, same
as in the regular execution semantics. In the case of rules that match multiple

20

700

705

710

715

Algorithm 1: Map function

input : Long key, ModelElement element

1 foreach rule € getApplicableRules(element) do
2 if isMatched(element,rule) then
3 link < createLink(element, rule);
4 addLink(linkSet, link);
5 foreach binding € getBindings(link) do
6 if isAttribute(binding) then
7 L applyAttribute (binding);
8 else
9 foreach ComputedElement € computeBindingExp(binding)
do
10 if isLocal(ComputedElement) then
11 resolvedElement <
resolveTarget(ComputedElement);
12 applyReference(resolved Element, binding);
13 else
14 L addElementToTrace(Computed Element, binding);
15 storeLink(generatedKey, link);
// generatedKey to decide to which reducer this link will be
assigned

elements, the map function would consider the elements of the split as the first
element of the matched pattern, and look for combinations of other elements
satisfying the guard. For each instantiated output element, a trace link is created
connecting source and target elements of the applied rule. Subsequently, the
algorithm starts processing the list of property bindings for the instantiated
target elements. We extended the behavior of the resolve algorithm to enable
handling elements transformed in other nodes, we call this algorithm local
resolve. In the case of attribute bindings (lines [6H{7)), the same standard
behavior is preserved, the OCL expression is computed and the corresponding
feature is updated accordingly. While bindings related to references connect
elements transformed by different rule applications, potentially on different
nodes, the resolution is performed in two steps: (i) the OCL expression of
the binding computes to a set of elements in the source model and ATL
connects the bound feature to these source elements using trace links; (ii) the
source-models elements are resolved, i.e. substituted with the corresponding
target element according to the rule application trace links. If the source and
target elements of the reference are both being transformed in the same node,
both steps happen locally (lines , otherwise trace links are stored and
communicated to the reducer, postponing the resolution step to the Global
resolve phase. The resolveTemp algorithm behaves similarly. In the Global

21

720

725

resolve phase, unresolved elements coming from the resolveTemp are treated
equally to unresolved model elements coming from the normal resolve.

Global resolve

At the beginning of the reduce phase, all the target elements are created, the
local bindings are populated, and the unresolved bindings are referring to the
source elements to be resolved. This information is kept consistent in the tracing
information formerly computed and communicated by the mappers. Then it
resolves the remaining reference bindings by iterating over the trace links. For
each trace link, the reducer iterates over the unresolved elements of its property
traces, resolves their corresponding element in the output model, and updates
the target element with the final references. The pseudo-code for the Global
resolve is given in Algorithm

Algorithm 2: Reduce function
input : String key, Set<TraceLink> links

1 foreach link € links do
2 foreach property € getTraceProperties(link) do // unresolved

properties

foreach elmt € getSourceElements(property) do
resolvedElement < resolveTarget(elmt);
updateUnresolvedElement (property, trgElmt);
// equivalent to applyReference (element, binding) in map

(<2 B]

function

5.2. ACID properties for atomic model manipulation operations in ATL

Distributed computation models like MapReduce are often associated with
persistence layers for accessing distributed data. In solutions for Big Data, where
scalability is the main requirement, persistence layers sacrifice ACID properties
in order to achieve better global performance. In networked shared-data systems,
this is also known as CAP theorem [58]. Such properties need to be implemented
by the application layer on a need basis.

Hereafter, we reason about the execution semantics of ATL, especially, atomic
model manipulation operations (as coming from the MOF specification). Our
objective is to extract the minimal set of ACID properties to be guaranteed
for a consistent output model. This reasoning is conducted while taking into
consideration the model access modes and the possible interactions between
model manipulation operations.

As no definition of a transaction has been carried in the formal MOF specifi-
cation, in our study, we consider that each model manipulation operation on a
single element runs in a separate transaction. This definition is similar to the
one adopted by the CAP theory. In our analysis, we rely on the semantics of the

22

750

MOF reflection API, especially the methods used by the ATL engine. Hereafter,
we give a brief description of the MOF’s Reflection API.

Table 3: Access modes in ATL transformations

MATCH APPLY
Input READ-ONLY
Output WRITE-ONLY
Trace WRITE-ONLY READ-ONLY

In model-to-model transformations with ATL, models are never accessed in
read-write mode but only in read-only mode or write-only mode. Precisely, while
source models are always read-only and target models are always write-only,
trace models are, depending on the phase, either read-only (apply phase) or
write-only (match phase). Table [3| summarizes different access modes per model-
kind\phase.

Moreover, in our distributed transformation framework, we identify two
different scopes of computation, depending on the phase. The computation
can run either in a local scope (Local match/apply), or a global scope (Global
resolve). In the local scope, all the write operations happen in local. Data is
always created and manipulated by the same task node. As a result, model
manipulation operations on the same model element never run concurrently. On
the other hand, concurrency may take place in the global scope, and different
machines can modify the same element at the same time.

Regardless of the computation scope, models that are accessed in read-only
mode are subject only to side-effect free queriesﬂ Likewise, during the local
scope, trace models are always consistent because they are considered as local
intermediate data. In the remaining of this section, we are interested only in the
global scope, in particular, the output models.

Output models undergo a building process creating a model that grows
monotonically (Property [2] and [3). However, during the global computation,
there exist some specific cases that may lead to inconsistency. In particular,
(i) when having operation invoking a change in more than one element (e.g.
containment and bidirectional references), or (ii) updating multi-valued references.
For instance, in ATL, elements are newly created and attached to the resourceE|
(in the match phase), they’re all considered as root elements. Moreover, they’re
linked to it through a containment-like relationship. On these terms, and despite
Property when moving these elements to their final container (in the apply
phase), first, they are removed from the resource, then, they are moved to the
new containing element. Similarly, in the case of updating a containment or a
bidirectional reference. These operations need to either entirely fail or succeed.

3The accessed data is always consistent since no write operation occurs
4A resource can be considered as an index for root elements

23

785

790

795

800

805

Table 4: Summary of accesses counts of MOF Reflection operations

METHODS MAX COUNT" PROPERTIES
READ WRITE
OPERATIONS ON PROPERTIES
get* 1 0 ~C D
set* 2 2 AC D
isSet* 1 0 ~C D
unset* 0 1 ~C D
OPERATIONS ON MULTI-VALUED PROPERTIES
add 2 2 AC(I)D
remove 2 2 AC(I)D
clear 1 0 ~C D
size 1 0 C D

* Note that only max access count is taken under consideration

Table [4 depicts the set of operations in the MOF Reflection AP as well
as the maximum read/write operation count within a transaction. Note that,
operations on full objects such as elements creation are not considered. Finally,
the table depicts the ACID properties that need to be fulfilled when the operation
is performed during model transformation, in order to guarantee the correctness
of the output model. The properties between parenthesis can be relaxecﬂ, while
the others should be strongly preserved.

