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Abstract

Red deer bone collagen from Rochedane in the Jura (France) was analysed for carbon and nitrogen isotopic 
composition. The specimens range in 14C age from about 13 000 to 8000 yr BP (uncalibrated), and cover the Late-
Glacial and Early Holocene, a time period during which climatic conditions shifted from periglacial to temperate. The 
carbon isotopic compositions of red deer collagen suggest changes in the vegetation cover around the site that are 
consistent with other palaeoenvironmental indicators, such as the palynological record in the Jura. The nitrogen 
isotopic compositions exhibit a large range of around 6x interpreted as reflecting changes in the intensity of N 
cycling coeval to vegetation changes. Red deer bone collagen appears thus as a valuable proxy for reconstructing 
palaeoenvironmental changes in continental western Europe during the Late-Glacial and Holocene.
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1. Introduction

Late-Glacial and Early Holocene times, around

13 000 to 8000 years ago, witnessed very impor-
tant palaeoclimatic changes. In western Europe,
the climatic context shifted from glacial to tem-
perate conditions in a succession of relative warm-
ing and cooling episodes (e.g. Magny, 1995; Bjo«rk
et al., 1998; Amman et al., 2000). These environ-
mental changes were contemporaneous with im-
portant alterations in human habitat conditions
and ways of life (e.g. Smith, 1992; Floss, 2000;
Leesch, 2000). The palaeoenvironmental changes
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that occurred in the Jura mountainous area of
northeastern France are very well documented
during this period (e.g. de Beaulieu et al., 1994;
Be¤geot et al., 2000; Richard and Be¤geot, 2000;
Richard et al., 2000). For instance, palynological
records of peat and lake deposits have been used
as proxies for vegetational reconstruction, and the
isotopic signatures of carbonates from lake depos-
its have provided quantitative palaeoclimatic re-
constructions. However, these proxies do not
yield direct information on continental mammal
palaeobiology and human activities. Variations in
isotopic signatures are also recorded in animal
bones. Bone collagen carbon and nitrogen iso-
topic signatures of herbivorous mammals have
been used to reconstruct continental palaeoenvi-
ronmental £uctuations in tropical areas (e.g. Am-
brose and DeNiro, 1989; Fernandez et al., 1991;
Lee-Thorp and Beaumont, 1995; Gro«cke et al.,
1997; Pate and Noble, 2000). Indeed, under
such climatic conditions, variations of carbon iso-
topic compositions re£ect the ratio of C4 grass-
lands relative to C3 woodlands whilst nitrogen
isotopic variations are linked to aridity.
The goal of the present paper is to test the

ability to use carbon and nitrogen isotopic com-
positions in mammal bone collagen as palaeoen-
vironmental indicators in more temperate areas
where the C4 plant biomass is negligible or even

absent (Mateu Andre's, 1993) and where aridity
variations are not as pronounced as in tropical
regions. Red deer (Cervus elaphus) has been chos-
en as the test species due to the large number of
skeletal remains belonging to this species in Late-
Glacial archaeological sites from western Europe
(Bridault, 1997; Bridault and Chaix, 2002) and
the large ecological £exibility of this species (e.g.
Heptner et al., 1989). Investigating a limited area
through time minimises the e¡ects of parameters
other than environmental changes. During the
5000 years represented by the archaeological de-
posits in the site of Rochedane, the surrounding
environment shifted from a recently deglaciated
area to temperate forest through the intermediate
stages of tundra and boreal forest (Richard and
Be¤geot, 2000).

