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UNILATERALITY AND DRY FRICTION IN THE 

DYNAMICS OF RIGID BODY COLLECTIONS 

M. Jean & J. J. Moreau

Laboratoire de Mécanique et Génie Civil, 
Université Montpellier II, France. 

1. INTRODUCTION

Dynamical evolution problems concerning collections of rigid bodies are 
nonsmooth in three respects : 

• the mutual impenetrability of the considered bodies or their possible
confinement by external boundaries with given motion impose on the
configuration parameters q = (q1 , ... , gn), to remain in a region with
corners and edges,
• in the event of a collision, velocity jumps are expected,
• the law of Coulomb, that we shall use for representing dry friction at
possible contact points, consists of a nonsmooth relation between local
velocities and contact forces.

Methods from "Nonsmooth Mechanics" [1] [2] may be used in fonnulating 
these problems. This generates computational algorithms which face 
nonsmoothness without resorting to any technique of regularization and prove 
efficient enough to treat the motion of large collections of rigid bodies by 
using only a microcomputer. 

This text presents the main features of such a fonnulation and sketches the 
related algorithms. The lecture was illustrated with videoprojector simulations 
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created by running programs or read from the microcomputer bard disk 
conceming: 

• The two-dimensional motion of multistone buildings supported by
quaking ground, including the possible phases of collapse. Stone blocks
are viewed as superimposed without mortar, which is the case of ancient
monuments [3].
• The motion of granular materials under various circumstances, in two
or three dimensions. As in most models investigated in literature, grains
are treated as rigid balls. Examples of the fluidization caused in a
granular bed by the vibration of containing vesse} were displayed, as well
as the slow shear motion produced in compact grain assemblies by the
displacement of boundaries.

Two drawings extracted from these simulations are annexed at the end : 
Example 1 shows the progressive ruin of a wall supported by a ground 

affected with horizontal sinusoïdal oscillation. 
Example 2 shows the simulation of an experiment currently made with 

"Schneebeli materials", i.e. piles of parallel cylindrical pins. The lower and 
left boundaries are fixed. The right boundary moves with constant velocity. 
The upper boundary is free to move vertically but experiences a given extemal 
load. 

This is a general fact that any application of Science to a real situation 
depends on the quantitative information one bas been able - or willing - to 
collect about it. Such an information is always uncomplete ; the model one uses 
just defines the "format" in which the available data are recorded and 
processed and in which predictions are eventually expressed. Since it relies on 
fragmentary data, the model cannot be expected to generate exhaustive 
predictions. 

These facts of life are conspicuous in the present subject matter. Real 
bodies are not rigorously rigid. It is only said, for the two above examples, 
that stone blocks or grains exhibit very small deformability ; the most 
objective way of treating this - rather vague - piece of information consists in 
using the model of a perfectly rigid body. The drawback is that, in case of 
multiple contacts, such a state of information leaves the system of contact 
forces underdetermined. H the values of these forces are needed for predicting 
the motion, our algorithms implicitely make choices which depend, for 
instance, of the numbering of bodies or other computational details. 

The assertion of dry friction covers a physically intricate set of 
phenomena. Coulomb law, in spite of its limited precision, provides in very 
numerous cases the only practical frarnework for dealing with this sort of 
contact condition. 
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It is still more difficult to quantitatively apprehend collisions and the 
velocity jumps they generate. Here also one bas to be content with a pretty 
crude description of reality. The systematization we present in Sec. 6 below 
proves logically consistent and computationally efficient. Its domain of 
physical validity bas to be determined through experiments which now are 
only at their preliminary stage : experiments on blocks have been conducted, 
interactively with our prograrns, by M. Raous [4]. Comparaison is also under 
way with the experiments on collections of metal balls of J. Clément, J. Duran 
and J. Rajchenbach [5]. 

The existential study of solutions is not evoked in this paper. Only partial 
results have been obtained so far [6]-(11 ], but research still continues. 
Uniqueness of solution to an initial value problem should not be expected in 
general. 

