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Abstract

It is known that a 3-RPS parallel manipulator with an equilateral triangle base and an equilateral triangle

platform has two operation modes [1] whereas a 3-RPS cube manipulator with a cube shaped base and an

equilateral triangle platform has only one operation mode [2]. This behavior is indeed a result of the differ-

ence in the architectures of these manipulators. Therefore, this paper deals with the operation mode analysis

of 3-RPS parallel manipulators based on their design parameters. Study’s kinematic mapping is exploited

to derive the constraint equations of the manipulators under study. A linear combination of the constraint

equations independent of the joint variables is compared with a general quadric in the 7-dimensional projec-

tive space P7 to obtain some relations between the design parameters of 3-RPS manipulators with coplanar

revolute joints, such that those manipulators have two operation modes. Some special cases and a numerical

example are considered to emphasize the proposed approach and highlight the contributions of the paper.

Keywords: Study’s kinematic mapping, 3-RPS, parallel manipulator, operation modes.

1. Introduction

The 3-RPS parallel manipulator is a three degree-of-freedom (DOF) spatial mechanism, initially proposed

by Hunt [3]. This manipulator allows one pure vertical translation and two rotations about axes parallel

to the horizontal plane, but since those axes do not remain fixed when the manipulator moves, the two

rotations generate two parasitic horizontal translations. The mechanism is composed of three identical5

limbs connecting its base to its moving platform. Each limb consists of a revolute joint, a prismatic joint

and a spherical joint mounted in series.

Several arrangements of the joints are possible, e.g. the R-joint axes in the base frame can be tangential to

a circle, parallel or intersect at a common point.
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Several research works have dealt with the kinematic analysis of the 3-RPS parallel manipulator. Huang10

and Fang described the constraints of the manipulator [4] using screw theory. The number of solutions to

the inverse kinematics was first published by Nanua et al. [5] and Tsai [6], Self-motions [7] were investigated

by Schadlbauer et al. in which a spatial 3-RPS Manipulator was considered with R-joints tangential to the

base circum-circle. Workspace and joint space analysis [8] using quaternions was done by Chablat et al.,

and more special configurations of the 3-RPS manipulator [2] like the 3-RPS cube manipulator as well as15

the synthesis of design parameters with respect to specific operation modes [9] were both investigated by

Nurahmi et al. Moreover, a complete algebraic analysis of the 3-RPS parallel manipulator was published,

using Study’s kinematic mapping in [1] and in [10]. Gallardo et al. analyzed the kinematics of the 3-RPS

parallel manipulator by using screw theory [11].

The motion capabilities of the 3-RPS parallel manipulator were exploited in telescope applications studied20

by Carretero et al. [12] and in machine tool heads, investigated by Hernandes et al. [13].

The application for medical purposes like human machine interactions were investigated in [14], including

the control of the manipulator with PID controllers.

The subject of this paper is about the determination of some conditions on the design parameters of 3-RPS

manipulators with coplanar revolute joint axes for those manipulators to have two operation modes.25

The paper is organized as follows: Section 2 presents the architecture and parameterization of 3-RPS

manipulators with coplanar revolute joint axes. Section 3 expresses their constraint equations as a function

of Study parameters and independently of joint variables. Section 4 deals with the operation mode analysis of

the manipulators under study and gives some conditions on their design parameters to lead to two operation

modes. The operation modes of three 3-RPS parallel manipulators with coplanar revolute joints defined30

based on the foregoing conditions on design parameters are analyzed in Section 5 as illustrative examples.

Some discussions and conclusions are given in Sec. 6.

2. Manipulator Architectures

The investigated spatial parallel manipulator shown in Fig. 1 consists of a moving platform connected to

a fixed base with three limbs. Each limb is composed of a revolute joint, a prismatic joint and a spherical

joint mounted in series1. The three prismatic joints are actuated. Figure 2 represents a RPS limb. The

base of the 3-RPS manipulator is specified by 3 base-points A1, A2 and A3 in the fixed frame F0. The fixed

frame is defined such that A1 is the origin of the coordinate frame, A2 is along the x-axis and A3 is an

arbitrary point in the XY -plane. B1, B2 and B3 are the vertices of the triangular moving-platform, B1 is

the origin of the moving-platform frame F1, B2 is along the x-axis of F1 and B3 lies in the xy-plane.