2. Materials and methods

The site of Rochedane (47‡21PN, 6‡46PE) is lo-
cated ca. 25 km south of the town of Montbeliard
on the left bank of the Doubs River (Fig. 1). It is
a rock-shelter dug into a calcareous cli¡ about
15 m high, at an altitude of 355 m above sea level
in an area where the neighbouring plateaus rise to
700 m above sea level.
Excavation of Rochedane by Andre¤ The¤venin

Fig. 1. Map of France showing the locations of the sites mentioned in the text; insert, detailed map of Rochedane.
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and Jean Sainty (1968^1976) identi¢ed several ar-
chaeological layers ranging between ca. 12 500
and 8000 yr BP (e.g. The¤venin, 1982; The¤venin
and Sainty, 1998; Table 1). All the layers yielded
skeletal remains of red deer, Cervus elaphus (Bri-
dault, 1990). The proportion of red deer in the
total ungulate skeletal remains is very high in

layers D1 to A4, decreasing in layers A3 and A2
(Table 1; Bridault, 1990).
Red deer bones have been selected to represent

di¡erent individuals using the following sampling
protocole: when several samples had been selected
for one layer, specimens from the same anatomi-
cal part were used, which guaranties that no in-

Table 1
Characteristics of the stratigraphic layers excavated at the site of Rochedane

Layer Age BP Age cal BC (2c) Laboratory number (ref) %NISP red deer Chronoclimatic zone Culture

D1 11 060N 470 12 145^9 603 Ly-1193 (1) 94.7 Bo«lling Magdalenian
12 420N 75 13 462^12 185 Oxa-8030 (2)

CP1 11 090N 200 11 816^10 699 Ly-1192 (1) 95.0 Bo«lling Early Azilian
B 10 730N 190 11 201^10 151 Ly-1194 (1) 91.3 Allero«d Azilian
A4 9 210N 120 8 746^8 210 GIF-2530 84.8 Younger Dryas Azilian
A3 58.5 Preboreal Early Mesolithic
A2 55.8 Boreal Mesolithic

Reference numbers stand for: (1) Evin et al. (1978); (2) Bridault et al. (2000). All radiocarbon dates have been calibrated accord-
ing to the calibration dataset from Stuiver et al. (1998), using the software calib4.3. Cultural attribution is based on The¤venin
and Sainty (1998). The %NISP (number of identi¢able fragments of bone) for red deer are adapted from Bridault (1990).

Table 2
List of isotopic results obtained on red deer bone collagen from Rochedane

Sample number Piece Layer Yield %C collagen %N collagen C/N N
13C N

15N
(mg.g31) (x) (x)