No comparison bas yet been made between our "nonsmooth" computation 
techniques and the numerical results which would be produced from the same 
data by more conventional software, treating the impenetrability constraints 
through penalization methods. Severa} existing codes of this sort are related to 
the pioneering work of P. Cundall (12]. Recently, codes devised for Molecular 
Dynarnics simulations on big computers have been applied to the dynarnics of 
granular materials (13][14], through the approximation of impenetrability 
constraints by sufficiently steep interaction potentials. 

2. ANAL YTICAL SETTING

Let the possible configurations of the system be pararnetrized, at least 
locally, through generalized coordinates, say q = (q1, q2, ... , qn). As usual such 
a reduction to finite freedom is assumed to result from (bilateral) ideal 
constraints, namely the strict rigidity of the various parts and the possible 
operation of frictionless linkages. 

After constructing the pararnetrization, one additionally takes into account 
some unilateral constraints whose geometric effect is expressed by a finite set 
of inequalities 

fa(t, q) :s; 0, ae {l , 2, ... , ic), (2.1) 

where f1, f2, ... ,f
ic 

are given functions. Commonly, such inequalities describe
the mutual impenetrability of some parts of the system or the confinement of 
some of them by extemal boundaries with prescribed motion. Equality fa= 0 
then corresponds to the occurrence of a contact. 

In all the sequel, it will be assumed that each of the functions fa is C 1,
with afa/aq:;t:O at least in a neighborhhood of the hypersurface fa=O of Rn+l.

For every imagined motion t-+q(t) and for t such that the derivative 
q(t)e Rn exists, the kinetic energy bas an expression of degree 2 in q , say 
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�(t,q,q) = ! Ai}t,q) èl � + Bi
(t,q) tji + C(t,q), (2.2) 

where A is a synunetric positive definite nxn-matrix, Be Rn and Ce R. 
Tuen, as far as smooth, i.e. twice differentiable, motions are concemed, 

the system Dynamics is govemed by Lagrange's equations, written below as an 
equality in Rn 

A(t,q) q = F(t,q,q) + L ra. (2.3) 
a 

Expression F here comprises standard terms of Lagrange's equations and 
the covariant components, relative to the parametrization (q), of some applied 
forces supposed given as functions of time, position and velocity. The element 
ra of R n is made of the covariant components of the contact forces
experienced by the system in case the contact f

a
= 0 holds. 

The definition of the covariant components of a force is classically 
connected with the system kinematics. 

Suppose first that inequality f
a

::; 0 expresses the mutual impenetrability 
of some pair of rigid constituents of the system, say 'B and 'B', so that equality 
f

a
= 0 corresponds to these two bodies touching each other at some point of 

space denoted by Ma· This we shall assume to be an isolated contact point, but 
other contacts, corresponding to different values of a, may also be effective 
between the same bodies. For every imagined motion t�q(t) bringing the 
system into the investigated position, the velocities 'J/

a 
and 'J/� of the respective 

particles of 'B and 'B' passing at point M
a 

let themselves be expressed as 
affine functions of the possible value u of the derivative q. The same is thus 
true for the relative ve/ocity 'Ua='J/a-'11� of 'B with respect to 'B' at this point, 
say 

'Ua = G
a

u+ ,wa• (2.4) 

where G
a

:Rn�R3 denotes a linear mapping, depending on t and q. No 
attention is paid at this stage to the imagined motion preserving contact or not. 
The term w

a
e R3, a known function of t and q, vanishes in the usual case of a 

scleronomic, i.e. time-independent, parametrization. 
Let 1{.a denote the contact force that body 'B experiences at point M

a 
from 

body 'B'; then 'B' experiences from 'B the force -1{.a. Classically, the covariant 
component of this pair of forces are given by 

ra = G� 1{.a , (2.5) 

whith G�: R3 � Rn denoting the transpose of G
a

. 
Similar formulas hold if inequality f

a
::,; 0 expresses the confinement of a 

rigid part 'B of the system by some extemal boundary with prescribed motion. 
Assume that equality f

a
= 0 corresponds to contact taking place at some point, 
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here again denoted by M
a

. The relative velocity, at this point, of 'Bwith 
respect to the boundary still bas an expression of the form (2.4), where ,Wa 
now takes into account the given velocity of the boundary. And ra in (2.5) 
tums out to be the covariant components of the force 1{.a only, acting on '13. Its 
counterpart -1{.a, exerted by 'B upon the boundary, is no more in this case a 
force experienced the system. 

