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Meta-models proved to be a very efficient strategy for optimization of expensive black-box models, e.g. Finite Element simulation
for electromagnetic devices. It enables to reduce the computational burden for optimization purposes. Kriging is a popular method to
build meta-model. Its statistical properties were firstly used in efficient global optimization for unconstrained problems. Afterwards
many extensions were introduced in the literature to deal with constrained optimization. This paper presents a comparative study of
some infill criteria for constraints handling and a new strategy for parallelization of the expensive computations of models. TEAM
workshop problem 22 is taken as an electromagnetic test problem.

Index Terms—Constrained optimization, Expensive simulation, Kriging, Infill criteria, Parallelization strategy.

I. INTRODUCTION

META-MODELS [1] are used in many fields, mainly
to replace expensive black-box models [2] [3]. In

an optimization problem the objective function and/or con-
straints are not always cheaply available data, thus these
surrogate models aim to give a model able to approximate
the expensive black-box models from a limited number of
solutions. Optimization using kriging meta-models were first
introduced in [4] to tackle unconstrained optimization. Its
main advantage is the reduction of the number of calls to
the expensive model. However, for problem with high number
of parameters the number of evaluations arises exponentially
(curse of dimensionality). Thus, the purpose of this paper is
to compare methods to handle constraints and propose a new
strategy for parallelization, which enables to run several eval-
uations at each iteration. A brief review of meta-model based
optimization and infill criteria for constrained optimization
is presented. Then, the parallelization strategy is presented
and tested on an analytical model and the TEAM workshop
benchmark problem 22.

II. META-MODEL BASED OPTIMIZATION

An optimization problem can be formulated as follows

min
x

y(x)

s.t. gi(x) ≤ 0, i = 1 . . . nc (1)

where x are the design variables, y(x) is the objective function
and gi(x) are nc constraints. In the case of electromagnetic
modeling, finite element models are widely used, but the
simulations can be expensive in terms of computational time.
An alternative consists in replacing them by cheaper models.
These meta-models are constructed with a relatively small
size sample obtained by the Finite Element model at first,
but refined with other samples found using an infill criterion.
Furthermore, the numerical noise due to discretization present
a problem for gradient based algorithm. The optimization in
this case may become difficult or even impossible.

Meta-model based optimization flowchart is presented in
Fig. 1. The first step aims to determine initial set of parameter
values (initial design) using a design of experiments, e.g.
Latin Hypercube Sampling (LHS). The full (expensive) model
is solved for each set of parameters. Afterwards a meta-
model is built based on the initial design and the output data.
Kriging is well suited for building the meta-model due to its
statistical properties. The most important part in the process,
on which the paper will focus, is to find the infill point which
improves the actual best solution and increases the meta-
model precision. This point will be evaluated using the Finite
Element model in the next iteration. In Fig. 1, the arrow that
goes out and comes back into step ”Find Infill point” means
that a sub-optimization problem is solved to find infill points.
Finally some stopping criteria are evaluated to terminate the
optimization.

Fig. 1. Flowchart of Kriging meta-model based optimization.

A. Kriging

Kriging [5] is an interpolation method based on a regres-
sion term and a stochastic term. The stochastic term aims
to eliminate the error due to regression and is constructed
based on the location of the sampled points. Furthermore
Kriging characterizes the variance, or the precision, of the
prediction. Thus, Kriging considers the response a normally
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distributed random variable with given expected value and
standard deviation.

The Kriging method, also called Gaussian process regres-
sion, was originally developed by D. Krige a mining engineer
in South Africa. Afterwards the method was introduced into
the field of numerical design.

In [6] (Dace a Matlab Kriging Toolbox) an exhaustive
presentation and the implementation of kriging predictor are
detailed. The developed toolbox is used in the numerical
evaluation to construct a response surface of the objective
function and of the constraints from a set of sampled points.

III. INFILL CRITERIA

A. Expected Improvement

The most used infill criterion to deal with unconstrained
optimization is Expected Improvement (EI) criterion, pre-
sented in [4]. This criterion enables a trade-off between
exploitation and exploration of the design space.

EI(x) = (ymin − ŷ(x))Φ(u(x)) + ŝy(x)φ(u(x)) (2)

where u(x) = ymin−ŷ(x)
ŝy(x)

, ŷ(x) and ŝy(x) are the expected
value and the standard deviation of the kriging predictor for
the objective function y and ymin is the smallest sampled value
of y.

Maximizing EI(x) leads to the point x∗ with the highest
probability of improvement, either by sampling toward the
optimum or improving the approximation of the meta-model.
These characteristics can be justified by the fact that the
derivative of EI(x) with respect to ŷ(x) is negative, meaning
that the smaller ŷ(x) the higher EI(x) (exploitation) and the
derivative EI(x) with respect to ŝy(x) is positive, meaning
that the bigger ŝy(x) the higher EI(x) (exploration).

There exist other infill criteria, that often reveal striking
similarities. An exhaustive set of infill criteria was presented
in [7] for unconstrained and constrained optimization.