RCD500 left radius D1 30.0 42.3 15.5 3.2 319.9 0.8
RCD900 left metatarsal CP1 18.8 40.3 14.6 3.2 320.1 1.8
RCD1000 left metatarsal CP1 29.0 42.5 15.4 3.2 320.7 2.5
RCD1100 left metatarsal CP1 19.2 42.0 15.3 3.2 321.9 3.0
RCD1200 left metatarsal CP1 6.2 38.9 14.4 3.1 319.9 1.3
RCD1300 left metatarsal CP1 10.2 37.8 13.9 3.2 320.6 2.0
RCD1400 left metatarsal CP1 9.4 41.0 15.0 3.2 320.7 0.4
RCD2300 left metatarsal B 10.2 38.5 14.2 3.2 320.8 1.6
RCD2400 left metatarsal B 8.6 38.9 13.3 3.2 320.6 3.1
RCD2500 left metatarsal B 16.5 40.0 14.6 3.2 321.2 2.6
RCD2600 left metatarsal B 33.2 38.8 14.0 3.2 320.0 2.3
RCD2700 left metatarsal B 12.2 38.2 14.2 3.2 320.9 1.6
RCD2800 left metatarsal B 25.9 40.3 14.7 3.2 320.5 1.3
RCD4700 left metatarsal A4 31.7 39.7 14.8 3.1 319.5 1.4
RCD4800 left metatarsal A4 22.8 40.7 14.7 3.2 320.6 1.3
RCD4900 left metatarsal A4 24.1 39.9 14.8 3.2 320.0 1.3
RCD5000 left metatarsal A4 22.8 39.5 14.3 3.2 320.3 0.4
RCD5100 left metatarsal A4 22.3 39.8 14.7 3.2 320.0 0.2
RCD6200 left metatarsal A3 14.7 38.8 14.2 3.2 322.5 3.5
RCD6300 left metatarsal A3 22.8 39.1 14.3 3.2 323.4 4.7
RCD6400 left metatarsal A3 9.6 36.8 13.4 3.2 321.5 3.8
RCD6500 left metatarsal A3 29.4 40.5 14.6 3.2 323.0 5.2
RCD10100 right metatarsal A2 26.6 37.4 13.5 3.2 322.8 5.8
RCD10200 right metatarsal A2 16.2 38.2 14.2 3.1 322.7 4.3
RCD10300 right metatarsal A2 15.9 38.1 14.0 3.2 322.9 6.4
RCD10400 right metatarsal A2 12.4 37.7 13.7 3.2 322.6 4.2
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dividual was sampled twice in a given layer. Juve-
nile specimens with unfused epiphysal extremities
were discarded due to the possible interference of
nursing on the nitrogen isotopic composition. In-
deed, young mammals drinking their mother’s
milk are 15N enriched relative to the adults of
the same species due to the trophic level between
milking mother and suckling calf (e.g. Fogel et al.,
1989; Bocherens et al., 1994; Balasse et al., 1997).
Since the extent of this nursing enrichment varies
(Jenkins et al., 2001), we chose to ignore the ju-
venile specimens in this study. Teeth were avoided
as well due to signi¢cant intra-individual isotopic
variation in cervids that might interfere with pa-
laeoenvironmental interpretation (Bocherens et
al., 1994; Bocherens and Mariotti, 1997). For
each sample, 200^500-mg chunks of cortical
bone were removed by saw, ground to powder
and sieved to retain the H0.7-mm fraction. The
collagen extraction protocol follows that pre-
sented in Bocherens et al. (1991). Isotopic abun-
dances are expressed as N values, as follows:
N
EX= (Rsample/Rstandard31)1000 (x), where X
stands for C or N, E stands for 13 or 15, respec-
tively, and R stands for the isotopic ratios 13C/12C
and 15N/14N, respectively. The standard, interna-
tionally de¢ned, is Vienna^PeeDee Belemnite for
carbon and atmospheric nitrogen (AIR) for nitro-
gen. Analytical error is 0.1x and 0.2x for N13C
values and N

15N values, respectively. The isotopic
measurements have been performed on an ele-
mental analyser CHN connected to a VG-Optima
isotopic ratio mass spectrometer at the Laborato-
ry of Isotopic Biogeochemistry, University of
Paris 6, France.

3. Results

All the results are presented in Table 2. The
extraction yields range from 6.2 to 33.2 mg.g31.
The N13C and N

15N values of red deer bone colla-
gen range from 323.4 to 319.5x and from 0.2
to 6.4x, respectively. In the extracted residues,
the carbon and the nitrogen amounts range from
36.8 to 42.5% and from 13.3 to 15.5%, respec-
tively, with all C/N ratios ranging from 3.1 to
3.2. All these chemical parameters are well within

the range of those of collagen extracted from
fresh bones, which indicates that the extracted
residues have preserved their original isotopic
compositions (DeNiro, 1985; Ambrose, 1990).
Moreover, isotopic values do not vary signi¢-
cantly with extraction yield (Fig. 2), thus indicat-
ing that the isotopic variations are not due to the
selective collagen loss during diagenesis. The iso-
topic values rather seem to vary according to the
layer from which the sample originates. A plot-
box shows clearly that collagen from red deer
bones from layers A2 and A3 present lower
N
13C values and higher N

15N values than those
from layers A4, B, CP1 and D (Fig. 3). A non-
parametrical statistical test (Mann^Whitney)
shows that both groups of values present highly
signi¢cant di¡erences (PH0.0001). Within the
group of values formed by layers A3 and A2,
the N

13C values from collagen are exhibiting the
same median value in both layers. The N

15N val-

Fig. 2. Variations of red deer bone collagen N
13C and N

15N
values according to collagen extraction yields in Rochedane
specimens. Correlation is not statistically signi¢cant since r is
lower than K0:05 = 0.33 for n=26.
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ues are slightly higher in collagen from layer A2
than in collagen from layer A3, the average di¡er-
ence being 0.9x, which is not statistically signi¢-
cant (P=0.2482). Within the stratigraphic group
formed by layers A4, B, CP1, and D, statistical
tests could be performed for the three ¢rst layers,
since layer D yielded only one value. The N

13C
and N

15N values are not statistically di¡erent be-
tween layers B and CP1 (P=0.6879 for both val-
ues). Statistical tests show that the N13C values are
signi¢cantly higher and that the N

15N values are
signi¢cantly lower in layer A4 than in layers B
and CP1 (PH0.05 in both cases).

