C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci., vol.56, issue.1, pp.25-44, 2014.
DOI : 10.1016/j.mser.2007.03.001

Y. Zhang, M. Xie, V. Adamaki, H. Khanbareh, and C. R. Bowen, Control of electro-chemical processes using energy harvesting materials and devices, Chemical Society Reviews, vol.52, issue.545, pp.7757-7786, 2017.
DOI : 10.1007/s10853-017-1289-x

E. Kim, H. Tu, C. Lv, H. Jiang, H. Yu et al., A robust polymer microcable structure for flexible devices, Applied Physics Letters, vol.102, issue.3, p.33506, 2013.
DOI : 10.1166/sl.2008.045

S. Bauer, R. Gerhard-multhaupt, and G. M. Sessler, Ferroelectrets: Soft Electroactive Foams for Transducers, Physics Today, vol.67, issue.2, pp.37-43, 2004.
DOI : 10.1093/acprof:oso/9780198507789.001.0001

Z. Luo, D. Zhu, J. Shi, S. Beeby, C. Zhang et al., Energy harvesting study on single and multilayer ferroelectret foams under compressive force, IEEE Transactions on Dielectrics and Electrical Insulation, vol.22, issue.3, pp.1360-1368, 2015.
DOI : 10.1109/TDEI.2015.7116323

S. K. Ghosh, A. Biswas, S. Sen, C. Das, K. Henkel et al., Yb 3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: A facile strategy of highly efficient mechanical energy harvester fabrication, Nano Energy, vol.30, pp.30-621, 2016.
DOI : 10.1016/j.nanoen.2016.10.042

V. Bovtun, J. Döring, J. Bartusch, U. Beck, A. Erhard et al., Ferroelectret non-contact ultrasonic transducers, Applied Physics A, vol.37, issue.4, pp.737-743, 2007.
DOI : 10.1002/cphc.200400517

K. L. Heywang, W. Wersing, and P. , , p.15, 2008.

S. K. Ghosh, T. K. Sinha, B. Mahanty, and D. , Self-poled Efficient Flexible Ferroelectretic

. Nanogenerator, A New Class of Piezoelectric Energy Harvester, Energy Technology, vol.3, issue.12, pp.1190-1197, 2015.

B. Mahanty, S. K. Ghosh, S. Garain, and D. , An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer, Materials Chemistry and Physics, vol.186, pp.327-332, 2017.
DOI : 10.1016/j.matchemphys.2016.11.003

J. Hillenbrand, P. Pondrom, and G. M. Sessler, Electret transducer for vibration-based energy harvesting, Applied Physics Letters, vol.106, issue.18, p.183902, 2015.
DOI : 10.1063/1.4893367

A. Kachroudi, S. Basrour, L. Rufer, and F. Jomni, Air-spaced PDMS piezo-electret cantilevers for vibration energy harvesting, Journal of Physics: Conference Series, vol.773, issue.1, p.12072, 2016.
DOI : 10.1088/1742-6596/773/1/012072

URL : https://hal.archives-ouvertes.fr/hal-01523238

J. Zhong, Q. Zhong, G. Chen, B. Hu, S. Zhao et al., Surface charge self-recovering electret film for wearable energy conversion in a harsh environment, Energy & Environmental Science, vol.20, issue.10, pp.3085-3091, 2016.
DOI : 10.1088/0964-1726/20/10/105013

M. Wegener, W. Wirges, and R. Gerhard-multhaupt, Piezoelectric Polyethylene Terephthalate (PETP) Foams ??? Specifically Designed and Prepared Ferroelectret Films, Advanced Engineering Materials, vol.10, issue.12, pp.1128-1131, 2005.
DOI : 10.1002/adem.200500177

A. Mellinger, M. Wegener, W. Wirges, R. R. Mallepally, and R. Gerhard-multhaupt, Thermal and Temporal Stability of Ferroelectret Films Made from Cellular Polypropylene/Air Composites, Ferroelectrics, vol.331, issue.1, pp.189-199, 2006.
DOI : 10.1109/TDEI.2003.1237333

X. Qiu, A. Mellinger, and R. Gerhard, Influence of gas pressure in the voids during charging on the piezoelectricity of ferroelectrets, Applied Physics Letters, vol.92, issue.5, p.52901, 2008.
DOI : 10.1063/1.2784960

K. Anton, A. Farinholt, and . Erturk, Piezoelectret foam???based vibration energy harvesting, Journal of Intelligent Material Systems and Structures, vol.25, issue.14, pp.1681-1692, 2014.
DOI : 10.1063/1.1781388