Beyond lowering data communication over the network, the interest of ATL
properties, discussed in this section, extends to reducing the chances of running
into concurrent modifications, and thus the Isolation property can be relaxed
for some operations. Especially, thanks to Property [2| updates on single-valued
properties occur only once in the transformation lifetime. In the case of updates
on multi-valued properties, the chances of having concurrent updates are defi-
nitely considerable. Nevertheless, in ATL only add or remove operations might
run into concurrent updates. The distributed persistence framework should make
sure that two concurrent add or remowve operations will leave the system in a
consistent statePl

As noticed in the properties column, Durability and Consistency are two
mandatory properties to be preserved. The correctness of the output results is
tied to guaranteeing these properties in every single method. Supposing that
the underlying backend guarantees ACID properties at the finest-grained level
(single CRUD operation), methods involving updates in more than one element
(two-phased commits) need to be atomic, while update operations on multi-
valued properties (add and remove) need to be isolated. These methods should
execute in two steps, first, the latest value is looked-up, then the property’s value
is updated according to the method behavior. However, thanks to the monotonic
building process of models in ATL, even if a two-phase commit does not happen

5Supported only in specific scenarios

61t is worth to mention that in MOF, only type, cardinality, and default properties are
natively checked for Consistency. Model constraints, described as OCL invariants, are validated
only when invoked.

24

815

820

825

830

835

840

845

in the same transaction, the model will eventually be consistent (i.e. we will end
up having the same output model). Relaxable properties are depicted between
parenthesis. In case one of these methods fails, the system should rollback. In
the next section, we show how we guarantee the set of ACID properties on top
of NEOEMF /COLUMN.

6. Decentralized Model Persistence for Distributed MTs

In the previous section, we discussed the set of ACID properties that is
needed to guarantee a sound and consistent MT in a distributed manner. In this
section, we introduce a solution that realizes the aforementioned requirement on
top of a decentralized wide-column store.

Storing models in the Cloud is a good solution to break down the complexity
in handling VLMs. Due to the limitations discussed in Section [2] we extend,
NEOEMF, a multi-layer persistence framework with a decentralized persistence
layer called NEOEMF /CoLUMN. NEOEMF is EMF-compliant. EMF-based tools
would not be aware of the NEOEMF' framework, as communications between
the tool and NEOEMF are always passing through the EMF layer. We benefit
from the built-in features in NEOEMF to alleviate the performance of accessing
and storing models for distributed model transformations. In particular, we rely
on the on-demand loading mechanism to ensure that only needed elements are
loaded, especially when the model is too big to fit in memory. Also, we exploit
the different caching mechanisms shipped within NEOEMF reduce accesses to
the database and improve the access time of already loaded elements.

NEOEMF /COLUMN is built on top of HBase, a decentralized wide-column
store. NEOEMF /CoLUMN hides the model distribution from client’s applications.
Model access to remote model elements in NEOEMF /COLUMN is decentralized,
which avoids the bottleneck of a single access point, and alleviates the alignment
between data distribution and computation distribution. NEOEMF /COLUMN is
delivered with two stores, the first one is Direct-write and the second one is
Read-only. The first store optimizes memory usage by reflecting model changes
directly to the underlying backend. And thus, make the new changes directly
available to other clients. Inconveniently, all clients have to fetch properties
values from the underlying backend at every read operation. In future work, we
plan to supply NEOEMF /COLUMN with a distributed notification mechanism
to alert clients of changes in model elements.

Model data in NEOEMF /COLUMN is stored using adjacency list. For each
node in the graph, a list of vertices adjacent to it is stored. Each row in the
table is responsible for storing a model element. This representation has a low
storage cost on disk, and the time to access the list of adjacent nodes is constant.
In our design, we take advantage of the use of UUID design principle to flatten
the graph structure into a set of key-value mappings. More details about the
model data mapping can be found in the NEOEMF /COLUMN tool paper [16].

25

855

Table 5: Summary of accesses counts to the underlying column-based storage system

METHODS MAX COUNT" Rows PROPERTIES
Ger() Pur()" ATL NeoEMF
OPERATIONS ON PROPERTIES
get* 1 0 1 _C_D ACID
setx* 3 2 2 AC D AC(I)D
isSet* 1 0 1 _C D ACID
unset* 0 1 1 ~C D ACID
OPERATIONS ON MULTI-VALUED PROPERTIES

add 3 2 2 AC(I)D AC(I)D
remove 3 2 2 AC(I)D AC(I)D
clear 1 0 1 ~C D ACID
size 1 0 1 C D ACID

* Note that only max access count is taken under consideration, likewise for rows
** Updating two cells in the same row counts for one single Put

6.1. Guaranteeing ACID properties for distributed MTs with ATL

HBase is not a strongly ACID-compliant database, it provides ACID semantics
only on a per-row basis. It is up to users to employ this semantics to adapt
ACID properties according to the behavior of their applications. Notably, HBase
is shipped with the following warranties:

e Any Put operation on a given row either entirely succeeds or fails to its
previous state. This holds even across multiple column families. Same for
the Append operation

e The CheckAndPut is atomic and updates are executed only if the condition
is met, similar to the CAS mechanism

e Any Get or Scan operation returns a complete row existing at the same
point in the table’s history

e Get operations do not require any locks. All reads while a write in progress
will be seeing the previous state

In this perspective, we adapted ACID properties semantics as provided
by HBase, in order to guarantee the set of ACID properties needed by ATL.
Table [§] extends Table [4] with the ACID properties that are guaranteed by
NEOEMF /CoLUMN, and the number of rows involved in each update. This
time, the properties between parenthesis, in the column NEOEMF /COLUMN,
refer to the properties partially supported by NEOEMF /COLUMN.

Hereafter, we describe how we implement and guarantee the set of ACID
properties needed by ATL:

Atomicity — Modifications on a single object’s properties are atomic. Modifi-
cations involving changes in more than one object are not. In this case, one
way to provide atomicity is by manually implementing a rollback operation
that undoes the changes affected by this commit. Since commits can be
composed by at most 2 Put calls, the cost of rolling-back is low and changes

26

880

885

890

895

9200

c,.set(p,;,a)

WRITE_P(c,, a)
O —— ,

c,.set(p,;,a)

WRITE_P(c,, a)

WRITE_P*(c,,a)

WRITE_P"(c, a)

time | fTTTTmToTosossossss

Figure 6: Fail scenario of two concurrent calls on a 1-to-1 bidirectional reference. After both
updates finish, they leave the system in an inconsistent state where, ¢c; — 0, c2 — a, and
2 P

a —r C1
p

can be tracked within the methods. In case the first Put succeeds but not
the second, then there is only one Put to undo. Otherwise, no rollback is
needed.

Consistency — Modifications on object’s properties are always consistent. For
that, we rely on EMF, which validates some consistency rules before a
commit happens. The validation of rules issued by OCL invariants is not
supported by EMF, likewise for NEOEMF /COLUMN. Failures in single-
valued properties are handled by HBase, while multi-valued are handled
by the framework (See Atomicity and Isolation).