4. Discussion

4.1. 13C and vegetation

The large range of N13C values observed in red
deer bone collagen can be linked to the consump-

tion of plants growing in di¡erent types of plant
communities. It is known that C3 plants exhibit a
13C depletion more marked under closed canopies
in forested environments than in open environ-
ments (e.g. Vogel, 1978; van der Merwe and Med-
ina, 1991). This di¡erence can reach 2^5x be-
tween plants living under a closed canopy and
those living high in the forest canopy (e.g. Schle-
ser and Jayasekera, 1985; Tieszen, 1991; Broad-
meadow et al., 1992). The same phenomenon
has been observed between plants belonging to
the same growth form and even to the same bo-
tanical family, living in open habitats or under a
closed canopy (Tieszen and Boutton, 1989). This
depletion was considered to be due to the recy-
cling of CO2 from respiration and decomposition
of organic matter under the canopy (e.g. Vogel,
1978; Medina and Minchin, 1980; van der Merwe
and Medina, 1991). More recent studies suggest
that this factor represents actually less than 40%
of the observed e¡ect (Schleser and Jayasekera,

Fig. 3. Plot-box diagrams of red deer bone collagen N
13C and N

15N values in the di¡erent stratigraphic layers of Rochedane.
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1985; Broadmeadow et al., 1992; Brooks et al.,
1997; Buchmann et al., 1997a). These studies em-
phasise the e¡ect of other factors, such as the CO2
concentration gradient which is at its maximum at
£oor level (Broadmeadow et al., 1992; Buchmann
et al., 1997b), the attenuation of light intensity
under the canopy (Schleser and Jayasekera,
1985; Broadmeadow et al., 1992; Brooks et al.,
1997), and water availability in forested contexts
(Broadmeadow et al., 1992; Brooks et al., 1997).
Thus far, most of the studies that demonstrate the
di¡erence of N13C values between plants living in
the understory and those in open environments
have been conducted in tropical and equatorial
forests (Tieszen and Boutton, 1988). In this paper,
we speci¢cally review the case of forest plants
from the temperate and periarctic plant for-
mations from the northern hemisphere. In the
case of forests, it is generally claimed that pine
forests exhibit N13C values around 3x enriched
on average relative to broadleaf deciduous forests

(Stuiver and Brazuinas, 1987; Garten and Taylor,
1992; Brooks et al., 1997). Recent studies have
shown that other parameters have to be taken
into account, such as the Leaf Area Index (LAI)
and the intensity of atmospheric mixing due to
wind circulation in the understory (Buchmann et
al., 1997b). A review of published N

13C values of
plants from di¡erent temperate and periarctic
plant formations, corrected for post-industrial
13C depletion of atmospheric CO2 using the for-
mula of Feng (1998), modi¢ed by Bocherens and
Drucker (2003) to set a N

13C value of 37x for
atmospheric CO2, shows clearly that no values
more negative than 327.5x are reported for
plants from open formations, whereas most of
the N

13C values of plants from the understory of
forest formations are more negative than
327.5x (Fig. 4). Among the forest formations,
the Pinus dominated coniferous forest seems to
exhibit less negative N

13C values than the other
forest types. It is noteworthy that this forest ex-

Fig. 4. Schematic range of N13C values in plants from various temperate and periarctic plant communities in Europe and North
America according to their growth types (values from Bocherens, 1992; Mole et al., 1994; Rodie're, 1995; Brooks et al., 1997;
Buchmann et al., 1997a,b). LAIs are based on the original publications for each plant community and completed by LAI esti-
mates from Scurlock et al. (2001) for Fagus dominated deciduous forest. All the N