In both cases, the following relationship is found [15) to hold between 
af

a
/aq and the normal unit vecteur na at point M

a
to the two contacting 

surfaces, directed toward 'B 

3Â.�0 such that G� na
= -Â. af

a
/aq. (2.6) 

In all the sequel, we shall assume that the mapping G
a 

is surjective of Rn 

to R 3; equivalently, the mapping G� is injective of R 3 to Rn . Only some 
special positions of certain systems submitted to linkages may give rise to 
"wedging" effects which break this assumption. 

3. CONTACT LA WS

As far as smooth motions are concemed, the system dynamics is govemed 
by the differential equation (2.3) where the elements ra are involved in the 
problem through (2.4), (2.5), u = q, and through a system of contact laws

law 
a

(t, q, 'Ua, 1é1') = true. (3.1) 

The latter describes what, in physical space, happens at contact a. Strictly 
speaking, 'Ua, 1é1', G

a 
make sense only in the case of effective contact, so the 

index a in conditions (2.3) to (3.1), would have to range through the subset 
{ae {1,2, ... ,lC} : f

a
(t,q)=O}. Actually, in existential studies, as well as in 

computation, it proves convenient to make a range through the larger set 

J(q) = {ae { 1, 2, ... , K} : fa
(t, q) � O} (3.2) 

The matrix Ga which was so far defined only for q lying in the hypersurface 
f

a
(t, q) = 0 bas then to be extended (in some smooth arbitrary way) to a 

neighbourhood of this hypersurface. One similarly extends the definition of 
the unit vector na, preferably with preservation of (2.6). 

One is looking for motions verifying the 1C inequalities (2.1) for every t. 
Instead of explicitely adjoining these to (2.3)-(3.1), we prefer to rely on some
adequate formulation of the contact laws (2. 7) for securing the m.

DEFINffiON. A contact law, i.e. a relation of the form (3.1), is said complete 
if it involves the three fol/owing implications 
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fa(t, q) < 0 => 1{.a= O. 
fa(t, q) � 0 => na. 'Ua � 0, 
na.'Ua > 0 => 1{.a= O. 

Let us comment on the importance of (3.4). Put 

{ 
{ 'U e  R 3: na.'U �O) if fa(t, q) � 0

�(t, q) = 3 R if fa(t,q) < 0,

(3.3) 

(3.4) 

(3.5) 

(3.6) 

called the set of the right-admissible values for the relative velocity of the two 
concemed bodies at point Ma. The following is easily established (15] 

PROPOSITION. Let I be a time-interval with origin to and let a motion 
q:1--+Rn be defined through a locally integrable velocity function u:1--+Rn by

t--+ q(t) = q(t0) + J� u(s) ds. (3.7) 

If 'Ua(t)=Ga(t,q)u(t)+ Wa(t,q) belongs to �(t,q(t)) for almost every t 
and if inequality fa(t, q(t))g) holds at the initial instant to, then this inequality 
holds for every te I. 

In other words, provided the initial position is correct, the 
impenetrability condition fa�O is automatically taken care of by (3.4). Observe 
that this statement is sensitive to the ordering of time. In the symmetric 
assertion involving, instead of the initial instant to, the possible final point of 1, 
one should replace � by -�. which may be viewed as the set of the left­
admissible values of 'Ua. 

The importance of (3.6) will only become apparent in further Sections, 
devoted to the study of collisions and to numerical algorithms. 

