Skip to Main content Skip to Navigation
Journal articles

Burning velocities and jet-stirred reactor oxidation of diethyl carbonate

Abstract : There is current interest in utilizing oxygenated biofuels such as carbonates in blends with conventional oilderived liquid fuels. Carbonates, commonly used as electrolyte solvents in Li-ion cells, could ignite after abusive operating conditions. Improving the kinetic modeling of the oxidation of these bio-derived oxygenates requires further investigation under well-controlled conditions. An experimental and detailed chemical kinetic modeling study of diethyl carbonate (DEC) oxidation and combustion was performed. Experiments were carried out in a jet stirred reactor over a wide range of equivalence ratios, temperatures, and pressure. Mole fractions of stable species were measured in the jet stirred reactor at atmospheric pressure. Burning velocities of DEC/air mixtures were determined at elevated temperature over a range of pressures and equivalence ratios. A detailed chemical kinetic modeling was performed using the present experimental results and existing literature data and model. The model represents fairly well the present data. Sensitivity and reaction paths analyses were used to rationalize the results.
Document type :
Journal articles
Complete list of metadatas
Contributor : Christian Chauveau <>
Submitted on : Monday, August 20, 2018 - 5:52:40 PM
Last modification on : Friday, January 8, 2021 - 9:24:09 AM




Roya Shahla, Casimir Togbe, Sébastien Thion, Romain Thimothée, Maxence Lailliau, et al.. Burning velocities and jet-stirred reactor oxidation of diethyl carbonate. Proceedings of the Combustion Institute, Elsevier, 2017, 36 (1), pp.553 - 560. ⟨10.1016/j.proci.2016.06.041⟩. ⟨hal-01858468⟩



Record views