13C values have been corrected for post-indus-
trial 13C depletion of atmospheric CO2 using the formula of Feng (1998), modi¢ed by Bocherens and Drucker (2003), to set a
N
13C value of 37x for atmospheric CO2.
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hibits also the lowest LAI, compared to the Picea
dominated coniferous forest and deciduous forests
(Fig. 4). Further work on di¡erent forest types
may lead to the possibility to characterise speci¢c
N
13C values for plants under di¡erent canopy
types.

N
13C variations in red deer collagen can be in-

terpreted in terms of consumption of plants from
di¡erent types of plant communities, with a pos-
itive shift of 5x between the average diet and the
collagen isotopic signature (DeNiro and Epstein,
1978; Rodie're et al., 1996). An empirical end val-
ue for herbivores consuming only plants from a
dense-canopy forest can be estimated while using
the collagen N

13C values of modern roe deer (Ca-
preolus capreolus) from the beech forest of Dour-
dan, France (Rodie're et al., 1996). The N13C val-
ues of individuals living under the canopy range
from 326.1 to 323.4x if values obtained on
very young specimens are excluded. For a direct
comparison with prehistoric deer, it is necessary
to take into account the decrease of N13C of CO2
in the modern atmosphere due to fossil fuel com-
bustion and deforestation (Keeling et al., 1979;
Friedli et al., 1986). The N13C value of atmospher-
ic CO2 between 13 000 and 8000 yr BP can be
estimated at ca. 37x (Leuenberger et al., 1992;
Toolin and Eastoe, 1993; van de Water et al.,
1994). The forest roe deer from Dourdan lived
at the end of the 1980s (Rodie're et al., 1996)
when atmospheric CO2 had a N

13C value of
around 37.9x (Marino and McElroy, 1991).
After correction of this 0.9x o¡set, a collagen
N
13C value of 322.5x is a minimum estimate for
individuals that consumed only closed-canopy
plants. This estimate is consistent with the N

13C
values measured on bone collagen from modern
cervids from the Bialowieza primaeval forest in
Poland (Bocherens and Drucker, 2003). In other
words, specimens with a collagen N

13C value more
negative than 322.5x consumed a signi¢cant
amount of plants growing under closed-canopy
conditions. Specimens with a N

13C value more
positive than 322.5x probably did not consume
plants from closed-canopy vegetation, and conse-
quently were dwelling mostly in open environ-
ments such as grassland or open woodland.
In all the layers that were deposited during the

Bo«lling/Allero«d and the Younger Dryas, i.e. layers
D1, CP1, B and A4, the analysed red deer exhibit
N
13C values more positive than 322.5x, and
thus appear to have consumed plants from open
environments such as tundra, grassland or open
woodland. These data contrast with specimens
deriving from layer A2, deposited during the Bo-
real period, which have N13C values more negative
than 322.5x, re£ecting the consumption of
plants growing under a closed-canopy, typical of
a dense forest. Specimens from layer A3, depos-
ited during the Preboreal period, present varying
N
13C values, lower or higher than 322.5x, which
suggests the consumption of plants from di¡erent
types of environments, according to the individual
deer investigated. Although all deer specimens
from the Bo«lling/Allero«d and the Younger Dryas
seem to have dwelled in open environments, some
variations of their N13C values may re£ect changes
in the plant communities. These carbon isotopic
changes may re£ect N13C £uctuations of the plants
under constant atmospheric N

13C values, due to
physiological adaptations. Alternatively, they
may re£ect changes in the N

13C values of atmo-
spheric CO2. Beerling et al. (1993) document a
1^2x decrease of the N13C values of Salix herba-
cea between the Devensian Late-Glacial intersta-
dial (i.e. Bo« lling/Allero«d) and the Full Glacial and
the Devensian Late-Glacial stadial (i.e. Younger
Dryas) in Great Britain. However, this work is the
only investigation to date describing such a car-
bon isotopic decrease. Indeed, the Bo«lling/Allero«d
interstadial is instead characterised by a slight in-
crease of the N

13C values of atmospheric CO2
(Toolin and Eastoe, 1993). Alternatively, such
variations may re£ect changes in the plant com-
position during the Bo«lling/Allero«d interstadial,
which are clearly illustrated by palynological
data from the Jura (e.g. de Beaulieu et al., 1994;
Be¤geot et al., 2000; Richard and Be¤geot, 2000;
Richard et al., 2000). We will return to this point
having ¢rst considered the variations in N

15N val-
ues.