1A revolute, prismatic and a spherical joint are denoted by R, P and S respectively.
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Figure 1: Architecture of a 3-RPS parallel

manipulator with coplanar revolute joints
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Figure 2: A RPS limb

The ith revolute joint axis of direction ni is perpendicular to the direction of the ith prismatic joint, namely,

ni ·
−−−→
AiBi = 0, i = 1, 2, 3 (1)

3. Kinematic Modeling

To derive the constraint equations of the 3-RPS parallel manipulators with coplanar revolute joint axes,

the homogeneous coordinates of point Ai and vector ni are firstly expressed in frame F0 while that of the

point Bi are expressed in frame F1:

0a1 =(1, 0, 0, 0), 0a2 = (1, a12, 0, 0), 0a3 = (1, a13, a23, 0), (2)

1b1 =(1, 0, 0, 0), 1b2 = (1, b12, 0, 0), 1b3 = (1, b13, b23, 0), (3)

0n1 =(0, n11, n21, n31), 0n2 = (0, n12, n22, n32), 0n3 = (0, n13, n23, n33), (4)

with the first entry of each vector being the homogenizing coordinate2. Since points Bi are given in the35

moving frame, a transformation is applied to obtain it in F0 frame. Study’s kinematic mapping can be used

for this purpose. It is a mapping from the special Euclidean motion group SE(3) to a seven-dimensional

projective space P7 [15]. The transformation to obtain 0bi from 1bi is given in Eq. (5)

2A vector expressed in F0 is denoted as 0{·} whereas a vector expressed in F1 is indicated as 1{·}.
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0T1 =
1

∆



∆ 0 0 0

d1 x0
2 + x1

2 − x22 − x32 −2x0x3 + 2x1x2 2x0x2 + 2x1x3

d2 2x0x3 + 2x1x2 x0
2 − x12 + x2

2 − x32 −2x0x1 + 2x2x3

d3 −2x0x2 + 2x1x3 2x0x1 + 2x2x3 x0
2 − x12 − x22 + x3

2


(5)

with ∆ = x0
2 + x1

2 + x2
2 + x3

2 6= 0

and d1 = −2x0y1 + 2x1y0 − 2x2y3 + 2x3y2,40

d2 = −2x0y2 + 2x1y3 + 2x2y0 − 2x3y1,

d3 = −2x0y3 − 2x1y2 + 2x2y1 + 2x3y0,

where xj , yj , j = 0, 1, 2, 3 are the so called Study parameters of the transformation 0T1. A point P = (x0 :

x1 : x2 : x3 : y0 : y1 : y2 : y3) ∈ P7 represents an Euclidean transformation, if and only if P lies in a

6-dimensional quadric, S2
6 ∈ P7 called as the Study quadric:

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0 (6)

The geometric constraints of the parallel manipulator can be derived as follows. As the prismatic joints

are actuated, the distance between points Ai and Bi is equal to the prismatic joint length ri. Therefore, the

following first three distance constraints arise:

gi : ( 0ai − 0bi)
T ( 0ai − 0bi)− r2i = 0, i = 1, 2, 3. (7)

The next three geometric constraints of the manipulator is derived from the perpendicularity between

the revolute joint and the prismatic joint direction within each limb, namely, from Eq. (1):

gi+3 : 0nT
i ( 0ai − 0bi) = 0, i = 1, 2, 3. (8)
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As a result, the six constraint equations are expressed as follows after some mathematical simplifications:

g1 :=
(
x0

2 + x1
2 + x2

2 + x3
2
)
r1

2 − 4 y0
2 − 4 y1

2 − 4 y2
2 − 4 y3

2 = 0 (9a)

g2 :=
(
x0

2 + x1
2 + x2

2 + x3
2
)

(r22 − b212 − a122) +
(
2x0

2 + 2x1
2 − 2x2

2 − 2x3
2
)
a12b12

+ (−4x0y1 + 4x1y0 − 4x2y3 + 4x3y2)a12 + (4x0y1 − 4x1y0 − 4x2y3 + 4x3y2)b12

− 4 y0
2 − 4 y1

2 − 4 y2
2 − 4 y3

2 = 0 (9b)

g3 :=
(
x0

2 + x1
2 + x2

2 + x3
2
)

(r23 − a132 − a223 − b213 − b223) +
(
2x0

2 + 2x1
2 − 2x2

2 − 2x3
2
)
a13b13

+ (−4x0x3 + 4x1x2) a13b23 + (−4x0y1 + 4x1y0 − 4x2y3 + 4x3y2) a13 + (4x0x3 + 4x1x2) a23b13

+
(
2x0

2 − 2x1
2 + 2x2

2 − 2x3
2
)
a23b23 + (−4x0y2 + 4x1y3 + 4x2y0 − 4x3y1) a23

+ (4x0y1 − 4x1y0 − 4x2y3 + 4x3y2) b13 + (4x0y2 + 4x1y3 − 4x2y0 − 4x3y1) b23

− 4 y0
2 − 4 y1

2 − 4 y2
2 − 4 y3

2 = 0 (9c)

g4 := (2x0y1 − 2x1y0 + 2x2y3 − 2x3y2)n11 + (2x0y2 − 2x1y3 − 2x2y0 + 2x3y1)n21 = 0 (9d)

g5 := (2x0y1 − 2x1y0 + 2x2y3 − 2x3y2)n12 + (2x0y2 − 2x1y3 − 2x2y0 + 2x3y1)n22

+ a12n12
(
x0

2 + x1
2 + x2

2 + x3
2
)

+
(
−x02 − x12 + x2

2 + x3
2
)
b12n12

+ (−2x0x3 − 2x1x2) b12n22 = 0 (9e)

g6 := (2x0y1 − 2x1y0 + 2x2y3 − 2x3y2)n13 + (2x0y2 − 2x1y3 − 2x2y0 + 2x3y1)n23

− (a13n13 + a23n23)
(
x0

2 + x1
2 + x2

2 + x3
2
)

+
(
−x02 − x12 + x2

2 + x3
2
)
b13n13

+
(
−x02 + x1

2 − x22 + x3
2
)
b23n23 + (−2x0x3 − 2x1x2) b13n23 + (2x0x3 − 2x1x2) b23n13 = 0 (9f)

It should be noted that those six equations are a function of fifteen design parameters a12, a13, a23, b12, b13,

b23, nij (i, j ∈ {1, 2, 3}), three actuated prismatic joint variables r1, r2, r3 and the Study parameters.