EXAMPLE : Frictionless contact. 
Classically, the contact at point Ma is said frictionless if 

3p�O such that 1{.a= p na. (3.8) 

Let us incorporate this into a complete contact law. 
The subset �(t,q) of R 3 defined in (3.6) is closed and convex. In

Convex Analysis, a general definition is given for the normal ( outward) cone 
to such a subset at any point x of R3

. This cone is empty if and only if x does 
not belong to the considered subset ; it reduces to { 0) if x is an interior point. 
In what concems �(t, q), its normal cone at point x, that we shall denote by 
9{a(x), essentially equals {O) if fa(t,q)<O since �(t,q)=R3 in that case. For 
fa(t,q)�O. 1Ca(t,q) is a closed half-space, so 9{a(x)={O) if na.x>O and 
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9{a(x)=0 if na.x<O; otherwise, i.e. if x lies in the boundary of the half-plane, 
9{a(x) consists of the half-line generated by-na. 

So, by asserting 

-1{.a E 9{,°'('U),

a complete contact Law is formulated, which involves (3.8). 

4. COULOMB FRICTION

(3.9) 

Let us stipulate from start that the contact law we are to define is
complete. Tuen 1{.a can be nonzero only if fa<t, q)� and na. 'Ua= 0 ; the latter 
means that 'Ua belongs to T, the vector-plane tangent at point Ma to the 
contacting bodies. This is just the situation in which the law of Coulomb is 
classically considered. 

For brevity, let us omit the index a. Friction data may be specified by 
giving the Coulomb cane, say C, at the considered contact point. This is a 
(closed, convex) conical region of R3, axisymmetric about n, with half-angle 
equal to the angle of friction. 

Defining this subset of R3 is equivalent to giving its indicator function 'l'e 
(namely 'l'c<x)=O if xe C and +oo otherwise), a lower-semicontinuous convex 
fonction on R3

. The subdifferential d'l'c(x) equals the normal cane to Cat point 
x, in the sense recalled in the preceding Section. We propose to formulate 
Coulomb law in the following form 

-'LJ E proh a'l'c(�. (4.1) 

ln fact this relation compels 1{.to belong to C, since otherwise the right­
hand side would be empty. If 1{.eint C, the right-hand side reduces to {O}, so 
'U=O. If 1{.belongs to the boundary of Cand is nonzero, the normal cone to C at 
this point equals the half-line, outward normal to this boundary. Elementary 
Geometry readily yields the traditional statement of Coulomb law 
corresponding to this case. Finally, if 1{.=0, the subdifferential d'l'c

<� equals 
the polar cone of C, whose projection onto T equals the whole of T, so (4.1) 
coïncides with the traditional Coulomb law in this case too. 

By using instead of Ca non axissymetric convex cone, one obtains a 
plausible description of anisotropie friction. 

Numerous variants may be derived from (4.1). For instance (16], one 
may define on R3 the lower-semicontinuous convex fonction 

'U--+ e('U) = !11u112 + 'l'T('U). (4.2) 

and standard arguments of Convex Analysis yield the equivalence of ( 4.1) to 
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o e a'l'
c
<1ô + aec 'll). (4.3) 

G. de Saxcé [17] bas recently proposed alternative formulations of Coulomb
law, stipulating that the pair ( 'LJ, 10 should be a minimum point or a saddle
point for some functions called bipotentials.

5. NONSMOOTH EVOLUTIONS

In the event of a collision, the velocity fonction u is expected to have a 
jump. Even without collision, such jumps have long been recognized to be 
possible in the dynamics of systems involving dry friction [18]. Their 
occurrence is due to paroxysms in the contact forces, similar to the /ocking
effect commonly observed in the statics of the same systems. One may call 
themfrictional catastrophes. 

Mathematically, the velocity fonction u:I�R0, connected through (3.7) 
with the evolution fonction q:I�R0, can no more be a solution on the whole 
interval I to the differential equation (2.3), that one could equivalently write 

A(t, q)u; = F(t, q, u) + L ra. (5.1) 
a 

The most natural framework allowing u to exhibit jumps consists in 
assuming that this function of the real interval I bas locally bounded variation,
i.e. it bas bounded variation on every compact subinterval of I. Notation
ue lbv(I, Rn). The reader may refer to [19] as an expository text on this
subject. Classically, with every such u, an R 0-valued measure on I is
associated, called the differential measure or Stieltjes measure of u ; let us
denote it by du.