4.2. 15N and environmental factors

The observed range of N15N values in red deer
collagen exceeds 6x, which is signi¢cant since
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the average trophic level enrichment ranges from
3 to 5x (e.g. Ambrose, 2000; Bocherens and
Drucker, 2003). Clearly, this variation cannot be
due to a change in trophic level for red deer since
this species is unambiguously a plant-eating ani-
mal. In previous works dealing with the variations
of collagen N

15N values in herbivorous mammals,
the main factor explaining these variations was
concluded to be aridity: the more arid, the higher
the N15N values (e.g. Ambrose and DeNiro, 1986;
Heaton et al., 1986; Sealy et al., 1987; Ambrose,
1991; Gro«cke et al., 1997; Bocherens et al., 2000).
If we follow the relationship deduced from a
study of modern South African herbivorous
mammals (Heaton et al., 1986), a change in col-
lagen N

15N values from 0.2 to 6.4x as observed
in Rochedane red deer should correspond to a
change in the annual rainfall amount from about
1000 to 600 mm/yr. Such changes are unrealistic
for the Jura during the Late-Glacial and Early
Holocene, especially since the most positive N15N
values are measured in specimens with the most
negative N

13C values indicating a dense forest
(Fig. 5). Variations in the N

15N values of plants
consumed by red deer are thus the most likely
cause for the variations observed in their bone
collagen.
In contrast with carbon, there is no obvious

environmental parameter that controls the iso-
topic variations of nitrogen in plants in temperate,
boreal and periarctic environments. The N15N val-
ues of plants depend on the source of nitrogen
that they use, on its chemical form and on the
assimilation mechanism, in particular the possible
in£uence of mycorrhizas (e.g. Ho«gberg et al.,
1996; Handley et al., 1998, 1999; Michelsen et
al., 1996, 1998; Yoneyama et al., 1998). Except
for leguminous plants that preferentially use at-
mospheric nitrogen ¢xed by microbial symbiots
of their roots and thus have N

15N values system-
atically close to 0x, the large majority of plants
use mainly organic nitrogen or inorganic nitrogen
in soil in the form of NHþ

4 and NO
3
3 (e.g. Yo-

neyama et al., 1998). During the biogeochemical
cycle of nitrogen, organic nitrogen is mineralised
by micro-organisms as ammonia NHþ

4 and then
oxydised into nitrate NO3

3 . During these chemical
reactions, the product is 15N depleted relative to

the substrate, thus NO3
3 exhibits more negative

N
15N values than NHþ

4 , and NH
þ
4 presents more

negative N
15N values than organic nitrogen. The

N
15N values of plants will re£ect those of their
nitrogen source in the soil. If nitrogen cycling is
stimulated, residual inorganic nitrogen will exhibit
higher N

15N values. This is because the lighter
reaction product is eliminated by absorption by
plants and micro-organisms, volatilisation or
leaching (Schulze et al., 1994). Examples of stim-
ulation of N cycling are fertilisation and ¢res. In-
deed, experimental N fertilisation of forest plants
led to increased N

15N values (Johannisson and
Ho«gberg, 1994) and N

15N values of plants grow-
ing in cultivated ¢elds are more positive than
those of forest plants from the same area (e.g.
Riga et al., 1970; Hobson, 1999). Moreover,
plants growing on parcels after the latter had
been burned have more positive N