4. Operation modes

This section aims to find the conditions on the fifteen design parameters such that the 3-RPS manipu-45

lator with coplanar revolute joints can exhibit more than one operation mode. Since the R-joint axes are

assumed coplanar, n31 = n32 = n33 = 0.

From the standpoint of algebraic geometry, it is known that the existence of more than one operation

mode requires the factorization of a polynomial belonging to the ideal of constraint polynomials (preferably

the ones independent of actuated joint variables) [1]. In this context, an ideal I is considered such that it

is a subset of the field of Study parameters:

I = 〈g4, g5, g6〉 | I ⊆ K[x0, x1, x2, x3, y0, y1, y2, y3] (10)
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From the definition of an ideal, if a polynomial g ∈ I and h ∈ K, K being the field over which the ideal I

is defined, then hg ∈ I [16]. From Eqs. (9) and (10), a polynomial g is defined such that

g = h1g4 + h2g5 + h3g6 ∈ I, where hi 6= 0 ∈ K[x0, x1, x2, x3, y0, y1, y2, y3], i = 1, 2, 3 (11)

For simplicity, hi is only allowed to be a function of design parameters. This assumption forces the polynomial

g to be quadratic. To this end, the problem boils down to find the coefficients hi such that g can be factorized.

In search of linear factors, two general linear equations are introduced in Eq. (12) and are multiplied to

obtain a general quadratic polynomial s12 in the kinematic image space, P7.

s1 : m1x0 +m2x1 +m3x2 +m4x3 +m5y0 +m6y1 +m7y2 +m8y3 = 0 (12)

s2 : n1x0 + n2x1 + n3x2 + n4x3 + n5y0 + n6y1 + n7y2 + n8y3 = 0

s12 = s1 · s2

where mk and nk, k = 1, ..., 8 are constants. Equating the respective coefficients of g and s12 leads to

a system of 36 linear equations in 31 unknowns. Solving for all the parameters b12, b13, b23, a12, a13, a23,

h1, h2, h3, mk, nk, k = 1, ..., 8, yields 36 solutions. It is noteworthy that some equations are dependent and

the system is underdetermined. Nonetheless, the solve function in Maple parametrizes the solutions in terms

of one or more unknowns. Investigating the solution set reveals that there are some trivial solutions (complex

ones and the ones with hi = 0, a12 = 0, a13 = 0, a23 = 0, b12 = 0, b13 = 0 or b23 = 0) and some are special

cases of the general one (nij = 0, i = 1, 2, j = 1, 2, 3). The focus is on the two general solutions:

Solution 1

m1 =

(
n13 ±

√
n132 + n232

)
m4

n23
, m2 = 0, m3 = 0, m4 = m4, m5 = 0, m6 = 0, m7 = 0, m8 = 0, (13a)

n1 =
2
(
n13 ±

√
n132 + n232

)
b23h3

m4
, n2 = 0, n3 = 0, n4 = 2

b23h3n23
m4

, n5 = 0, n6 = 0, n7 = 0, n8 = 0,

(13b)

a12 =
(n11n22 − n12n21) (a13n13 + a23n23)

(n11n23 − n13n21)n12
, a13 = a13, a23 = a23 (13c)

b12 = −
b23
(
n13

2 + n23
2
)

(n11n22 − n12n21)

(n12n23 − n13n22) (n11n23 − n13n21)
, b13 = −b23 (n12n13 + n22n23)

n12n23 − n13n22
, b23 = b23 (13d)

h1 =
h3 (n12n23 − n13n22)

n11n22 − n12n21
, h2 = −h3 (n11n23 − n13n21)

n11n22 − n12n21
, h3 = h3 (13e)
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Solution 2

m1 = 0, m2 =

(
n13 ±

√
n132 + n232

)
m3

n23
, m3 = m3, m4 = 0, m5 = 0, m6 = 0, m7 = 0, m8 = 0, (14a)

n1 = 0, n2 =
2b23h3n23

2(
n13 ±

√
n132 + n232

)
m3

, n3 = −2
b23h3n23
m3

, n4 = 0, n5 = 0, n6 = 0, n7 = 0, n8 = 0,

(14b)

a12 =
(n11n22 − n12n21) (a13n13 + a23n23)

(n11n23 − n13n21)n12
, a13 = a13, a23 = a23 (14c)

b12 =
b23
(
n13

2 + n23
2
)