Looking again at the smooth case, govemed by the differential equation 
(5.1), let us recall that the existence question for solutions to this equation is 
usually addressed by transforming it into an integral equation. This supposes 
that ail terms are locally integrable with respect to the Lebesgue measure dt on 
I, so that (5.1) may equivalently be viewed as the following equa/ity o/Rn­
valued measures on the interval I 

A(t, q)u; dt = F(t, q, u)dt + L ra dt. 
a 

(5.2) 

Now the term ut dt, namely the R0-valued measure possessing the element u; 
of L1�c(I, dt; Rn) as density function relative to the Lebesgue measure dt, is 
nothing but the differential measure du of the function u. In fact, the latter 
being in this case locally absolutely continuous, belongs to lbv(I,R0) 

A natural extension of (5.2) therefore is 

A(t, q)du = F(t, q, u) dt+ L dRa, (5.3) 
a 
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where the Rn-valued measures dRa denote the covariant components of the 
contact impulsions. This may be called a measure differential equation.

The traditional theory of percussions provides an intuitive introduction to 
this extension of Classical Dynamics. In fact, percussions occuring at discrete 
instants are Rn-valued Dirac measures on the considered time-interval. They 
constitute atoms of the contact impulsion measures. The reader in want of a 
more elaborate theoretical background for the equations of Nonsmooth Dyna­
mics might refer to [21]. 

In smooth motions, contact impulsion measures admit contact forces as 
density functions with regard to dt, the Lebesgue measure on I. In any case, 
there exists (non uniquely) a nonnegative real measure, say dÂ., on the interval 
I, relative to which the measures du, dt, dRa possess density functions, say 
ui e L1�c(I, dÂ.; Rn), ti e L1�/I, dÂ.; R) and R'fe L1�(1. dÂ.; R0) respectively. 
Therefore (5.3) is equivalent to this equality of elements of R0 

A(t, q) ui(t) = F(t, q, u) ti(t) + L Rf(t), (5.4) 
a 

holding for every t in I, with the possible exception of a dÂ.-negligible subset 
(equivalently one may assign null values to the respective density functions on 
such a subset, so as to make (5.4) hold everywhere).

The use of density functions makes clear the calculation of the R0-valued 
measure dRa as the "covariant component" of the corresponding contact 
impulsion. The latter is a R3-valued measure on I that we shall denote by dSa. 
The base measure dÂ. can be chosen in such a way that dSa possess a density 
function s'fe L1�(1. dÂ.; R3). Tuen, similarly to (2.5), 

Rf(t) = G�(t,q) S'f(t). 

In particular, the considered contact develops a percussion at time te if 
and only if the measure dÂ. possesses at the point te of I an atom, with mass 
Â.c>O, such that S'f(tc):;t:O. The value of this percussion equals the vector 
Ïi.c5f(tc). 

Any ue lbv(l,R n) possesses at every point t of I a right-limit and a left­
limit respectively denoted by u+(t) and u-(t) (by convention the left-limit at the 
initial instant to is interpreted as u(t0) and the symmetric convention should be 
applied to the possible final point of 1). Typically, for every compact 
subinterval [a, b] of I, one bas 

fca.b]du = u+(b) - u-(a). 

This a pp lies in particular to the case a= b : in other words the integral of du 
over the singleton {a) equals the jump of u at point a. Thus the point a carries 
an atom of the measure du if and only if the jurnp is nonzero. 
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This formula shows that the values that u may take at its discontinuity 
points bear no relationship with du. These values are also immaterial in 
relation (3.7), which connects u with the evolution q:I� R n, since the 
discontinuity points of an lbv function classically make a countable subset of I, 
hence Lebesgue-negligible. 