B. Constraint handling

The probability of feasibility (PF ) criterion is widely used
for constrained optimization. It quantifies the probability that
a constraint is satisfied

PF (x) = Φ
(−ĝ(x)

ŝg(x)

)
(3)

where ĝ(x) and ŝg(x) are the expected value and the standard
deviation of the kriging predictor for a constraint.

To sample point that improves the actual solution and
respects constraints both EI and PF should be considered.
Table I summarizes the main formulations that aim to satisfy
these requirements.
The formulation (A) has a statistical derivation (assuming
that the objective function and the constraint are statistically
independent). It aims to sample points that maximize the ex-
pectation of improvement and fulfill constraints. However the
product of EI and PF reveals high modality and algorithms
maximizing this criterion often fail to find the global optimum.

Thus, the formulation (B) was proposed in [8] to consider
the infill criterion as bi-objective to reduce the modality. From

TABLE I
INFILL CRITERIA FOR CONSTRAINED OPTIMIZATION

Formulation infill point determination
A max

x
EI(x).PF (x)

B max
x

(EI(x), PF (x))

C max
x

EI(x)

s.t.PF (x) ≥ Ptol

Pareto front, the point chosen is the one that maximizes the
product of EI and PF .

In the case of many constraints, both formulations consider
the global PF as the product of the probability of feasibility of
each constraint. However, this impacts the search close to the
constraints boundary, so if the optimum lies on the constraint
boundaries these infill criteria may fail to find it. This is due to
the maximization of PF that leads to point inside the feasible
region and less likely on the constraint boundaries.

The formulation (C) was proposed in [7] and considers
the problem as a constrained one to reduce the modality of
the infill criterion and to gain in precision of the solution in
case of the optimum activates some constraints. Ptol = 0.95
was recommended but it has an effect on the precision, it
fails to locate the points on the constraint boundaries. The
authors opinion is that Ptol = 0.5 seems more reasonable
because PF = 0.5 when ĝ(x) = 0. This formulation considers
each constraint independently and calculates their respective
probabilities of feasibility, ending up with the same number
of constraints as the original problem.

IV. PARALLELIZATION STRATEGY

In the sequential process, only one point is found by max-
imizing EI . The aim of the parallelization strategy is to find
multiple promising points at each iteration to take advantage
of clusters by running distributed expensive evaluations.

In [9] the straightforward extension of EI from sequential
to parallel was presented. It computes an analytic expression
for two points. For more than two points, the authors propose
its estimation through Monte Carlo simulation.

In [10] a hybrid method was proposed. It adds artificially the
point found at each iteration to a subset, evaluates it with the
kriging predictor, and reconstruct the meta-model. Afterwards,
the next point is found until reaching the number of required
points. When the number of evaluated points increases, the
construction of the meta-model become a time consuming step
which penalize the whole process.

The proposed method is based mainly on the multimodal
behavior of EI and searches the points that maximize EI
and exclude its vicinity to find another point. The process
is repeated until the number of excluded points equals the
number of required parallel evaluations. The exclusion area is
defined by the distance from that point.

In the infill criterion, the exclusion area is defined by the
constraint

(
x−xi

range(x)

)2 ≥ 1
4n2 , where range(x) is the range of

variable x and n is the number of parallel evaluations wanted,
this constraint defines an area around the points already found
in the current iteration to look for other promising regions in
the design space.
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Fig. 2. Infill point determination

The advantages of this strategy over the two above-
mentioned is that we have an analytical form for the infill cri-
terion and the reconstruction of the meta-model is not needed
multiple times at the same iteration. However, it presents a
small drawback, at the last iterations of the optimization EI
becomes 0 in a large part of the design space. The points
found, at an iteration, are close to each other.

This drawback will be further investigated, an initial idea is
to vary the size of the exclusion area, or using another infill
criterion (e.g. ŷ(x)−kŝy(x) [7] [11] k = 2.5, 3) which keeps
the multimodal behavior.

V. ENHANCEMENTS

A. Pre-Optimization
Frequently, in the case of constrained optimization the initial

sample (generated by LHS) has no feasible point. Thus, before
starting the optimization. An initial infill criterion is used for
this purpose, it aims to find feasible points.

max
x

PF (x) (4)

Maximizing PF means that we look for the point that is most
likely feasible.
In the case were multiple feasible points are wanted, another
infill criterion is proposed

max
x

PF (x)×D(x) (5)

where the distance D(x) = min
d∈Xfeas

‖x− d‖ and Xfeas is the

set of feasible sampled points found until the current iteration.
This infill criterion enables to sample points that have the

highest probability of feasibility while being distant from
previously sampled points.

B. Cheap Constraints handling
Cheap constraints are the constraints that can be evaluated

rapidly without calling the FE model. Generally these of con-
straints are explicit functions of design variables. Sometimes
these constraints express the feasibility of design, it means that
if this constraint is not fulfilled the modeled phenomena have
no physical meaning (e.g. overlapping constraint of SMES
Device). These constraints are handled differently, they are
embedded in the infill criterion directly.