(n11n22 − n12n21)

(n12n23 − n13n22) (n11n23 − n13n21)
, b13 =

b23 (n12n13 + n22n23)

n12n23 − n13n22
, b23 = b23 (14d)

h1 =
h3 (n12n23 − n13n22)

n11n22 − n12n21
, h2 = −h3 (n11n23 − n13n21)

n11n22 − n12n21
, h3 = h3 (14e)

Upon substitution of Solution 1 into Eq. (11) or Eq. (12) that describe the general quadric, the following

conic comes out:

s12 = g = 2 b23h3
(
2n13x0x3 − n23x02 + n23x3

2
)

(15)

The conic is degenerate and can be factorized as follows:

s12 = g = 2
b23h3
n23

(
x3
√
n132 + n232 + n13x3 − n23x0

)(
x3
√
n132 + n232 − n13x3 + n23x0

)
, n23 6= 0 (16)

= −2b23 h3 n23

(
x0 − x3

(√
n̂2 + 1 + n̂

))(
x0 + x3

(√
n̂2 + 1− n̂

))
, n̂ =

n13
n23

, n23 6= 0. (17)

bringing to light two operation modes characterized by:

Operation mode 1 : x0 − x3
(√

n̂2 + 1 + n̂
)

= 0

Operation mode 2 : x0 + x3

(√
n̂2 + 1− n̂

)
= 0, n̂ =

n13
n23

, n23 6= 0.
(18)

In the same vein, upon substituting Solution 2 into Eq. (11) or Eq. (12) results in the general quadric

s12 = g = −2
(
2n13x1x2 − n23x12 + n23x2

2
)
b23h3, (19)

which splits into two polynomials characterizing the following two operation modes:

Operation mode 1 : x1 − x2
(√

n̂2 + 1 + n̂
)

= 0

Operation mode 2 : x1 + x2

(√
n̂2 + 1− n̂

)
= 0, n̂ =

n13
n23

, n23 6= 0
(20)

As a result, when the design parameters b12, b13 and b23 follow the ratio

b12 : b13 : b23 = (n11n22 − n12n21)
(
n13

2 + n23
2
)

: (n12n13 + n22n23) (−n13 n21 + n11n23)

:± (−n13 n22 + n12n23) (−n13 n21 + n11n23) , (21)

7



and parameters a12, a13 and a23 satisfy the relation

(n11n23 − n13n21) a12n12 + (n12n21 − n11n22) (+a13n13 + a23n23) = 0, (22)

then, the 3-RPS parallel manipulator with coplanar revolute joint axes has two operation modes character-

ized by Eqs. (18) or (20). To derive these characteristic polynomials starting from the plane constraints, the

scalar coefficients of their linear combination must follow the ratio

h1 : h2 : h3 = n12n23 − n13n22 : n11n23 − n13n21 : n11n22 − n12n21. (23)
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The condition in Eq. (21) can be geometrically interpreted as the similarity (also called as homothety)

between the moving platform triangle and the triangle enclosed by the three R-joint axes. This claim is

proven as follows. Figure 3 shows the moving platform triangle and the triangle enclosed by the revolute

joints. The sides of the moving platform triangle are b1 =
√

(b13 − b12)2 + b223, b2 = |b13−b12| and b3 = |b12|.

Knowing the sides, the cosine of the angles β1, β2 and β3 can be determined using the cosine rule. Similarly,

the cosine of the angles γ1, γ2 and γ3 between the R-joint axes n1, n2 and n3, can be determined. Equating

the cosine of respective angles results in three equations3.

cos(βi) = cos(γi) =⇒
b2j + b2k − b2i

2bjbk
=

njnk

||nj ||||nk||
i, j, k = (123) (24)

3The notation (1,2,3) represents a cyclic permutation. It means that i, j, k are initially assigned to values 1,2,3, respectively,

2,3,1, subsequently and 3,1,2, finally.
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Solving the equations for b12, b13 and b23 yields the conditions in Eq. (21) proving that the considered

triangles are similar (or homothetic).50

Besides, Eq. (22) has a geometrical meaning too. It can be written as the determinant of a matrix, P:

|P| =

∣∣∣∣∣∣∣∣∣∣∣

n11 n21 0

n12 n22 −n12a12

n13 n23 −n13a13 − n23a23

∣∣∣∣∣∣∣∣∣∣∣
= 0 (25)

|P| is the Grassmannian of three lines L1, L2 and L3 which are the projections of planes P1, P2 and P3

onto the XY -plane as shown in Fig. 4. The equation of a line Li, i = 1, 2, 3, orthogonal to R-joint axis ni

and passing through a point Ai is n1ix0 + n2iy0−nT
i ai, i = 1, 2, 3. Therefore, |P| = 0 implies that lines Li

are concurrent, namely, planes P1, P2 and P3 intersect at line M .

Thus, a 3-RPS parallel manipulator with coplanar revolute joint axes will have two operation modes if55

the following geometric conditions are satisfied

i Moving platform triangle is homothetic to the triangle enclosed by the revolute joint axes.

ii The three planes normal to the three revolute joint axes, respectively, have a common line of intersection.