Isolation — There are particular cases where isolation is not guaranteed in
NEOEMF /COLUMN for the set, add, and remove methods (as shown in
Table. . Figure |§| shows a fail scenario of two concurrent calls on a 1-to-1
bi-directional reference. Such a concurrent scenario would not occur in ATL
as only one rule application is responsible for performing this action. In
fact, concurrent operations occur only on multi-valued properties in order
to perform a monotonic update, either by adding or removing an element
at a specific index. In order not to have inconsistent result in absence of
write-write synchronization, concurrent writes should be provided with
isolation. To do so, two possible solutions exist. The first one is using row
locking on every write operation. This solution is not encouraged in HBaseﬂ
and the APT allowing row-locking has been removed in the latest versions
of HBase. The second one (what we use instead) is the CAS mechanism.
In HBase, CheckAndPut operations are executed only when matching a
specified condition on a property value. In NEOEMF /COLUMN, we use it
for removing elements from multi-valued properties. The operation first

“https://issues.apache.org/jira/browse/HBASE-7315

27

https://issues.apache.org/jira/browse/HBASE-7315

905

910

915

920

925

930

ATL-MR

Eclipse Modeling Framework

NeoEMF/Column XML Metadata Interchange

HDFS

Figure 7: NEOEMF": a general view and architecture

reads the object it later plans to update and commits the changes only if
the value is still as current. All of this, in one atomic isolated operation. To
add elements to properties we use Append operation, which is also atomic
and isolated. For add operations at a specific index, we infer the append
offset from the index itself, since all objects’ UID have the same length. It
can be noted that all the case scenarios where isolation is needed in ATL
are supported by NEOEMF /COLUMN.

Durability — Modifications on a given object are always reflected in the
underlying storage, even in the case of a Data Node failure, thanks to the
replication capabilities provided by HBase.

7. Tool Support: ATL on MapReduce (ATL-MR)

Figure [7] shows the high-level architecture of our distributed engine on top
of the EMF. ATL-MR runs on an Apache Hadoop [52]| cluster. Hadoop is
the leading open-source implementation of MapReduce. The Master node is
responsible for distributing the input model, monitoring the ATL-MR. Slaves,
and finally returning the output results. Each node in the Hadoop cluster
transparently communicates with the underlying backend through an EMF
model management interface, and hence, making our distributed framework
unaware of the persistence backend type. Indeed, besides supporting the de-facto
serialization format, XMI [59], ATL-MR is also coupled with a multi-database
model persistence framework, NEOEMF [60]. ATL-MR relies on the HDFS to
distribute all of its input and output models, together with the transformation
specification.

The proposed implementation adopts some of the existing good practices
and design patterns for scalable graph processing in MapReduce, namely the
InMapperCombiner and the Shimmy patterns proposed by Lin et al. [61]. Like
normal Combiners, the inMapperCombiner pattern aims at reducing the number
of pairs emitted by each mapper. Apart from that, this pattern runs within
the mapper instead of running as a separate step. In this case, the emission
of (key,value) pairs is held until the processing ends, then invokes the inMap-
perCombiner, and hence reducing the amount of data passed to the shuffie
phase. This prevents the framework from unnecessary creation and destruction
of intermediate objects.

28

935

940

945

950

955

9260

965

970

975

The second pattern relates to mappers-to-reducers dataflows. It discourages
diffusing the graph structure in the network. Instead, it recommends passing
only the metadata of the graph elements’ state, which are mostly less densely
inter-connected. In our implementation, target elements are persisted, and
alternatively, tracelinks are passed along to reducers. Hadoop’s Map and Reduce
Classes are provided with two API hooks, being Initialize and Close hooks.
While the initialize hook is used to set-up the transformation environment, ac-
cording to running phase (Local Match-Apply or Global Resolve), the close
hook is used to execute the InMapperCombiner pattern. That is by iterating
the local tracelinks (intermediate pairs) and applying a global resolve for each
tracelink. This resolves the local properties and thus reduces the amount of data
communicated to reducers.

ATL-MR exploits the capabilities of NEOEMF /COLUMN, implemented on
top of HBase, to distribute the storage of EMF models and enable concurrent
R/W. In particular, ATL-MR uses Direct-write store to persist traces and
target models, and uses the Read-only to access source models. Each supported
persistent backend is shipped with specific distribution scheme. Finally, fault-
tolerance in ATL-MR relies mostly on the Hadoop framework. In what follows,
we describe how model distribution and access is performed in ATL-MR, then
we describe how fault-tolerance is achieved.

7.1. Model distribution and access in ATL-MR

Data locality is one of the aspects to optimize in distributed computing for
avoiding bottlenecks. In Hadoop, it is encouraged to run map tasks with input
data residing in HDF'S since Hadoop will try to assign tasks to nodes where data
to be processed is stored. Each mapper is assigned a subset of model elements
by the splitting process. In case of XMI models, we start first by flattening
the structure of our model, which consists in producing a file containing model
elements URIs as plain strings, one per line. Hadoop then takes care of shredding
input data. With NEOEMF /COLUMN, this step is not necessary since models
are already stored in table-like topology.

Hadoop provides several input format classes with specific splitting behavior.
Accordingly, we use different splitters depending on the persistence format of our
input models. For XMI models, we use an NLinelnputFormat on the flattened
file, it takes as argument a text file and allows to specify the exact number of
lines per split. Finally, the default record reader in Hadoop creates one record
for each line of the input file. As a consequence, every map function in ATL-MR
will be executing on a single model element. When running our distributed
transformation on top of models stored in HBase, we use TableInputFormat. By
default, this format divides at region boundaries based on a scan instance that
filters only the desired cells. In our implementation, we use a KeyOnlyfilter. This
filter accesses just the keys of each row while omitting the actual data. These
keys are used later to access model elements stored in NEOEMF /COLUMN.

For an efficient distribution of the input model, ATL-MR is shipped with
two data execution modes, a greedy mode, and a random mode. While the
random distribution is applicable to both of XMI and NeoEMF /hbase persistence

29

980

985

9290

995

1000

1005

1010

1015

formats, the greedy mode is only applicable to NEOEMF /COLUMN since, in
XMI, the whole model will be loaded in any case.

Due to the file-based representation of XMI, models stored using this repre-
sentation need to be fully loaded in memory, even though in practice, all the
nodes need only a subset of these model elements. NEOEMF /COLUMN, on the
other hand, provides a lazy loading mechanism, which enables the ATL-MR
slaves to transparently load only the set of needed elements. However, because
of the distributed nature of NEOEMF /COLUMN, it is mandatory to guarantee
the consistency of the local values and the remote ones. For this, every time a
client needs to read a value of a property, NEOEMF /COLUMN fetches it from
the underlying backend. To our convenience, we take advantage of the fact that
input models are read—onlyﬂ and we extend NEOEMF /CoLUMN with a read-only
store. This store has the capacity to cache model elements and properties values
after fetching them for the first time.

7.2. Failure management in ATL-MR

One of the two fundamental bricks of Hadoop is Yarn. It is responsible for
managing resources in a Hadoop cluster. The resource manager (master) and the
namenodes (slaves) altogether form the computation nodes. Namenodes are in
charge of launching containers. The application master is tasked with negotiating
resources and communicating with resource managers. The application startup
processes as follows. First, a client submits an application to the Resource
Manager, then the Resource Manager allocates a container and contacts the
related Node Manager. Later the Node Manager launches the container which
executes the Application Master. Finally, the application master takes care of
negotiating appropriate resources and monitoring them.