N. Wu, X. Cheng, Q. Zhong, J. Zhong, W. Li et al., Cellular Polypropylene Piezoelectret for Human Body Energy Harvesting and Health Monitoring, Advanced Functional Materials, vol.27, issue.30, pp.4788-4794, 2015.
DOI : 10.1002/adma.201404794

S. Deville, Freezing Colloids: Observations, Principles, Control, and Use
DOI : 10.1007/978-3-319-50515-2

URL : https://hal.archives-ouvertes.fr/hal-01685720

R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, Crystal Structures of Three Crystalline Forms of Poly(vinylidene fluoride), Polymer Journal, vol.2, issue.5, p.16, 1972.
DOI : 10.1002/ange.19560681905

J. Nunes-pereira, S. Ribeiro, C. Ribeiro, C. J. Gombek, F. M. Gama et al.,

. Lanceros-méndez, Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications, Polymer Testing, vol.44, pp.234-241, 2015.

N. Moussaif and R. Jérôme, Miscibility of poly(vinylidene fluoride) and poly(methyl methacrylate-co-zinc polyacrylate) ionomers, Polymer, vol.40, issue.24, pp.6831-6839, 1999.
DOI : 10.1016/S0032-3861(99)00041-5

C. Mu, Y. Su, M. Sun, W. Chen, and Z. Jiang, Fabrication of microporous membranes by a feasible freeze method, Journal of Membrane Science, vol.361, issue.1-2, pp.15-21, 2010.
DOI : 10.1016/j.memsci.2010.06.021

S. Deville, E. Saiz, R. K. Nalla, and A. P. Tomsia, Freezing as a Path to Build Complex Composites, Science, vol.311, issue.5760, pp.515-518, 2006.
DOI : 10.1126/science.1120937

URL : https://hal.archives-ouvertes.fr/hal-01785714

, How to Freeze Dry the 6 Most Challenging Samples. http://www.labconco.com/articles/how-to-freeze- dry-the-6-most-challenging-samples, 2016.

M. Leonard and I. Boral, Cellular cryopreservation in blood banking, Laboratory Medicine, vol.14, issue.4, pp.246-251, 1983.

J. Hebling, L. Bianchi, F. G. Basso, D. L. Scheffel, D. G. Soares et al., Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells, Dental Materials, vol.31, issue.4, pp.399-405, 2015.
DOI : 10.1016/j.dental.2015.01.007

S. Deville, E. Saiz, and A. P. Tomsia, Ice-templated porous alumina structures, Acta Materialia, vol.55, issue.6, pp.1965-1974, 2007.
DOI : 10.1016/j.actamat.2006.11.003

URL : https://hal.archives-ouvertes.fr/hal-01785728

Z. Zhang, C. Yao, Y. Yu, Z. Hong, M. Zhi et al., Mesoporous Piezoelectric Polymer Composite Films with Tunable Mechanical Modulus for Harvesting Energy from Liquid Pressure Fluctuation, Advanced Functional Materials, vol.11, issue.37, pp.6760-6765, 2016.
DOI : 10.1021/nl202208n

Y. Zhang, K. Zhou, Y. Bao, and D. Zhang, Effects of rheological properties on ice-templated porous hydroxyapatite ceramics, Materials Science and Engineering: C, vol.33, issue.1, pp.340-346, 2013.
DOI : 10.1016/j.msec.2012.08.048

X. Cai, T. Lei, D. Sun, and L. Lin, A critical analysis of the ??, ?? and ?? phases in poly(vinylidene fluoride) using FTIR, RSC Advances, vol.56, issue.25, pp.15382-15389, 2017.
DOI : 10.1016/j.polymer.2014.11.024

L. He, B. Cui, N. Jia, J. Sun, G. Xia et al., Treatment, Journal of Macromolecular Science, Part B, vol.55, issue.5, pp.503-517, 2016.
DOI : 10.1016/j.polymer.2008.05.034

URL : https://hal.archives-ouvertes.fr/hal-01858543

P. Martins, A. C. Lopes, and S. Lanceros-mendez, Electroactive phases of poly

, Progress in Polymer Science, vol.39, issue.4, pp.683-706, 2014.