It can be shown that the above conditions are also necessary for the existence of two operation modes as

explained thereafter.60

Equations (18) and (20) are the polynomials characterizing the two operation modes. The transition

between them is when both polynomials vanish at the same time, i.e., when x0 = x3 = 0 for Solution 1

and when x1 = x2 = 0 for Solution 2. Transition pose is known to be a constraint singularity and in case

of Solution 1, it corresponds to configurations in which the moving platform is upside down as explained

in [1, 10]. For Solution 2, the transition pose corresponds to configurations in which the moving platform

is in an upright position parallel to the fixed base. The existence of two operation modes definitely implies

a constraint singularity that separates those operation modes but the reciprocity is not necessarily true as

explained in subsection 5.2. This fact is exploited to prove the necessary conditions for a 3-RPS PM to have

two operation modes.

According to screw theory, it is well known that a parallel manipulator reaches a constraint singularity when

its constraint wrench system is rank deficient [17, 18]. At this instant, the PM gains at least one dof. The

constraint wrench system of a 3-RPS PM shown in Fig. 1 is spanned by three forces f1, f2 and f3 that are

parallel to the revolute joint axes n1,n2 and n3 and pass through points B1, B2 and B3, respectively. A

constraint singularity implies that variety spanned by these three lines has a rank lower than 3. This can

happen only when these lines reduce to a planar pencil of lines, i.e., when they are coplanar and concurrent.

9



The Plücker coordinates of the force lines can be written as follows:

f1 = [ 0n1,
0b1 × 0n1] (26a)

f2 = [ 0n2,
0b2 × 0n2] (26b)

f3 = [ 0n3,
0b3 × 0n3] (26c)

Coplanarity condition

Any two lines intersect when the reciprocal product of their Plücker coordinates vanishes. Therefore,

the coplanarity condition can be formulated as the mutual vanishing of the reciprocal product between the

force lines yielding the following three equations:

E1 := 2
b12 (x0x2 − x1x3) (n11n22 − n12n21)

x02 + x12 + x22 + x32
= 0 (27a)

E2 := 2
(n11n23 − n13n21) (b13x0x2 − b13x1x3 − b23x0x1 − b23x2x3)

x02 + x12 + x22 + x32
= 0 (27b)

E3 : −2
(n12n23 − n13n22) (b12x0x2 − b12x1x3 − b13x0x2 + b13x1x3 + b23x0x1 + b23x2x3)

x02 + x12 + x22 + x32
= 0 (27c)

Solving the previous system of equations in Eq. (27) for Study parameters x0, x1, x2, x3 gives two solutions:

x0 = x3 = 0, (28)

x1 = x2 = 0. (29)

Calculating 0bi, i = 1, 2, 3 with solutions (28) or (29) shows that the z-coordinates of the resulting points

are the same proving that they indeed lie in a plane parallel to the XY -plane.

Concurrency condition

Case 1: x0 = x3 = 065

The z-coordinate of points Bi is expressed
−2(x1y2 − x2y1)

x21 + x22
. Without loss of generality, these lines

can now be projected to the XY -plane to simplify the concurrency condition. Their projections have the

equations:

Li := −n2iX + n1iY − (−n2i 0bix + n1i
0biy) = 0, i = 1, 2, 3, (30)

where 0biy and 0biy are the x- and y-coordinates of point Bi, respectively. Therefore, the condition for

10



concurrency of the three lines defined by equations Li = 0 is∣∣∣∣∣∣∣∣∣
−n21 n11 n21

0b1x − n11 0b1y

−n22 n12 n22
0b2x − n12 0b2y

−n23 n13 n23
0b3x − n13 0b3y

∣∣∣∣∣∣∣∣∣
= (b12n11n22n23 − b12n13n21n22 − b13n11n22n23 + b13n12n21n23 − b23n11n13n22 + b23n12n13n21)(x22 − x21)

+ 2(b12n11n12n23 − b12n12n13n21 − b13n11n13n22 + b13n12n13n21 + b23n11n22n23 − b23n12n21n23)x1x2

= 0 (31)

Equating the coefficients to zero leads to the following relations between the design parameters:

b12 = −
(n11n22 − n12n21) b23

(
n13

2 + n23
2
)

(−n13 n22 + n12n23) (−n13 n21 + n11n23)
, b13 = − (n12n13 + n22n23) b23

n12n23 − n13n22
, b23 = b23 (32)

which are exactly those defined by Eq. (13d).

Furthermore, upon substitution of the values of b12 and b13 and x0 = x3 = 0 in constraint equations

g1 = g2 = g3 = 0 defined by Eqs. (9d)- (9f) and eliminating b23, results in the following equation:

(n11n23 − n13n21) a12n12 + (n12n21 − n11n22) (+a13n13 + a23n23) = 0, (33)

which is the relation derived in Eq. (22).

