STAT3 Gain of Function: A New Kid on the Block in Interstitial Lung Diseases


To cite this version:

HAL Id: hal-01858930
https://hal.archives-ouvertes.fr/hal-01858930
Submitted on 12 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STAT3 Gain of Function: A New Kid on the Block in Interstitial Lung Diseases

Alexandre Fabre1,2*, Sarah Marchal3*, Lisa Renee Forbes4, Tiphanie Phillips Vogel4, Vincent Barlogis5, Valérie Triolo3, Pierre-Simon Rohrlich6,7, Etienne Bérard7,8, Diane Frankel2,9, Damien Ambrosetti10, Christine Sole6, Marie Hoflack11, Marie Baque12, Emmanuelle Bosdure13, Mélisande Baravalle13, Ania Carsin13, Jean-Christophe Dubus2,13, and Lisa Giovannini-Chami1,2

1Service de Pédiatrie Multidisciplinaire, 2Service d’Hématologie Pédiatrique, 3Service de Biologie Cellulaire, and 13Service de Pneumologie Pédiatrique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France; 2Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Génétique Médicale Génomique Fonctionnelle, Marseille, France; 8Service de Pneumologie et de Gastroentérologie Pédiatrique, 12Service d’Endocrinologie et de Neurologie Pédiatrique, and 13Service de Radiologie Pédiatrique, Hôpitaux Pédiatriques de Nice CHU-Lenval, Nice, France; 1Section of Immunology, Allergy, and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children’s Hospital Infusion Center, Houston, Texas; 4Service d’Hématologie Pédiatrique, 5Service de Néphrologie Pédiatrique, and 10Service d’Anatomo-Pathologie, Centre Hospitalier Universitaire de Nice, Nice, France; and 1Univiersité de Nice-Sophia Antipolis, Nice, France

ORCID ID: 0000-0002-5084-213X (L.G.-C.).

A 5-year-old girl with failure to thrive and multiorgan disease was referred to our center for chronic hypoxemia. On evaluation, we noted tachypnea (respiratory rate 35/min), supraclavicular retractions, median diurnal oxygen saturation as measured by pulse oximetry (SpO2) = 91.7% at rest, percentage of time below SpO2 90% at 26% during sleep, and clubbing. A computed tomography scan showed diffuse interstitial lung disease (Figure 1). Spirometry was normal (TLC, 83% of predicted; FEV1, 83% of predicted; FEV1/FVC, 98%; and forced expiratory flow, midexpiratory phase, 142% of predicted), but it was not possible to measure DlCO. BAL analysis found hypercellularity (490 cells/ml), lymphocytosis (69% lymphocytes), and a negative microbiological evaluation. Transbronchial lung biopsies were inconclusive.

The patient’s medical history included intrauterine growth restriction, severe growth failure (~4 SD), lymphocytic enteropathy with total villous atrophy, pseudoceliac disease, hepatosplenomegaly, dental abnormalities, and atopic dermatitis. After the progression of lung disease, she subsequently developed bilateral knee oligoarthritis and worsening enteropathy, requiring parenteral nutrition. Further extrapolmonary evaluation showed massive hyper-IgA, B-lymphocyte deficiency, renal disease with tubulopathy, central corticotopic insufficiency, and lymphocytic sialadenitis.

Given the complexity of the patient’s multiorgan autoimmune disease, whole-exome sequencing was performed showing a heterozygous germline gain-of-function (GOF) STAT3 (signal transducer and activator of transcription 3) mutation (E415L). Segregation of the mutation and Sanger verification confirmed a de novo mutation. Luciferase reporter assay, performed as previously described (1), confirmed GOF activity (data not shown). STAT3 GOF, described recently, results in early-onset growth failure, multiorgan autoimmunity, immunodeficiency, and lymphoproliferation. To date, 28 cases have been reported; among these, 7 presented with interstitial pneumonitis (1–4), of which 4 were consistent with lymphoid interstitial pneumonitis. In addition, several publications have suggested that aberrant STAT3 signaling plays a critical role in the pathogenesis of interstitial and fibrotic lung disease (5).

STAT3 GOF is an important new clinical entity to consider in childhood interstitial lung disease associated with hematological and multiorgan autoimmune disease.

Author disclosures are available with the text of this article at www.atsjournals.org.

*These authors contributed equally to this work.

Author Contributions: A.F., S.M., L.R.F., and L.G.-C. drafted the initial manuscript, participated in the conceptualization and design of the case report, contributed to the acquisition of data, performed a complete review of the current bibliography, critically revised the manuscript, and approved the final manuscript as submitted; T.P.V. participated in the conceptualization and design of the case report, performed the functional assessment of the mutation with luciferase reporter assay, critically revised the manuscript, and approved the final manuscript as submitted; V.B., V.T., P.-S.R., E. Bérard, C.S., M.H., E. Bosdure., M. Baravalle, A.C., and J.-C.D. were involved in clinical follow-up of the patient, participated in the conceptualization and design of the case report, contributed to the acquisition of data, critically revised the manuscript, and approved the final manuscript as submitted; M. Baque participated in the conceptualization and design of the case report, contributed to the acquisition of the computed tomography scan, critically revised the manuscript, and approved the final manuscript as submitted; D.A. participated in the conceptualization and design of the case report, contributed to the acquisition of accuracy salivary gland biopsy data, critically revised the manuscript, and approved the final manuscript as submitted; and D.F. participated in the conceptualization and design of the case report, analyzed BAL cytospins, critically revised the manuscript, and approved the final manuscript as submitted.
Acknowledgment: The authors thank Dr. P. Gauchez and Dr. J. Del-Grande for their help with the study of the intestinal biopsy; Dr. Cano for metabolic evaluation; Dr. Vely and Dr. Farnarier for immunologic evaluation; Prof. C. Badens and Dr. C. Lacoste for their help with the molecular biology study; Prof. S. Ehl and Dr. M. Heeg for their help in the functional study of the STAT3 mutation; and Prof. P. Roll, Dr. A. Robaglia-Schlupp, and Dr. E. Kaspi for their reassessment with Dr. Frankel of the BAL.

Figure 1. (A–C) Chest computed tomography scans showing (A) subcarinal adenomegaly and (B and C) ground-glass opacities with mosaic pattern and interlobular septal thickening. (D–F) Cytology and histology showing lymphoproliferation: (D) BAL cytopsins: massive lymphocytosis (stained with May-Grünwald-Giemsa); (E) whole biopsy slide showing almost total villous atrophy with an inflammatory background, presence of a mononuclear material with very dense focal regions of increased intraepithelial lymphocytes (hematoxylin and eosin–stained section); and (F) accessory salivary gland biopsy: massive lymphoid infiltrate, interstitial fibrosis, and acinar atrophy (hematoxylin and eosin–stained section).

References