Given g(x) ≤ 0 a cheap constraint, the infill criterion
problem is written

max
x

EI(x)

s.t. PF (x) ≥ Ptol (6)
g(x) ≤ 0

TABLE II
COMPARISON OF OPTIMIZATION RESULTS

Formulation C.R. dist evals iters
SQP 0.3 1.00e-6 31.5 31.5
A 0.8 3.26e-2 47.7 47.7
B 1.0 4.09e-2 55.3 55.3
C (Ptol = 0.95) 0.4 3.47e-2 32.5 32.5
C (Ptol = 0.5) 0.9 1.42e-4 37.4 37.4
Parallel 1.0 2.11e-5 52.5 17.5

Adopting this procedure ensures that the point found by the
infill criterion satisfy the constraint.

VI. ANALYTIC TEST

The analytic problem from [12] is taken for comparison
purpose.

min
x

− (x1+x2−10)2
30 − (x1−x2+10)2

120

s.t. 1− x2
1x2

5 ≤ 0

1− (x1+x2−5)2
30 − (x1−x2−12)2

120 ≤ 0 (7)
1− 80

x2
1+8x2+5

≤ 0

0 ≤ x1, x2 ≤ 10

To compare formulations, 10 different initial designs of
experiments are generated by the LHS are used. Furthermore,
SQP algorithm with 10 start points uniformly distributed in
the design space, is presented.

The averages of the results are shown in Table II. The
metrics used for comparison are the convergence rate (C.R.)
that is the percentage of the 10 tests that converge to the
known solution for less than 1% of the range of variable. dist
is the normalized Euclidean distance to the known solution
for the tests that converged, evals is the average number of
evaluations of the exact (supposed expensive) model, and iters
is average number of iterations, this metric is only considered
for parallel.

The table shows that SQP and the formulation (C) with
Ptol = 0.95 has the lowest convergence rate. The formulations
(A) and (B) have good convergence rates but the number of
evaluations is higher. Due to the multimodality of the problem,
the algorithm often fails to find the global optimum. The
formulation (C) with Ptol = 0.5 shows the best results among
the sequential formulations.

For the parallelization strategy, three evaluations of the exact
model at each iteration were done. The results show that the
number of exact model evaluations has increased by 40%,
however the number of iterations has decreased by 52%.

VII. TEAM WORKSHOP PROBLEM 22

The SMES device [13] consists of two concentric supercon-
ducting coils fed with currents that flow in opposite directions.
The inner coil is used for storing magnetic energy E, while
the outer one has the role of diminishing the magnetic stray
field Bstray.

The goal of the optimization problem is to find the design
configurations (8 parameters) that give a specified value of
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Fig. 3. SMES Device [13]

TABLE III
OPTIMIZATION RESULTS

Reference C (Ptol = 0.5) Parallel
Enegy(MJ) 178.73 180.14 180.0
Bstray(µT ) 14.56 8.81 8.93
OF 0.0123 0.0029 0.0020
dist 0 2.85e-3 3.41e-3
evals - 3403 4128
iters - 3403 516
time(s) - 10254 6541

stored magnetic energy and a minimal magnetic stray field.
Mathematically, this is formulated as

min
x

OF (x) =
B2

stray(x)

B2
norm

+
|E(x)−Eref |

Eref

s.t. |J|+ 6.4|B| − 54 ≤ 0 (8)
R1 −R2 + 1

2 (d1 + d2) < 0

where Eref = 180MJ , Bnorm = 200µT and x are the design
variables x = (R1, R2, h1/2, h2/2, d1, d2, J1, J2).

The FE simulation is considered as a Black-Box model with
inputs and outputs and response surfaces using Kriging for the
objective function and the constraints are constructed.

Thus, three response surfaces are constructed, one for the
objective function, and two for the quench constraint. These
last two response surfaces represent each one the quench
condition in a coil (coil 1 and coil 2). The third constraint
is handled as a cheap constraint because it depends directly
on the design variables.

The results of optimization are summarized in Table III.
The comparison is done between the reference [13] and two
formulation of infill criterion, sequential formulation C with
Ptol = 0.5 and the parallel formulation (also with Ptol = 0.5)
to find n = 8 points at each iteration.

The number of evaluations (evals) has increased by 21%
on the other hand the overall time for the optimization has
decreased 36%. These performances are due to two reasons.
Firstly, the parallelization of evaluations. Secondly, the number
of reconstructions of the kriging meta-model (3403 times for
sequential, and 516 for parallel).

VIII. CONCLUSION

In this communication, we have developed a strategy of
optimization based on kriging meta-model and the paralleliza-
tion of the computations of the full model. The results obtained
on an analytical example were promising.

This strategy was assessed on the TEAM Workshop prob-
lem 22 with 8 variables, the results show that the proposed
parallelization strategy enables to reduce significantly the
computational time (a speedup of 1.56). However, the expected
speedup was to be 8 (8 points in parallel), this will be further
investigated, to enhance the performances.
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