In case of a collision affecting the system at time te, every effective 
contact (including of course those suddenly introduced by the collision) is 
susceptible to exhibit a percussion. One is tempted to introduce the percussion 
vector A.c5'f(tc) in the place of 1{.a into a law of the form (3.1). Assuming this 
Law positive/y homogeneous with regard to 1{.a makes the choice of the base 
measure dA. indifferent. But then, which value of 'U

a
=G

a
u+ Wa should be 

considered? The most prudent answer to this question would be that the 
percussion vector conveys only an average of very large interaction forces 
arising during some very short, but intricate, episode. The process of 
interaction might appear too complex to be described by a relation involving 
this only vector, whatever value of 'U is adopted. 

Finite element simulations of collisions, with body deformations 
completely taken into account, were presented during the lecture. 

Anyway, since the data needed for investigating deformations are, in most 
practical situations, unavailable we are going to propose a pragmatic 
procedure leading to plausible calculation. 

6. DISSIPATION INDEX

A collision consists of a short contact episode. The more rigid the
involved bodies are, the shorter this episode should be. Even if the material, 
the bodies are made of, is assumed perfectly elastic, energy conservation 
cannot be expected. In fact, disturbances are likely to propagate from the 
collision locus to the whole system and also, if the latter is linked with some 
external support, to the outside world. After contact recedes, a state of 
vibration should persist. At the macroscopic observation level, this does not 
contradict the rigidity assertion of the system bodies, but the energy involved 
in such a microscopie agitation could not be negligible. So the collision 
macroscopically appears as a dissipative process. This is ail the more true if 
material dissipation also occurs, due to friction at the contact locus or to 
permanent deformation and interna! damping affecting the bodies. 

In the Rational Mechanics of the past hundred years, authors have tended 
to localize the collision mechanism in the immediate vicinity of the contact 
locus, the affected bodies being otherwise considered as perfectly rigid. In that 
restricted framework, some plausible analysis may be developed. As early as 
1880, G. Darboux [22] (see also [241) applied to rigid body collisions a 
multiple scaling method : the very short duration of the contact episode is 
parametrized through a micro-time, say 't. Using the equations of rigid 
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dynamics one may study the velocities of the involved bodies as functions of t, 
while their positions are treated as constant. Coulomb law can in that way be 
invoked, so as to relate, for every 't, the contact force with the sliding velocity 
calculated at the contact point. In our opinion, the probable global 
microdeformation of the bodies limits the applicability of this approach. 

Double scaling in time bas also been used in [23] for analysing the 
collision of two bodies which, in the vicinity of the impact point, are assumed 
to admit some very slight viscoelastic deformability. 

Concerning the collision of two otherwise unconstrained bodies, Newton's 
restitution coefficient can be experimentally identified only for simple 
geometry, such as a pair of balls. lt can also reasonably be applied to the 
collision of a ball with the boundary of a massive obstacle. 

Anyway, the concept is not valid 
in case several contacts are present at 
the collision instant. This is 
demonstrated by the example of the 
rocking of a slender rectangular block 
on a fixed horizontal ground with zero 
alleged restitution coefficient. Assume 
a slight concavity of the lower edge so 
that, when the block attains its vertical 
position, contact takes place through 
the two lower corners. Clearly, if the 
assumption of zero restitution 
coefficient is applied to both points, no 
rocking is found. 

One of us bas previously 
proposed [15] a consistent formalism 
for specifying the "degree of 
bounciness" in systems with an 
arbitrary number of contacts. This 
consists in asserting that, even for 
nonsmooth motions, a contact law of 

-......

