A new class of block coordinate algorithms for the Joint EigenValue Decomposition of complex matrices

Abstract : Several signal processing problems can be written as the joint eigenvalue decomposition of a set of noisy matrices. This is notably the case of the canonical polyadic decomposition of tensors that is widely applied in blind identification and source separation. Most of the existing algorithms are based on a block coordinate procedure and require significant modifications to deal with complex-valued matrices. These modifications decrease algorithms performances either in terms of estimation accuracy of the eigenvectors or in terms of computational cost. Therefore, we propose a class of algorithms working equally with real-or complex-valued matrices. These algorithms are still based on a block coordinate procedure and multiplicative updates. The originality of the proposed approach lies in the structure of the updating matrix and in the way the optimization problem is solved in C. This structure is parametrized and allows to define up to five different JEVD algorithms. Thanks to numerical simulations, we show that, with respect to the more accurate algorithms of the literature, this approach improves the estimation of the eigenvectors and has a computational cost significantly lower. Finally, as an application example, one of the proposed algorithm is successfully applied to the blind sources separation of DS-CDMA signals.
Document type :
Journal articles
Complete list of metadatas

Cited literature [27 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01862357
Contributor : Xavier Luciani <>
Submitted on : Monday, August 27, 2018 - 12:10:00 PM
Last modification on : Tuesday, August 28, 2018 - 1:09:51 AM
Long-term archiving on: Wednesday, November 28, 2018 - 1:49:56 PM

File

couplev13elsevier.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Rémi André, Xavier Luciani, Eric Moreau. A new class of block coordinate algorithms for the Joint EigenValue Decomposition of complex matrices. Signal Processing, Elsevier, 2018, 145, pp.78-90. ⟨10.1016/j.sigpro.2017.11.016⟩. ⟨hal-01862357⟩

Share

Metrics

Record views

116

Files downloads

246