In distributed applications on MapReduce, four different kinds of failure may
occur, namely, task, application master, node manager, and resource manager
failures. Failures can take place for too many reasons, e.g. downtimeﬂ runtime
exceptions, etc..

Task failure. This happens when the JVM reports a runtime exception during
either a map or reduce task. This exception is sent back to the application
master, which marks the task attempt as failed, then frees the container to make
the resource available for another task. Another scenario is when having hanging
tasks. Here as well, tasks are marked as failed when the application master stops
receiving heartbeats after some period of time. The timeout period is set to 10
minutes by default. When a job fails after a specific number of times, the whole
Job is aborted. By default, the maximum attempts are four.

8We assume that input models are also not subject to changes during the transformation’s
execution
9Time during which a machine, especially a computer, is out of action or unavailable for use

30

1020

1025

1030

1035

1040

1045

1050

1055

Application master failure. It occurs when the resource manager stops receiving
application’s heartbeats. Such as tasks, application masters have also a maximum
number of attempts that is set to two in the default configuration.

Node manager failure. It happens when the node crashes or runs slowly. In this
case, it fails to send heartbeats periodically. The timeout period is also set to 10
minutes and all the tasks running in this node are re-executed.

Resource manager failure. Is the most serious kind of failures. It constitutes a
single point of failure. If a resource manager crashes, the whole job fails and no
data can be recovered. To avoid running into such a scenario, it is necessary to
run a pair of resources managers in the same cluster.

In ATL-MR, in case a task solely fails (for any of the reasons above) during
the map phase, then the local output model together with the intermediate
traces are cleaned, and the task is relaunched. Otherwise, if a reduce task fails,
then updates on the global output model are left intact. When the reduce task
is run for the next time, the NEOEMF /COLUMN assures that already serialized
references are not being added to the underlying backend. In case the whole job
fails, the master node cleans all the data, and the transformation is re-executed
from the beginning.

8. Experimentation

In this section, we evaluate the scalability and performance of ATL-MR on
top of the standard XMI backend (Sections and our NEOEMF /COLUMN
backend (Section [8.2). Later (Section [8.3)), we discuss the scenarios for which
each backend is well-suited, together with their limitations.

8.1. ATL-MR on XMI

We evaluate the scalability of our proposal by comparing how the transfor-
mation of our running example performs in two different test environments. In
order to be able to compare our distributed VM to the standard one, we opt, in
a first place, for small models that can fit in memory. Later, we demonstrate the
scalability of our approach, by scaling up to the transformation of big models.
The transformation we chose has quadratic time complexity and covers a suffi-
cient set of declarative ATL constructs enabling the specification of a large group
of MTs. It also contains an interesting number of OCL operations, recursive
helper’s call included.

The transformation is taken from a previous case study [49] that already
includes a set of input models for the benchmark. These models are reverse-
engineered from a set of automatically generated Java programs, with sizes up
to 12000 lines of code. For our experiment, we used the same generation process
but to stress scalability we produced larger models with sizes up to 105000 lines
of code. We consider models of these sizes sufficient for benchmarking scalability
in our use case: in our experimentation, processing in a single machine the

31

1060

1065

1070

1075

1080

largest of these models takes more than four hours. All the models we generated
and the experimentation results are available at the tool website.

In what follows, we perform two complementary experimentations. The
first one shows a quasi-linear speed-up w.r.t. the cluster size for input models
with similar size, while the second one illustrates that the speed-up grows with
increasing model size.

8.1.1. Experiment I: speed-up curve

For this experiment, we have used a set of 5 automatically generated Java
programs with random structure but similar size and complexity. The source
Java files range from 1442 to 1533 lines of code and the execution time of their
sequential transformation ranges from 620s to 778s. The experiments were run on
a set of identical Elastic MapReduce clusters provided by Amazon Web Services.
All the clusters were composed of 10 EC2 instances of type mI.large (i.e. 2
vCPU, 7.5GB of RAM memory and 2 magnetic Hard Drives). Each execution of
the transformation was launched in one of those clusters with a fixed number of
nodes — from 1 to 8 — depending on the experiment. Each experiment has been
executed 10 times for each model and number of nodes. In total 400 experiments
have been executed summing up a total of 280 hours of computation (1120
normalized instance hours[62]). For each execution, we calculate the distribution
speed-up w.r.t. the same transformation on standard ATL running in a single
node of the cluster.

Fig. [§] summarizes the speed-up results. The approach shows good perfor-
mance for this transformation with an average speed-up between 2.5 and 3 on 8
nodes. More importantly, as it can be seen on the right-hand side, we see a quasi-

Aggregated speed-up variation

Average speed-up x faster

x faster —
; ; =
3~5 2-5
3
2.5 2
2 1.5 —
1.5) @
1
¥ s |

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Number of splits/nodes Number of splits/nodes

—— Model 1 —— Model 2 —@— Model 3
—+— Model 4 —¢— Model 5

Figure 8: Speed-up obtained in experiment I

32

1085

1090

1095

1100

1105

1110

Table 6: Execution times and speed-up (between parentheses) per model

STD. Distributed VM using « nodes (time and speed-up)
S1ZE EvLts VM 1 2 3 4 5 6 7 8
1 ~4MB 20706 244s 319s 165s 128s 107s 94s 84s 79s 75s

(x0.8) (x1.5) (x1.9) (x2.3) (x2.6) (x2.9) (x3.1) (x3.3)
2 ~8MB 41406 1005s 1219s 596s 465s 350s 302s 259s 229s 199s
(x0.8) (x1.7) (x2.2) (x2.9) (x3.3) (x3.9) (x4.4) (x5.1)
3 ~16MB 82806 4241s 4864s 2318s 1701s 1332s 1149s 945s 862s T717s
(x0.9) (x1.8) (x2.5) (x3.2) (x3.7) (x4.5) (x4.9) (x5.9)
4 ~32MB 161006 14705s 17998s8712s 6389s 5016s 4048s 3564s 3050s 2642s
(x0.8) (x1.7) (x2.3) (x2.9) (x3.6) (x4.1) (x4.8) (x5.6)

linear speedup, with a very similar curve for all models under transformation.
We naturally expect the speed-up curve to become sub-linear for larger cluster
sizes and very unbalanced models. The variance among the 400 executions is
limited as shown by the box-plots in the lower side.

8.1.2. Experiment II: size/speed-up correlation

To investigate the correlation between model size and speed-up we execute
the transformation over 4 artificially generated Java programs with identical
structure but different size (from 13500 to 105000 lines of code). Specifically,
these Java programs are built by replicating the same imperative code pattern
and they produce a balanced execution of the model transformation in the nodes
of the cluster. This way, we abstract from possible load unbalance that would
hamper the correlation assessment.

This time the experiments have been executed in a virtual cluster composed
of 12 instances (8 slaves, and 4 additional instances for orchestrating Hadoop
and HDF'S services) built on top of OpenVZ containers running Hadoop 2.5.1.
The hardware hosting the virtual cluster is a Dell PowerEdge R710 server, with
two Intel® Xeon® X5570 processors at 2.93GHz (allowing up to 16 execution
threads), 72 GB of RAM memory (1 066MHz), and two hard disks (at 15K rpm)
configured in a hardware-controlled RAID 1.

