A parametric Kantorovich theorem with application to tolerance synthesis

Abstract : We propose a parametric Kantorovich theorem, which will achieve these two tasks. The idea is to compute worst case Kantorovich constants with respect to parameters q using a branch and bound algorithm dedicated to nonlinear nonsmooth global optimization. A rigorous first order model of the dependence with respect to parameters p is used to enforce the convergence of the error upper-bound. Details about these developments can be found in [1]. We provide here a different point of view, in particular emphasizing the reason why not using the interval Newton operator, in spite of its theoretical superiority on Kantorovich theorem in this context [2].
Type de document :
Communication dans un congrès
The 18th International Symposium on Scientific Computing, Computer Arithmetic, and Verified Numerical Computations, Sep 2018, Tokyo, Japan
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01863731
Contributeur : Stéphane Caro <>
Soumis le : mercredi 29 août 2018 - 04:16:29
Dernière modification le : jeudi 6 septembre 2018 - 08:44:05

Fichier

SCAN2018_Goldsztejn_Caro_Chabe...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01863731, version 1

Collections

Citation

Alexandre Goldsztejn, Stéphane Caro, Gilles Chabert. A parametric Kantorovich theorem with application to tolerance synthesis. The 18th International Symposium on Scientific Computing, Computer Arithmetic, and Verified Numerical Computations, Sep 2018, Tokyo, Japan. 〈hal-01863731〉

Partager

Métriques

Consultations de la notice

73

Téléchargements de fichiers

13