Case 2: x1 = x2 = 0

In this case, we obtain the following symmetric relations between the design parameters:

b12 =
(n11n22 − n12n21) b23

(
n13

2 + n23
2
)

(−n13 n22 + n12n23) (−n13 n21 + n11n23)
, b13 =

(n12n13 + n22n23) b23
n12n23 − n13n22

, b23 = b23, (34)

(n11n23 − n13n21) a12n12 + (n12n21 − n11n22) (+a13n13 + a23n23) = 0, (35)

that corresponds to the relations derived in Eqs. (14d) and (22), respectively.

As a conclusion, the following theorem can be stated:

Theorem 1 A 3-RPS parallel manipulator with coplanar revolute joint axes will have two operation

modes if and only if the following geometric conditions are satisfied

i Moving platform triangle is homothetic to the triangle enclosed by the revolute joint axes.

ii The three planes normal to the three revolute joint axes, respectively, have a common line of inter-

section.

Since the relationship between the number of operation modes and architecture is established, the design70

parameters can be chosen in such a way that a constraint singularity is avoided.

11



In case the revolute joint axes are no longer coplanar, equating a general quadric in P7 defined in Eq. (12)

with the linear combination of the plane constraint polynomials g4, g5 and g6 shown in Eqs. (9d)-(9f), does

not yield any solution. The problem of finding the influence of design parameters on the operation modes

of a general 3-RPS parallel manipulator is left for future work.75

5. Examples

In this section, some example 3-RPS manipulators are considered to verify the proposed conditions.

5.1. Example 1: 3-RPS parallel manipulator with n23 = 0

A
2

A
1A

3

B
3

B
1

X
Y

Z

x

y

z

a

b

n
3

n
2

n
1

B
2

Figure 5: A 3-RPS parallel manipulator with n23 = 0

The well-known 3-RPS parallel manipulator introduced by Hunt [3] has been the spotlight of numerous

research topics and applications [4, 7, 8, 2, 1, 10, 11, 14]. Its architecture is shown in Fig. 5. The moving

platform and the base are equilateral triangles with circum-radius b and a, respectively. The R-joint axes

are coplanar and tangential to the base circum-circle. The P-joint in each leg is normal to its corresponding

R-joint axis. The design parameters are listed below:

a12 =
√

3a, a13 =

√
3

2
a, a23 =

3

2
a,

b12 =
√

3b, b13 =

√
3

2
b, b23 =

3

2
b,

n11 =
1

2
, n21 = −

√
3

2
, n31 = 0, n12 =

1

2
, n22 =

√
3

2
, n32 = 0, n13 = −1, n23 = 0, n33 = 0.

(36)
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Calculating the right hand side of Eq. (21) gives b12 : b13 : b23 =

√
3

2
:

√
3

4
: ±3

4
, which is consistent with

the design parameters listed in Eq. (36). It is also straightforward to see that the design parameters satisfy

Eq. (22). Thus, according to Theorem 1, the manipulator must exhibit two operation modes. To determine

the characteristic equations of the operation modes, the plane constraint equations corresponding to Eq. (8)

are considered:

g4 :=−
√

3x0y2 +
√

3x1y3 +
√

3x2y0 −
√

3x3y1 + x0y1 − x1y0 + x2y3 − x3y2 = 0 (37)

g5 :=
√

3x0y2 −
√

3x1y3 −
√

3x2y0 +
√

3x3y1 + x0y1 − x1y0 + x2y3 − x3y2 +

√
3

2
(x0

2 + x1
2 + x2

2

+ x3
2)a−

√
3

2
(2
√

3x0x3 + 2
√

3x1x2 + x0
2 + x1

2 − x22 − x32)b = 0 (38)

g6 :=− 2x0y1 + 2x1y0 − 2x2y3 + 2x3y2 −
√

3

2
(x0

2 + x1
2 + x2

2 + x3
2)a−

√
3

2
(2
√

3x0x3 − 2
√

3x1x2

− x02 − x12 + x2
2 + x3

2)b = 0. (39)

Equation (23) can be used to find the constants h1, h2 in terms of h3 to be multiplied to the constraint

polynomials g4, g5 and g6, respectively to obtain a factorable polynomial g. For this manipulator, the design

parameters yield h1 = h3 and h2 = h3. Thus from Eqs. (11) and (37)

g = h1g4 + h2g5 + h3g6 = h3(g4 + g5 + g6) = −6h3bx0x3 (40)

showing that the manipulator at hand can have two operation modes characterized by x0 = 0 and x3 = 0

as already presented in [1, 10]. In fact, substituting n23 = 0 in Eq. (15) results in the factorable polynomial80

x0x3.

5.2. Example 2: 3-RPS parallel manipulator with n13 = 0

A
2

A
1

A
3

B
3

B
1

X
Y

Z

x

y

z

a

b

n
3

n
2

n
1

B
2

Y

Figure 6: A 3-RPS parallel manipulator with n13 = 0
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Another special case of the 3-RPS parallel manipulator is when the R-joint axes are intersecting as shown

in Fig. 6. The base and the platform are still equilateral triangles with circum-radius a and b, respectively.