15N values
than those that grow on similar parcels in the

Fig. 5. Variations of red deer bone collagen N
13C and N

15N
values in Rochedane according to stratigraphic origins.
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absence of ¢res (Grogan et al., 2000). Cold and
dry conditions, by contrast, lower activities of
N-elimination processes causing a decrease of
N
15N values in, for example, plants from hilltops
relative to valley bottoms (Pen‹uelas et al., 1999).
Moreover, it has been recognised that soil N15N
values increase with increasing mean annual tem-
perature (Brenner et al., 2001).
Unfortunately, direct comparisons of N15N val-

ues in plants and soils from modern arctic and
temperate plant formations do not permit us to
decipher the e¡ects of temperature on nitrogen
natural isotopic abundances due to the interfer-
ence of anthropogenic activities in temperate
areas, such as N deposition linked to air pollution
and forest harvest (e.g. Schulze et al., 1994; Em-
mett et al., 1998; Bauer et al., 2000). Due to these
complicating factors, a range of N15N values that
can reach 10x is observed for a given type of
plant in a similar type of forest across a transect
in Europe (Emmett et al., 1998; Bauer et al.,
2000). Such a large range can explain the ob-
served di¡erences in N

15N values of collagen from
modern roe deer from beech forests in France
(Dourdan) and Poland (Bialowieza), with N

15N
values of 31.5 N 0.8x and 2.1N 1.8x, respec-
tively (Rodie're et al., 1996; Bocherens and
Drucker, 2003).
In the present study, it is noteworthy that N15N

values of red deer collagen tend to decrease when
climatic conditions become harsher, such as at the
beginning of the Bo«lling period and during the
Younger Dryas, whereas they tend to increase
during the Bo«lling/Allero«d interstadial and even
more during the Preboreal and Boreal periods,
at the same time that the N

13C values decrease
(Fig. 5). It is thus important to discuss the possi-
ble mechanisms that may increase the N15N values
of soils and plants in the context of increasing
temperatures.
The co-variation between the N

13C and N
15N

values leads to the interpretation that when plant
cover becomes more dense and the N13C values of
plant food available to red deer decrease, the ni-
trogen cycle is stimulated and the increased loss of
nitrogen leads to enriched N

15N values in soils,
and thus in the plants consumed by red deer. A
generalisation of red deer collagen isotopic studies

in the Jura will possibly enable us to decipher the
environmental parameters that determine the
N
15N variations in this region in comparison
with its well-known vegetation evolution, as syn-
thesised by Richard et al. (2000).
The Preboreal is one of the key periods in

which the co-variation of N13C and N
15N values

is similar to the overall co-variation observed
for the whole sequence. Red deer consuming for-
est plants as well as red deer eating plants from
open environments have been encountered in this
layer. The question regarding the coexistence or
succession of these individuals will possibly be
solved by the AMS radiocarbon dating of the
extracted bone collagen of di¡erent individuals
with di¡erent isotopic compositions which is
being carried out, although the occurrence of a
14C plateau from the second part of the Younger
Dryas biozone to the ¢rst part of the Preboreal
biozone (Amman and Lotter, 1989) may create
problems.

4.3. Comparison with the isotopic signatures of
other Late-Glacial red deer bones from western
Europe

It is interesting to compare the isotopic compo-
sitions measured on red deer collagen from Ro-
chedane with those previously obtained for the
same species in Pont d’Ambon, an archaeological
site located in the Dordogne, southwestern
France, which yielded red deer bones of Late-Gla-
cial age (Table 3; Fig. 6). The N13C values exhibit
similar ranges at both sites during the Bo«lling/Al-
lero«d interstadial and the Younger Dryas stadial,
with perhaps more pronounced variations in Ro-
chedane. The N13C values decrease during the Pre-
boreal in Pont d’Ambon, but not as much as in
Rochedane (Fig. 6). Actually, only one specimen
from Pont d’Ambon yielded N