As shown in Fig. [9] and Table [6] the curves produced by Experiment II are
consistent with the results obtained from Experiment I, despite the different
model sizes and cluster architectures. Moreover, as expected, larger models
produce higher speed-ups: for longer transformations, the parallelization benefits
of longer map tasks overtake the overhead of the MapReduce framework.

8.2. ATL-MR on NEOEMF /COLUMN

In this experiment, we use NEOEMF /COLUMN as a persistence backend,
and evaluate its impact on the execution performance of ATL-MR. W.r.t the
previous experimentation, we limit the amount of memory assigned to each map
and reduce task to 2GB. This way, models do not fully fit in memory and the
system is forced to rely on the persistence backend for model access during the
transformation. In order to isolate the effect of the persistence backend from the

33

1115

1120

1125

1130

S Execution time x faster Speed-up w.r.t. 2 nodes

6
104 ‘\\‘\‘\‘_,\’\’
4
10
2
2
. .k\\\.K\\ﬂ.k‘\\.L_—~'F“‘.F——q.___ﬂ. 0
1 2 3 4 5 6 7 8 1 2 3 45 6 7 8
Number of splits/nodes Number of splits/nodes

—e— Model 1 (~4MB) —m— Model 2 (~8MB)
—@— Model 3 (~16MB) —k— Model 4 (~32MB)

Figure 9: Execution times and speed-up on Experiment II

computational cost of the transformation logic, for this experiment, we use a
simpler transformation, with linear-time complexity, i.e. Class2Relational. The
experimentation shows that ATL-MR has also good performances for I0-bound
transformations, that are not computationally expensive. The experiments have
been executed in a virtual cluster of Docker containers running in a QEMU/KVM
virtual machine executing Debian 9.3, with 32GB of RAM, 6 virtual CPUs, and
paravirtualized hardware. Each Docker container runs Hadoop 2.7.3 and HBase
1.2.5. The virtual machine is hosted in a Fujitsu Primergy RX200 S8 server,
equipped with two quad-core Intel® Xeon® Intel(R) Xeon(R) CPU E5-2609
v2 at 2.50GHz (thus allowing up to 8 execution threads), 48 GB of DDR3
RAM memory (1333 MHz), and two hard disks (at 7200 rpm) configured in
a software-controlled RAID 1. The docker cluster replicating the environment
setup is available online.

We use as input randomly generated models with diverse sizes. We make our
random generator publicly availabl@ Its configuration, among other parameters,
takes as input the model size and the density of references (i.e., the average
number of references to be generated per property). The configuration also
specifies an allowed deviation w.r.t. these parameters. In our experiment, we use
an average density of 8 references per property and we allow a deviation of 10%.
The generation of random models is seeded in order to make the experiments
reproducible.

For each model size (10k, 20k, 30k, 40k, 50k, 100k elements), we generate
three random models. We launch the transformation of each generated model on

10https://github.com/atlanmod /neoEMF-Instantiator

34

1135

1140

1145

Table 7: Execution times and speed-up (between parentheses) per model

ELts 2 3 4 5 6 7 8
10000 124s 90s 73s T1s 72s e 79s
(x1.38) (x1.70) (xL1.75) (x1.72) (x1.61) (x1.60)
20 000 228s 141s 120s 96s 92s 93s 93s
(x1.62) (x1.90) (x2.38) (x2.48) (x2.45) (x2.45)
30000 411s 223s 164s 144s 134s 113s 119s
(x1.84) (x2.50) (x2.85) (x3.07) (x3.64) (x3.45)
40000 751s 369s 262s 180s 161s 154s 140s
(x2.04) (x2.87) (x4.17) (x4.66) (x4.88) (x5.36)
50 000 807s 396s 262s 188s 175s 155s 149s
(x2.04) (x3.08) (x4.29) (x4.61) (x5.21) (x5.42)
100000 - - 859s 611s 485s 387s 380s
s Execution time x faster Speed-up
1000 6
800
600 4
400
2
200
0 0
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of splits/nodes Number of splits/nodes

—e— 10000 —m— 20 000 —e— 30000
—%— 40000 —— 50 000 - -@- - 100 000

Figure 10: Execution times and speed-up of ATL-MR

subsets of the cluster, ranging from 2 to 8 nodes, for a total of 126 executions.
Here we use a random data distribution strategy, while in [56] we report on an
advanced greedy strategy.

Fig. summarizes the execution time and speed-up results (exact values
are listed in Table @ The left-hand side plots the average execution time. The
right-hand side shows the speed-up curves, with an average speed-up between
1.6 and 5.4. The transformation of the largest model (100000 elements) requires
at least 4 nodes (thus we do not calculate speed-up for this case).

Differently from the XMI case, for smaller models (up to 30000 elements), the
speed-up curve has a logarithmic shape, while it becomes quasi-linear for larger
models. Besides the general scalability of the HBase back-end, two factors are
impacting this result. First, the computational complexity of the Class2Relational
transformation is lower than the ControlFlow2DataFlow transformation. Second,

35

1150

1155

1160

1165

1170

1175

1180

1185

1190

for smaller models, the ratio of the Hadoop environment setup time to the overall
execution time is very important (15% to 20%).

8.8. Discussion

In our experimentations, we evaluated the performance of ATL-MR on top of
XMI and NEOEMF /CoLUMN. We have shown that ATL-MR scales for two use
cases that are representative of two application classes. 1) Controlflow2Dataflow
represents model transformations that are CPU-bound (i.e. perform complex
computations), despite requiring extensive reads to the source model. In this
case, the gain in parallelizing the computation outweighs the cost of accessing
big portions of the source model in several nodes. 2) Class2Relational represents
model transformation that despite being IO-bound (i.e. they require very simple
computation), perform localized access to small parts of the source model for each
rule application. In this case, source-model access can be efficiently parallelized
on HBase.

With the XMI backend, each map node needs to load the whole model in
memory, hampering the transformation of models that do not fit in memory.
Moreover, since concurrent writes are not allowed on files, it is not possible to
parallelize the reduce phase using ATL-MR on top of XMI. Additionally, for
short transformation times (less than 3 minutes in our experimentation), the gain
obtained by parallelization cannot compensate the overhead of the MapReduce
framework. Unfortunately, it is difficult to quantify the MapReduce framework’s
overhead before execution, as it depends on the execution environment and the
models’ size. The bigger the model, the more time it takes to split it and shuffle
it. We can conclude that ATL-MR on XMI is suitable for running complex
transformations on models that fit in memory, for example, transformations of
models requiring extensive data analysis.