3 

the form (3.1) relates, for every a and every t, the density of contact 
impulsion J'f(t) to the average velocity defined as the weighted mean of the 
right- and left- limits of the local velocity 'U

a
=G

a
u + Wa, namely 

1-o
a 

l+o
a 

'U� = -2- � + -2- 'l{,_. (6.1) 

Here o
a 

denotes an element of [0,1] called the dissipation index of the 
considered contact. The name is justified by the following formula, concerning 
the case where ail o

a 
have the same value o. One calculates the decrease of 

kinetic energy at the time of a collision 
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� - � = ! A
ij
(u1- u1)(uj- u}")ô- � 'U� . s«. (6.2) 

The first term on the right-hand side is nonnegative since Aij is a positive 
definite matrix and ô�. Ali terms after the L symbol are nonpositive if the 
contact laws assumed to hold at the various contact points ail are dissipative
(such are, in particular, the law of Coulomb or the law of frictionless contact 
as it was formulated in Sec. 3). 

The above formula is actually a special case of the expression of the 
differential measure of the function t�'Eic in Nonsmooth Dynamics, obtained 
through the Differential Calculus of functions with locally bounded variation
(15)(19][20]. 

Let us now specify that the condition law a< 'U�, sa) =  true, assumed to hold 
at contact a at the time of a collision, is a complete contact Law. In view of 
(3.4) and (3.5) this assumption involves the implication 

J°':;t:0 � na.'U�=O 

Due to the definition (6.1) of 'U�, the latter equality is equivalent to 
1-ô 

na.� = ---!- na. 'U�:l+ua 
Therefore 1-ôa /1 + Ôa coïncides in most cases with the restitution coefficient.
For that reason Ôa must not exceed 1 ; otherwise, the above would yield a 
negative restitution coefficient, which is kinematically inacceptable. 

But equality na. 'U� = 0 may not hold if J°'= 0 : this allows the block to
rock! 

REMARK 1. The case where the complete law of frictionless contact, such as 
it was formulated in (3.9), is assumed to hold at ail contacts, with dissipation
index equal to I, corresponds to the Standard lnelastic Shocks, introduced in 
an earlier paper [25]. 
REMARK 2. The above way of formulating Dynamics in the event of a 
velocity jump also applies to the frictional catastrophes referred to in Sec. 5 
(see discussion in [15]). 

7. OUTLINE OF AN ALGORITHM

Among numerous variants experimented so far, here is the sketch of a 
time-discretization algorithm directly derived from the foregoing. 

Let [t1,tp], tF = t1+h, denote an interval of the discretization. Starting with 
q1, u1, approximate values of q and u at time t1, one has to calculate the final 
approximate values qF, Up. 
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Identification of contacts. 
Using the middle time tM=t1 +� h and the test position qM =q14h ui, the 

set of the contacts to be treated as active is estimated as 

J ={a: fa(tM' qM)�O). 

Discretization of the measure differential equation (5.3). 

A(qM)(up--01) = h F(tM' qM, U1) + L a13*(tM' qM) sJ3.
J3eJ 

i.e. in short

u = u + hK1F + K1 LGJ3* ,.R 
F I r:i. 

.).-. 
1-'eJ 

Contact laws. 

\taeJ: law a< 'U�, §L) = true, 

(7.1) 

(7.2) 

where the average local velocity is estimated through (2.4) and (6.1), with uF 
and u1 playing the roles of u+ and u- respectively, 

Pa 1 'U� = -1-Gnu1 +-1-GnuF + 'Wa. (7.3) 
+Pa +Pa 

Here Pa=(l-ôa)/(l+ôa) denotes the restitution coefficient attributed to the 
contact a. If the contact a takes place between a body of the system and some 
external boundary with prescribed motion, the term 'Wa equals the negative of 
the .boundary velocity vector at time tM and at the estimated contact point. For 
a contact between two members of thè system, 'Wa vanishes in the usual case of 
a scleronomic parametrization. 

Final position. 
1qF = qM +zh uF. 

The heaviest part of the computation lies in the resolution of (7.1),(7.2). 
Contact laws considered in the foregoing Sections were positively 
homogeneous with regard to velocities. This allows one to replace (7.2),(7.3) 
by 

\ta.eJ: lawa<PaGnu1 + GnuF + (l+pa)'Wa, §L) = true, 

to be joined with (7.1). Here is a relaxation technique, amounting to treat a 
succession of one-contact problems. 