N. Jia, Q. Xing, X. Liu, J. Sun, G. Xia et al., Enhanced electroactive and mechanical properties of poly(vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO 3, Journal of Colloid and Interface Science, vol.453, pp.169-176, 2015.
DOI : 10.1016/j.jcis.2015.05.002

S. Ramasundaram, S. Yoon, K. J. Kim, and C. Park, Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites, Journal of Polymer Science Part B: Polymer Physics, vol.24, issue.20, pp.2173-2187, 2008.
DOI : 10.1002/pol.1976.180141216

M. M. Abolhasani, F. Zarejousheghani, Z. Cheng, and M. Naebe, A facile method to enhance ferroelectric properties in PVDF nanocomposites, RSC Advances, vol.45, issue.29, pp.22471-22479, 2015.
DOI : 10.1021/ma2024057

M. Benz, W. B. Euler, and O. J. Gregory, The Role of Solution Phase Water on the Deposition of Thin Films of Poly(vinylidene fluoride), Macromolecules, vol.35, issue.7, pp.2682-2688, 2002.
DOI : 10.1021/ma011744f

J. Martin, D. Zhao, T. Lenz, I. Katsouras, D. M. De-leeuw et al., Solid-state-processing of ??-PVDF, Materials Horizons, vol.45, issue.3, pp.408-414, 2017.
DOI : 10.1021/ma301460h

Y. J. Park, Y. S. Kang, and C. Park, Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions, European Polymer Journal, vol.41, issue.5, pp.1002-1012, 2005.
DOI : 10.1016/j.eurpolymj.2004.11.022

S. Satapathy, S. Pawar, P. K. Gupta, and K. B. Varma, Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent, Bulletin of Materials Science, vol.14, issue.4, p.727, 2011.
DOI : 10.1002/pol.1976.180140913

L. Zhenhua, Z. Dibin, and B. Steve, An electromechanical model of ferroelectret for energy harvesting, Smart Materials and Structures, vol.25, issue.4, p.45010, 2016.

, Screen printable electroactive ferroelectret film. https://www.emfit.com/copy-of-s-series-sensor

L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin et al., Properties and Applications of the ? Phase Poly(vinylidene fluoride), 2018.

S. R. Khaled, D. Sameoto, and S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Materials and Structures, vol.23, issue.3, p.33001, 2014.

A. C. Lopes, C. M. Costa, C. J. Tavares, I. C. Neves, and S. Lanceros-mendez, Nucleation of the Electroactive ?? Phase and Enhancement of the Optical Transparency in Low Filler Content Poly(vinylidene)/Clay Nanocomposites, The Journal of Physical Chemistry C, vol.115, issue.37, pp.37-18076, 2011.
DOI : 10.1021/jp204513w

T. Kai, L. Shuwei, L. Sun-woh, M. Jianmin, and H. Xiao, A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting, Journal of Micromechanics and Microengineering, vol.24, issue.6, pp.65022-65040, 2014.

K. Achraf, B. Skandar, R. Libor, S. Alain, and J. Fathi, Micro-structured PDMS piezoelectric enhancement through charging conditions, Smart Materials and Structures, vol.25, issue.10, pp.2016-105027

J. Shi, Z. Luo, D. Zhu, and S. P. Beeby, PDMS/PVA composite ferroelectret for improved energy harvesting performance, Journal of Physics: Conference Series, vol.773, issue.1, p.12051, 2016.
DOI : 10.1088/1742-6596/773/1/012051

B. Wang, J. Zhong, Q. Zhong, N. Wu, X. Cheng et al., Sandwiched Composite Fluorocarbon Film for Flexible Electret Generator, Advanced Electronic Materials, p.1500408, 2016.

J. Zhong, Q. Zhong, X. Zang, N. Wu, W. Li et al., Flexible PET/EVA-based piezoelectret generator for energy harvesting in harsh environments, Nano Energy, vol.37, pp.37-268, 2017.
DOI : 10.1016/j.nanoen.2017.05.034

A. K. Jonscher, The 'universal' dielectric response, Nature, vol.267, issue.673, 1977.

D. P. Almond and C. R. Bowen, Anomalous Power Law Dispersions in ac Conductivity and Permittivity Shown to be Characteristics of Microstructural Electrical Networks, Physical Review Letters, vol.55, issue.15, 2004.
DOI : 10.1103/PhysRevLett.78.1755

P. Guillaussier, C. Audoly, and D. Boucher, Porous lead zirconate titanate ceramics for hydrophones, Ferroelectrics, vol.187, issue.1, pp.121-128, 1996.
DOI : 10.1016/0025-5408(72)90225-5