In order to solve the issues above, we proposed NEOEMF /CoLUMN. Thanks
to the lazy-loading mechanism, we were able to load in each node only the
model elements that are necessary to compute the transformation of the assigned
split. Besides, NEOEMF /CoOLUMN allows concurrent read/write, enabling the
parallelization of the reduce phase. According to existing benchmarks for top
NoSQL databases [63], HBase is well-suited for read-mostly workloads but
not insert-mostly workloads. As a result, when dealing with transformations
requiring extensive writes on target models, some performance drops can be
noticed. Finally, it is worth to mention that the same models require more
space when stored in NEOEMF /COLUMN, compared to XMI. This is because of
HBase internals. To deliver high-availability and fault-tolerance, HBase relies
on table replication, table snapshots, and rows versions. These features impact
heavily the size of the tables on disk. One way to reduce the size is by using
data compression techniques, but this impacts drastically the read and write
latency. We can conclude that ATL-MR on NEOEMF /COLUMN is suitable for
running MTs on large models with balanced read/write workloads. Most of the
model transformations that are present in the ATL-Zoo [64] can be considered
as read-write workload balanced.

36

1195

1200

1205

1210

1215

1220

Table 8: Yarn Options

OPTION DESCRIPTION
yarn.nodemanager.resource. memory- Amount of physical memory for all con-
mb tainers
yarn.nodemanager.container- How often to monitor containers
monitor.interval-ms
yarn.nodemanager.resource.cpu-vcores Number of CPU cores that can be allo-

cated for containers
yarn.nodemanager.disk-health- The maximum percentage of disk before
checker.max-disk-utilization-per-disk- failure
percentage

Choosing the right number of splits has a significant impact on the global
performance. Having many splits means that the time that is taken to process
each split will be small compared to the time to process the whole input. On the
other hand, if splits are too small, then the overhead of managing the splits and
creating map tasks for each one of them may dominate the total job execution
time. In our case, we observed better results where the number of splits matches
the number of available workers. In other words, while configuring Distributed
ATL, the number of lines per split should be set to %.

Furthermore, one should be careful with Hadoop (Yarn) configuration op-
tions. In the case of memory or time-consuming model transformations, it is
required to set up correctly these options in order to avoid the system’s failure.
Table [8] depicts some of these options. Note that node manager resources are
shared among all the containers running under it. The number of containers is
configurable as well (see Table .

Even though ATL supports both out-place and in-place model transfor-
mations —through refinement mode—, in our prototype, only out-place model
transformations are supported. Moreover, we do not handle ATL imperative
code blocks. We argue that, although imperative blocks simplify the expression
of complex transformations, most of the transformation logic can be specified
using declarative-only ATL. As for lazy rules and unique lazy rules they are
currently not parallelized, but handled in the same way as in EMFTVM, i.e.,
they are executed in a final step. Finally, ATL does not support recursive
rule applications (i.e., further transformation of target elements), neither does
ATL-MR.

9. Conclusion and Future Work

In this paper, we exploited the recent emergence of systems and programming
models for distributed and parallel processing to leverage the distributed trans-
formation and persistence of VLMs. In particular, we relied on a well-known
distributed programming model, MapReduce, in order to enable the distributed
execution of model transformation in a reliable and fault-tolerant manner. We
also adopted NoSQL databases as a new solution for persisting VLMs. We showed

37

1225

1230

1235

1240

1245

1250

1255

1260

1265

that relational model transformation with languages like ATL is a problem that
fits in the MapReduce execution model. As a proof of concept, we introduced
a semantics for ATL distributed execution on MapReduce. We experimentally
showed the good scalability of our solution. Thanks to our publicly available
execution engine, users may exploit the availability of MapReduce clusters on
the Cloud to run model transformations in a scalable and fault-tolerant way.

Moreover, we exposed some limitations in standard persistence backends in
EMF and proposed a solution for transparent and decentralized model persistence
and manipulation in EMF on top of HBase. We also defined the minimal set
of ACID properties that model access has to guarantee for a consistent and
correct model transformation. We achieve this by cross-analyzing the execution
semantics of ATL, especially atomic model manipulation operations (as coming
from the MOF specification), against the MOF Reflection API. We intend to
improve the efficiency of our distributed transformation engine by exploring the
following lines:

e Reducing the number of (key,value) pairs transmitted between the Local
Match-Apply and the Global Resolve phases can improve the time to
perform the shuffling phase. In future work, we want to cut down the
number of transmitted elements based on the static analysis of the bindings
of the transformation rules as well as inter-rules dependency. An example
of tracing information that can be omitted, are the ones involving model
elements that will not be resolved by any other target element.

e In the current version of ATL-MR, the fault-tolerance relies completely on
failure-management as provided by Yarn. Since in ATL-MR, output models
are directly written to the persistence store, we can extend ATL-MR with a
centralized tracking system that helps the transformation engine recovering
from the previous state and carry on with the transformation.

e Some relational MT languages like ETL and QVT/Relations share most
of their properties with ATL. For instance, ETL and QVT also rely on
tracing information for resolving target elements. The ETL also runs in two
steps as in ATL. In future work, we plan to investigate the generalization
of our approach to these languages in detail. Likewise, we would like to
adapt our approach to other, and more recent, distributed programming
frameworks, in order to investigate which framework is most suitable to
what MT scenario.

e OCL is a central component in model transformation languages. It is used
to specify guards, query models, target sets, etc.. Collection operations
are the most computationally expensive operations in OCL. One way
to break down their complexity is by providing parallelism at collection
operations level. We believe that providing a distributed OCL engine
can alleviate the development of not only distributed MT but also other
model-based solutions, such as distributed query engines. We also believe
that it would answer some open challenges in the MDE community such

38

1270

1275

1280

1285

1290

1295

1300

as streaming model transformations, pipelining and scheduling distributed
model transformations.

Acknowledgments

This work is partially supported by the MONDO project, EU Seventh

Framework programme No. ICT-611125; and the MegaM@R#t2 project, which
has received funding from the Electronic Component Systems for European
Leadership Joint Undertaking under grant agreement No. 737494. This Joint
Undertaking receives support from the European Union’s Horizon 2020 research
and innovation programme and Sweden, France, Spain, Italy, Finland, and Czech
Republic.

References

1

2]

131

[4]

[5]

[6]

17l

18]

R. Volk, J. Stengel, F. Schultmann, Building Information Modeling (BIM)
for Existing Buildings: Literature Review and Future Needs, Automation
in Construction 38 (0) (2014) 109-127.

H. Bruneliére, J. Cabot, G. Dupé, F. Madiot, MoDisco: A Model Driven
Reverse Engineering Framework, Information and Software Technology
56 (8) (2014) 1012-1032.

B. Dominic, Towards Model-Driven Engineering for Big Data Analytics — An
Exploratory Analysis of Domain-Specific Languages for Machine Learning,
in: Proceedings of The 47th Hawaii International Conference on System
Sciences (HICSS), 2014, pp. 758-767.

P. Baker, S. Loh, F. Weil, Model-driven engineering in a large industrial
context: Motorola case study, in: Model Driven Engineering Languages and
Systems, Springer, 2005, pp. 476-491.

D. S. Kolovos, R. F. Paige, F. A. Polack, The grand challenge of scalability
for model driven engineering, in: Models in Software Engineering, Springer,
2009, pp. 48-53.

J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical
assessment of mde in industry, in: Proceedings of the 33rd International
Conference on Software Engineering, ACM, 2011, pp. 471-480.