Let an estimated solution ueiti, s!ï, � running through J, be obtained, with 
(7.1) verified. One attempts to construct an improved estimate, say ucirr, scerr' 
by altering only §L, i.e. Sc�rr = Se�ti for �:;t:a.. The new estimate is astrained to 
verify (7.1), i.e. since the old estimate verifies the same, 
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ucorr=uesti +A-laa*(s a _5a.) F F corr esu' (7.4) 

and to satisfy the law of contact a. By applying aa to both members of (7.4)

one gives to this contact law the following fonn 

law 
a< 'lf�St + onuet + H

a<sc�rr - se�ti
), sc�rr

) = true. (7 .5) 

Here the expressions 
'lfOnSt = p aau +(l+p )'Jlv. 

a a I a a• 
an element of R3, and H

a
= GaA-1Ga*, a symmetric positive definite 3x3

matrix, have constants values in the whole iterative process. 
Solving (7.5) with regard to the unknown Sc�rr 

is, in usual cases, easy. The 
above computation will be iterated, with a ranging cyclically through J. The 
decision of stopping iterations may be taken on observing the magnitude of 
Sc�

rr
-Se�ti or on checking the precision at which each 'll� satisfies the 

corresponding contact law. Convergence in this sense can always been 
obtained. Observe that, provided convergence is checked, the operator H

a 
in 

(7.5) may be replaced by any other mapping with zero limit at the origin ; this 
generates tricks for accelerating convergence. 

Clearly, the above algorithm tolerates a certain amount of violation of the 
impenetrability constraints. By adjusting the step-length and the stopping 
criterium, one may keep these errors arbitrarily small and prevent their 
accumulation. 

The iterated calculation is very simple, but needs to be repeated many times 
in case of numerous contacts. Since equation (7.1) is only preserved from one 
iteration to the next through the conservation condition (7.4), one should think 
of the possible accumulation of arithmetic errors. For safety, one may refresh 
ueiti from time to time, by retuming to (7.1) ; this proves useful only for
motions involving thousands of contacts. 

Technically, let us also observe that in man y usual applications, the nxn 
matrix A is constant and diagonal. aa is a 3xn matrix, but only the elements 
corresponding to the two bodies involved in contact a are nonzero. So the 
treatment of large collections of bodies does not require the handling of large 
matrices. 

REMARK. At every time-step, the above algorithm is ready to face velocity

jumps, whould they result from collisions or arise as frictiona/ catastrophes
[15). 

The possible breaking of some contacts is also automatically taken care of. 
Recall that, though contact breaks are usually smooth, their analytical 
treatment is not completely trivial. The traditional approach consists in 
calculating the motion under the tentative assumption that all contacts present 
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at some instant remain effective. If the calculation of contact forces in the 
course of such a motion yields, at a further instant, an unfeasible direction, 
one concludes that some contacts should break, so the consequent motion has to 
be calculated differently. But contacts which break are not necessarily those 
for which unfeasible contact forces were just found (for the frictionless case, 
see [26)(27]).
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Unilaterality and dry friction 

EXAMPLE 1 : WALL ON QUAKING GROUND 

Ground motion : 

Horizontal sinusoidal oscillation 
Frequency : 2 hertz 

Wall: 
Total amplitude : 25 cm

Initial height : 640 cm

Initial width: 630 cm

Number of blocks : 176

( sizes : 60x40 cm and 30x40 cm) 

Friction coefficient : 0.3 everywhere 

Restitution coefficient : 0 everywhere 

Time: 0 s

Time: 26.1 s

Time: 8 s

Time: 28 s
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EXAMPLE 2 : BIDIRECTIONAL STRAIN-STRESS EXPERIMENT 

l 

V 

.. 

Number of dislcs 1024 
192 disks r = 1.1 mm 
320 disks r = 1.05 mm 
512 disks r = 1.01mm 
Friction coefficient 0.5 
Load P=3300 N 
Velocity of the wall: 
V=O.l m/s 
Final strain 16% 