13C values more
negative than 322.5x, indicating the consump-
tion of plants from a rather dense-canopy forest
(Drucker and Ce¤le¤rier, 2001). The N15N values of
red deer from Pont d’Ambon are more positive
than those from Rochedane during the Bo«lling/
Allero«d and Younger Dryas periods (Fig. 6). In
contrast, the nitrogen isotopic compositions are
similar for the Preboreal period. For carbon and
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nitrogen isotopic compositions, the variations are
more pronounced in the Jurassian Massif, as
exempli¢ed by the case of Rochedane, than in
Aquitaine, as seen in Pont d’Ambon. Rochedane,

which is located at a higher altitude and, conse-
quently, much closer to the glacier front than
Pont d’Ambon, probably experienced more pro-
nounced environmental changes. For instance, the

Fig. 6. Plot-box diagrams of red deer bone collagen N
13C and N

15N values during di¡erent periods in Rochedane and Pont d’Am-
bon. The Bo«lling and Allero«d have been plotted as one period since they are not clearly distinguishable in southwestern France
(discussion in Drucker and Ce¤le¤rier, 2001).

Table 3
List of isotopic results obtained on red deer bone collagen from di¡erent archaeological layers at Pont d’Ambon

Sample number Layer Chronozone N
13C N

15N
(x) (x)

PAM200 2 Preboreal 320.3 3.9
PAM300 2 Preboreal 323.4 4.0
PAM400 2 Preboreal 320.2 3.1
PAM500 2 Preboreal 320.5 4.5
PAM1300 3 Younger Dryas 321.0 3.3
PAM1400 3 Younger Dryas 320.3 3.0
PAM1500 3 Younger Dryas 320.6 3.1
PAM2100 3A sup Younger Dryas 320.3 2.5
PAM2200 3A Younger Dryas 320.3 3.3
PAM2300 3A Younger Dryas 320.4 2.8
PAM2400 3A Younger Dryas 320.5 4.7
PAM2500 3A Younger Dryas 320.8 3.0
PAM2800 3B Bo«lling/Allero«d 320.7 4.4
PAM2900 3B Bo«lling/Allero«d 319.9 4.0
PAM3000 3B Bo«lling/Allero«d 320.6 3.5
PAM3300 4 Bo«lling/Allero«d 320.8 3.6
PAM3400 4 Bo«lling/Allero«d 320.2 2.9
PAM3500 4 Bo«lling/Allero«d 320.3 3.6

Carbon and nitrogen isotopic values are from Drucker and Ce¤le¤rier (2001) and Drucker (2001), respectively.
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intensity of nitrogen cycling processes was prob-
ably more important in Pont d’Ambon than in
Rochedane during the Bo«lling/Allero«d and the
Younger Dryas periods, but the levels became
similar in both areas during the Preboreal warm-
ing period.
Some red deer bone collagen carbon isotopic

compositions from British archaeological sites of
similar age as Rochedane could be extracted from
the database of the Oxford Radiocarbon Labora-
tory (Table 4). It is noteworthy that all the speci-
mens present N

13C values clearly more positive
than 322.5x, thus indicating specimens dwelling
in open environments, as can be expected for this
area during the Late-Glacial.

5. Conclusions

The results of the present study demonstrated
that carbon and nitrogen isotopic composition of
red deer bone collagen is a valuable tool for re-
constructing palaeoenvironments in Late-Glacial
and Holocene Europe. Due to the ecological £ex-
ibility of red deer, the occurrence of this species at
a given archaeological site cannot be used as a
palaeoenvironmental indicator. However, the iso-
topic signatures of its bones provide a powerful
tool to reconstruct the landscape where the ani-
mals used to live and were hunted. Use of carbon
isotopic signatures as markers of vegetation types

could be foreseen. However, the relationship be-
tween the nitrogen isotopic signatures of an her-
bivorous species and speci¢c characteristics of
nitrogen cycling in soils had not yet been es-
tablished. The Late-Glacial and Early Holocene
sequence of Rochedane spans the whole range
of environments that can be expected in western
Europe during the last ¢fteen thousand years. Pa-
laeoenvironmental reconstruction of periarctic
and temperate terrestrial ecosystems will certainly
bene¢t from this novel approach.
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