Also, the P-joints are orthogonal to their corresponding R-joint axes in each leg. The design parameters for85

this manipulator are listed below:

a12 =
√

3a, a13 =

√
3

2
a, a23 =

3

2
a,

b12 =
√

3b, b13 =

√
3

2
b, b23 =

3

2
b,

n11 =

√
3

2
, n21 =

1

2
, n31 = 0, n12 =

√
3

2
, n22 = −1

2
, n32 = 0, n13 = 0, n23 = 1, n33 = 0

(41)

The ratio between b12, b13 and b23 calculated using Eq. (21) gives b12 : b13 : b23 = −
√

3

2
: −
√

3

4
: ±3

4
,

which is consistent with the design parameters listed in Eq. (41). Thus, the condition i. of Theorem 1 is sat-

isfied. It can also be verified by the fact that the R-joint axes intersect in a point, which is homothetic with

the moving platform equilateral triangle. On the other hand, the left hand side of Eq. (22) gives
−3
√

3a

2
6= 090

proving that this manipulator can have only one operation mode4. As a matter of fact, inspecting Fig. 6

reveals that the planes normal to ni and passing through Ai do not have a common line of intersection and

hence this manipulator cannot exhibit more than one operation mode since condition ii. of Theorem 1 is

not satisfied. Figure 7a shows the projections of planes Pi as lines Li onto the XY -plane.

Nonetheless, the design parameters can be altered so that the condition ii. is satisfied. Changing nij , i =95

1, 2, j = 1, 2, 3 might alter condition i. of Theorem 1, hence a12, a13 or a23 can be changed so that condition i.

is kept intact. From Eq. (22), writing a12 as a function of other design parameters and substituting the

values form Eq. (41) yields a12 = −
√

3a. The design with a12 = −
√

3a is shown in Fig. 7b and it exhibits

two operation modes. Ã2 represents the initial position of point A2. In fact, a13 or a23 can also be changed

similarly to obtain the designs shown in Figs. 7c and 7d, respectively. In these figures, Ã3 represents the100

initial position of point A3. Calculating hi, i = 1, 2, 3 from Eq. (23) and substituting in the general quadric

of Eq.(11) gives the characteristic polynomial of each operation mode as x0 − x3 and x0 + x3.

Consequently, it provides an interesting example of how architecture of a manipulator influences its number

of operation modes. The procedure explained can be used to design 3-RPS parallel manipulators to have

the necessary number of operation modes. Moreover, for a 3-RPS parallel manipulator with two operation105

4When a = b, the manipulator at hand can have a constraint singularity when the moving platform is parallel to the fixed

base. However, it has only one operation mode. This is because, for a general 3-RPS PM, the variety of its constraint singularity

condition is a surface whereas in this case it is reduced to a line parallel to the Z-axis and passing through the intersection

of the R-joint axes. It is an interesting case of a constraint singularity that does not bifurcate the workspace into multiple

operation modes.
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Figure 7: Slight modification of design parameters can influence the number of operation modes
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modes, the constraint singularity between the operation modes can be escaped by slightly modifying the

design parameters such that one of the conditions in Theorem 1 is not fulfilled.

5.3. Example 3: Arbitrary design parameters

Finally, a numerical example is studied with the following arbitrary design parameters:

a13 = 2, a23 = 2, b23 = 3,

n11 = −3, n21 = 5, n31 = 0, n12 = −3, n22 = 2, n32 = 0, n13 = 2, n23 = 1, n33 = 0 (42)

n
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n
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n
1

A
2

A
1

A
3

P
2

P
3

P
1

B
2

B
3

B
1

Figure 8: A 3-RPS parallel manipulator with two operation modes characterized by

x0 − x3(2 +
√

5) = 0 and x0 − x3(2−
√

5) = 0

110

The remaining design parameters a12, b12 and b13 are calculated from the relations in Eqs. (22) and (21)

so that the manipulator has two operation modes. Thus, a12 =
18

13
, b12 = ±135

91
and b13 = ±12

7
. Fig. 8

shows the architecture of the manipulator at hand, where it can be pointed out that condition i. and ii. of

Theorem 1 are satisified. Substituting the design parameters with b12 = −135

91
and b13 = −12

7
in Eq. (16)

gives

g := (x0 − x3(2 +
√

5))(x0 − x3(2−
√

5)) = 0 (43)

whereas, substituting the design parameters with b12 =
135

91
and b13 =

12

7
in Eq. (16) gives

g := (x1 − x2(2 +
√

5))(x1 − x2(2−
√

5)) = 0 (44)
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The two polynomials x0−x3(2 +
√

5) and x0−x3(2−
√

5) or x1−x2(2 +
√

5) and x1−x2(2−
√

5) represent

the two operation modes of the mechanism5.