A. Forward, T. C. Lethbridge, Problems and Opportunities for Model-
centric Versus Code-centric Software Development: A Survey of Software
Professionals, in: Proceedings of the 2008 International Workshop on Models
in Software Engineering, MiSE 08, ACM, New York, NY, USA, 2008, pp.
27-32.

M. Laakso, A. Kiviniemi, The IFC standard: A Review of History, Develop-
ment, and Standardization, Information Technology, ITcon 17 (9) (2012)
134-161.

39

1305

1310

1315

1320

1325

1330

1335

1340

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D. Durisic, M. Staron, M. Tichy, J. Hansson, Evolution of long-term in-
dustrial meta-models — an automotive case study of autosar, in: Software
Engineering and Advanced Applications (SEAA), 2014 40th EUROMICRO
Conference on, 2014, pp. 141-148.

D. Durisic, M. Staron, M. Tichy, J. Hansson, Quantifying Long-Term Evo-
lution of Industrial Meta-Models-A Case Study, in: Software Measurement
and the International Conference on Software Process and Product Mea-
surement (IWSM-MENSURA), 2014 Joint Conference of the International
Workshop on, IEEE, 2014, pp. 104-113.

J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107-113. doi:10.1145/
1327452.1327492.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
G. Czajkowski, Pregel: A System for Large-scale Graph Processing, in:
Proceeding of the 2010 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’10, ACM, Indianapolis, Indiana, USA, 2010,
pp. 135-146.

C. Clasen, M. Didonet Del Fabro, M. Tisi, Transforming Very Large Models
in the Cloud: a Research Roadmap, in: First International Workshop on
Model-Driven Engineering on and for the Cloud, Springer, Copenhagen,
Denmark, 2012.

F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A Model Transformation
Tool, Science of Computer Programming 72 (1-2) (2008) 31-39, special Issue
on 2nd issue of experimental software and toolkits (EST).

A. Benelallam, A. Gémez, M. Tisi, J. Cabot, Distributed Model-to-model
Transformation with ATL on MapReduce, in: Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language FEngineering,
SLE 2015, ACM, New York, NY, USA, 2015, pp. 37-48.

A. Gomez, A. Benelallam, M. Tisi, Decentralized Model Persistence for
Distributed Computing, in: Proceedings of 3rd BigMDE Workshop, Vol.
1406, CEUR Workshop Proceedings, 2015.

H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic
Graph Transformation, Springer-Verlag, 2006.

G. Mezei, T. Levendovszky, T. Meszaros, I. Madari, Towards Truly Parallel
Model Transformations: A Distributed Pattern Matching Approach, in:
IEEE EUROCON 2009, IEEE, 2009, pp. 403—410.

B. Izs6, G. Szarnyas, I. Rath, D. Varré, IncQuery-D Incremental Graph
Search in the Cloud, in: Proceedings of the Workshop on Scalability in
MDE, BigMDE ’13, ACM, New York, NY, USA, 2013, pp. 4:1-4:4.

40

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492

1345

1350

1355

1360

1365

1370

1375

1380

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

C. Krause, M. Tichy, H. Giese, Implementing graph transformations in the
bulk synchronous parallel model, in: International Conference on Funda-
mental Approaches to Software Engineering, Springer, 2014, pp. 325-339.

L.-D. Tung, Z. Hu, Towards systematic parallelization of graph transfor-
mations over pregel, International Journal of Parallel Programming (2015)
1-20.

L. Burgueno, J. Troya, M. Wimmer, A. Vallecillo, On the Concurrent
Execution of Model Transformations with Linda, in: Proceeding of the First
Workshop on Scalability in MDE, BigMDE 13, ACM, New York, NY, USA,
2013, pp. 3:1-3:10.

L. Burgueno, E. Syriani, M. Wimmer, J. Gray, A. Moreno Vallecillo, Lin-
TraP: Primitive Operators for the Execution of Model Transformations
with LinTra, in: Proceedings of 2nd BigMDE Workshop, Vol. 1206, CEUR
Workshop Proceedings, 2014.

M. Tisi, S. Martinez, H. Choura, Parallel execution of atl transformation
rules, in: Model-Driven Engineering Languages and Systems, Springer, 2013,
pp. 656—672.

G. Imre, G. Mezei, Parallel Graph Transformations on Multicore Systems,
in: Multicore Software Engineering, Performance, and Tools, Vol. 7303 of
LNCS, Springer, 2012, pp. 86-89.

G. Bergmann, I. Rath, D. Varro, Parallelization of graph transformation
based on incremental pattern matching, Electronic Communications of the
EASST Vol. 18.

URL http://journal.ub.tu-berlin.de/index.php/eceasst/article/
view/265

G. Bergmann, A. Horvath, I. Rath, Incremental evaluation of model queries
over EMF models, International Conference on Model Driven Engineering
Languages and Systems.

URL http://link.springer.com/chapter/10.1007/
978-3-642-16145-2_6

Z. Ujhelyi, G. Bergmann, A. Hegediis, A. Horvath, B. Izso, I. Rath,
Z. Szatmari, D. Varr6, Emf-incquery: An integrated development envi-
ronment for live model queries, Sci. Comput. Program. 98 (2015) 80-99.
doi:10.1016/j.scico.2014.01.004.

URL https://doi.org/10.1016/j.scico.2014.01.004

G. Bergmann, D. Horvath, A. Horvath, Applying incremental graph trans-
formation to existing models in relational databases, in: Graph Transforma-
tions, Springer, 2012, pp. 371-385.

41

http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/265
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/265
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/265
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/265
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/265
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/265
http://link.springer.com/chapter/10.1007/978-3-642-16145-2_6
http://link.springer.com/chapter/10.1007/978-3-642-16145-2_6
http://link.springer.com/chapter/10.1007/978-3-642-16145-2_6
http://link.springer.com/chapter/10.1007/978-3-642-16145-2_6
http://link.springer.com/chapter/10.1007/978-3-642-16145-2_6
http://link.springer.com/chapter/10.1007/978-3-642-16145-2_6
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004

1385

1390

1395

1400

1405

1410

1415

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

F. Jouault, M. Tisi, Towards incremental execution of atl transformations,
in: Theory and Practice of Model Transformations, Springer, 2010, pp.
123-137.

H. Giese, R. Wagner, From model transformation to incremental bidirec-
tional model synchronization, Software & Systems Modeling 8 (1) (2009)
21-43.

G. Bergmann, I. David, A. Hegediis, A. Horvath, I. Rath, Z. Ujhelyi,
D. Varro, Viatra 3: A reactive model transformation platform, in: Inter-
national Conference on Theory and Practice of Model Transformations,
Springer, 2015, pp. 101-110.

I. David, I. Rath, D. Varro, Streaming model transformations by complex
event processing, in: International Conference on Model Driven Engineering
Languages and Systems, Springer, 2014, pp. 68-83.

S. Martinez, M. Tisi, R. Douence, Reactive model transformation with atl,
Science of Computer Programming 136 (2017) 1-16.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
J. Zhou, SCOPE: Easy and Efficient Parallel Processing of Massive Data
Sets, Proceedings of the VLDB Endowment 1 (2) (2008) 1265-1276.