Assuming the prismatic joints are actuated, the direct kinematics of the manipulator can be solved by

substituting arbitrary values to joint parameters r1 = 2, r2 = 2 and r3 = 3. The constraint equations

g1 = 0 to g6 = 0 and S2
6 = 0 can be written from Eqs. (6) and (9). Adding a normalization equation115

x20 + x21 + x22 + x23 = 1 (so that ∆ 6= 0 in Eq. (5)) yields a set of eight equations to be solved for eight Study

parameters. Finding the Groebner basis of the ideal of constraint polynomials with a pure lexicographic

monomial ordering x0 <lex x1 <lex x2 <lex x3 <lex y0 <lex y1 <lex y2 <lex y3 results in a 16 degree

univariate polynomial in variable y3. As anticipated, the polynomial can be factorized into two polynomials

of degree 8 each corresponding to the two operation modes. It shows that a 3-RPS parallel manipulator can120

have at most 8 solutions to its direct kinematics in each operation mode. When the joint parameters are

fixed, the direct kinematics of a 3-RPS parallel manipulator amounts to locating three points on three fixed

circles with centers Ai and radii ri. To this end, a corollary follows as a consequence of Theorem 1:

Corollary 2 For the 3-points on 3-circles problem, if the geometry satisfies the following conditions

i normals to the planes containing the circles and passing through their centers are coplanar,125

ii planes containing the circles have a common line of intersection and

iii the triangle formed by the three points is homothetic to the triangle enlosed by three normals to the planes

passing through the centers of the circles,

then the 16 degree univariate characteristic polynomial factorizes into two 8 degree polynomials.

For the above-mentioned example, eight real solutions to its direct kinematics problem are found. The130

solutions form four pairs of manipulator postures, one being the mirror image of another about the XY -

plane. Four of these solutions are displayed in Fig. 9.

The first two solutions satisfy
x0
x3

= 2 −
√

5 or
x1
x2

= 2 +
√

5 and hence belong to the operation mode

corresponding to x0 − x3(2 −
√

5) = 0 or x1 − x2(2 +
√

5) = 0, respectively while the last two satisfy
x0
x3

= 2 +
√

5 or
x1
x2

= 2−
√

5 and hence belong to the operation mode characterized by x0−x3(2 +
√

5) = 0135

or x1 − x2(2−
√

5) = 0.

6. Conclusions and future work

The influence of design parameters on the number of operation modes of a 3-RPS parallel manipulator

with coplanar revolute joints was studied in this paper. The constraint equations of a general 3-RPS

5To be able to factorize the polynomial g, the field of rational numbers must be extended to include
√

n2
23 + n2

13 i.e.
√

5

for this example
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(a) x0 = 0.0593, x1 = −0.2925, x2 =

−0.9206, x3 = −0.2515, y0 = 0.0001, y1 =

−0.8954, y2 = 0.3571, y3 = −0.2658 OR

x0 = .9206, x1 = .2515, x2 = 0.0593, x3 =

−.2925, y0 = −.3571, y1 = .2658, y2 =

0.0001, y3 = −.8954.
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(b) x0 = 0.0264, x1 = 0.0940, x2 =

−0.9889, x3 = −0.1119, y0 = −0.1607, y1 =

−0.9782, y2 = −0.1060, y3 = 0.0775 OR
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(c) x0 = 0.2482, x1 = −0.6214, x2 =

−0.7407, x3 = 0.0586, y0 = −0.2019, y1 =

−0.7792, y2 = 0.5742, y3 = −0.1490 OR

x0 = .7407, x1 = −0.0586, x2 = .2482, x3 =

−.6214, y0 = −.5742, y1 = .1490, y2 =

−.2019, y3 = −.7792.
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(d) x0 = −0.6304, x1 = 0.0743, x2 =

−0.7582, x3 = −0.1488, y0 = −0.3408, y1 =

0.5290, y2 = 0.1872, y3 = 0.7541 OR

x0 = .7582, x1 = .1488, x2 = −.6304, x3 =

0.0743, y0 = −.1872, y1 = −.7541, y2 =

−.3408, y3 = .5290.

Figure 9: Solutions to direct kinematics of a 3-RPS manipulator with arbitrary design parameters
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parallel manipulator were derived. The linear combination of plane constraint polynomials were equated to140

a general quadric in P7 and the coefficients were solved to obtain two solutions with some relations between

design parameters. These relations were substituted back into the general quadric and it factorized into two

polynomials characterizing two operation modes. The conditions on the design parameters for the existence

of two operation modes in 3-RPS manipulator with coplanar revolute joints was summarized as a theorem

with proof. The first condition is the homothety between the moving platform triangle and the triangle145

enclosed by revolute joint axes, while the second condition is when three planes on which the spherical joints

are confined to move have a common line of intersection. Two special cases were considered: one that has

two operation modes and the other one with one operation mode. For the latter manipulator, it was shown

that one can modify the design parameters to be able to have two operation modes. Finally, a numerical

example was considered following the proposed theorem. Its characteristic 16 degree univariate polynomial150

is derived to show that it splits into two polynomials of degree 8 each, representing two operation modes.

The direct kinematic solutions lying in each operation mode were shown.

Future work will include the influence of architecture on the operation modes of a 3-RPS parallel ma-

nipulator with non-coplanar revolute joints. Additionally, the proposed methodology will be extended to

different parallel manipulators.155
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