C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a
not-so-foreign language for data processing, in: Proceedings of the 2008
ACM SIGMOD international conference on Management of data, ACM,
2008, pp. 1099-1110.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, R. Murthy, Hive: a warehousing solution over a map-reduce
framework, Proceedings of the VLDB Endowment 2 (2) (2009) 1626-1629.

M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed
data-parallel programs from sequential building blocks, in: ACM SIGOPS
Operating Systems Review, Vol. 41, ACM, 2007, pp. 59-72.

N. Amaélio, J. de Lara, E. Guerra, Fragmenta: A theory of fragmentation for
MDE, in: The ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems (MODELS), 2015, 2015, pp. 106-115.

Markus Scheidgen, EMF fragments (2014).
URL https://github.com/markus1978/emf-fragments/wiki

A. Garmendia, E. Guerra, D. S. Kolovos, J. de Lara, EMF Splitter: A
Structured Approach to EMF Modularity, XM@ MoDELS, 3rd Extreme
Modeling Workshop 1239 (2014) 22-31.

CDO Model Repository| (2014).
URL http://www.eclipse.org/cdo/

42

https://github.com/markus1978/emf-fragments/wiki
https://github.com/markus1978/emf-fragments/wiki
http://www.eclipse.org/cdo/
http://www.eclipse.org/cdo/

1420

1425

1430

1435

1440

1445

1450

[43]

[44]

[45]

[46]

[47]

48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

M. Scheidgen, A. Zubow, J. Fischer, T. H. Kolbe, Automated and Transpar-
ent Model Fragmentation for Persisting Large Models, in: 15th International
Conference on Model Driven Engineering Languages and Systems, Springer-
Verlag, 2012, pp. 102-118.

J. E. Pagén, J. S. Cuadrado, J. G. Molina, Morsa: A Scalable Approach for
Persisting and Accessing Large Models, in: 14th International Conference
on Model Driven Engineering Languages and Systems, Springer-Verlag,
2011, pp. 77-92.

J. E. Pagan, J. G. Molina, Querying large models efficiently, Information
and Software Technology 56 (6) (2014) 586 — 622.

K. Barmpis, D. S. Kolovos, Comparative analysis of data persistence tech-
nologies for large-scale models, in: Proceedings of the 2012 Extreme Model-
ing Workshop, XM 12, ACM, New York, NY, USA, 2012, pp. 33-38.

MongoDB Inc., MongoDB (2016).
URL https://www.mongodb. com/

Bryan Hunt, MongoEMF| (2014).
URL https://github.com/BryanHunt/mongo-emf/

T. Horn, The TTC 2013 Flowgraphs Case, arXiv preprint arXiv:1312.0341.

Object Management Group, Object Constraint Language, OCL, URL: http!
//www . omg . org/spec/0CL/ (May, 2016).

K. Lano, S. Kolahdouz-Rahimi, Model-transformation design patterns,
IEEE Transactions on Software Engineering 40 (12) (2014) 1224-1259.
doi:10.1109/TSE.2014.2354344.

Apache Software Foundation, Apache Hadoop, URL: http://hadoop.
apache.org/| (May, 2016).

Apache Software Foundation, Apache Hadoop Distributed File System
(HDFS), URL: https://hadoop.apache.org/docs/r1.2.1/hdfs_design|
html (May, 2016).

C. Gomes, B. Barroca, V. Amaral, Classification of Model Transformation
Tools: Pattern Matching Techniques, in: Proceedings of 17th International
Conference Model-Driven Engineering Languages and Systems, Springer
International Publishing, 2014, pp. 619-635.

M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, J. Uhlmann, Graph-
based Data Clustering with Overlaps, Discrete Optimization 8 (1) (2011)
2-17.

43

https://www.mongodb.com/
https://www.mongodb.com/
https://github.com/BryanHunt/mongo-emf/
https://github.com/BryanHunt/mongo-emf/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://dx.doi.org/10.1109/TSE.2014.2354344
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

1455

1460

1465

1470

1475

[56] A. Benelallam, M. Tisi, J. Sanchez Cuadrado, J. de Lara, J. Cabot, Efficient
Model Partitioning for Distributed Model Transformations, in: Proceedings
of the 2016 ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2016, ACM, New York, NY, USA, 2016.

[57] M. Kuramochi, G. Karypis, Frequent subgraph discovery (2001). |doi:
10.1109/ICDM.2001.989534.

[58] E. Brewer, CAP twelve years later: How the "rules" have changed, Computer
45 (2) (2012) 23-29.

[59] Object Management Group, XML Metadata Interchange, URL: http://
www . omg . org/spec/XMI/| (May, 2016).

[60] G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Y. Vernageau, A. Gémez,
J. Cabot, NeoEMF: A multi-database model persistence framework for very
large models, Sci. Comput. Program. 149 (2017) 9-14.

[61] J. Lin, M. Schatz, Design patterns for efficient graph algorithms in mapre-
duce, in: Proceedings of the Eighth Workshop on Mining and Learning with
Graphs, MLG ’10, ACM, New York, NY, USA, 2010, pp. 78-85.

[62] Amazon Web Services, Inc., Amazon EMR FAQs, URL: http://aws,
amazon.com/elasticmapreduce/fags| (May, 2016).

[63] Onepoint, https://www.datastax.com/wp-content/themes/
datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf| (2015).

[64] The atl transformation zoo, http://www.eclipse.org/atl/
atlTransformations/ (2014).

44

http://dx.doi.org/10.1109/ICDM.2001.989534
http://dx.doi.org/10.1109/ICDM.2001.989534
http://dx.doi.org/10.1109/ICDM.2001.989534
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://aws.amazon.com/elasticmapreduce/faqs
http://aws.amazon.com/elasticmapreduce/faqs
http://aws.amazon.com/elasticmapreduce/faqs
https://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
https://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
https://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
http://www.eclipse.org/atl/atlTransformations/
http://www.eclipse.org/atl/atlTransformations/
http://www.eclipse.org/atl/atlTransformations/

	Introduction
	Problem statement
	A distributed platform for relational MTs
	Outline of the paper

	Related Work
	Distributed and parallel graph processing
	Distribution for graph processing languages
	Shared-memory parallelization for graph processing languages
	Alternative execution semantics for scalable transformations
	High-level languages for distributed data-parallel computing

	Scalable persistence of VLMs
	XMI-based approaches
	Relational-based approaches
	NoSQL-based approaches

	Current limitations to scalable MT and persistence

	Background
	The ATL transformation language
	MapReduce

	Conceptual Framework
	Definitions
	Overview of the distributed transformation process

	Distributed Relational Model Transformation on MapReduce
	ATL and MapReduce alignment
	ACID properties for atomic model manipulation operations in ATL

	Decentralized Model Persistence for Distributed MTs
	Guaranteeing ACID properties for distributed MTs with ATL

	Tool Support: ATL on MapReduce (ATL-MR)
	Model distribution and access in ATL-MR
	Failure management in ATL-MR

	Experimentation
	ATL-MR on XMI
	Experiment I: speed-up curve
	Experiment II: size/speed-up correlation

	ATL-MR on NeoEMF/Column
	Discussion

	Conclusion and Future Work

