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Abstract
A finite element formulation is proposed and implemented for analysing the stability of excavated wells

using the DiMaggio-Sandler constitutive elastoplastic model with a typical carbonate reservoir configura-
tion. The quality of the finite element approximation is ensured by applying smooth curved elements adapted
to the well-bore geometry, and h − p adaptive finite element meshes in the plastic zone. General purpose
procedures are defined to transfer the elastoplastic deformation history to newly created integration points.
A breakout damage criterion is proposed based on the second invariant of the deviatoric plastic deformation
tensor. This damage criterion is used to apply a mesh movement algorithm to represent material collapse.
The automatic successive application of the breakout damage criterion results in elliptical realistically look-
ing geometries obtained in experiments reported in the literature.

Keywords Geomechanics, Plasticity, Finite elements, Mesh Adaptation, Return-Mapping Algorithm, Wel-
bore stability

1 Introduction

During the drilling operation of a well, the in-situ stress state, acquired during millions of years, changes
abruptly. Well-bore stability analysis refers to the control of stress changes during the well excavation process,
which includes the movement of rock material by the drill bit, and its replacement by the drilling fluid. The
confining pressure becomes balanced by the hydrostatic pressure generated by the column of drilling fluids, as
illustrated in Figure 1.

The pressure of the drilling fluid is a very important parameter. If the hydrostatic pressure exerted by the
column of drilling fluid is excessively high, the fluid may cause the the rock to fracture, causing significant
loss of fluid and damage to the reservoir formation (hydraulic fracturing). If the pressure is insufficient, there
may be the invasion of the fluid contained in the reservoir. This invasion can cause fluid separation, resulting in
expansion of gas contained in the oil (e.g. Deep Horizon disaster). Even when the pressure of the drilling fluid
is between the two thresholds mentioned, the stress state change can lead to plastic deformation of the material
of the formation and to the eventual collapse of the well. This altered state of stress can be partially controlled
by the adjusting the pressure of the drilling fluid by changing its density.
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Figure 1: Illustration of an off-shore well drilling process: fluid is pumped and circulated inside the perforation
column for lubrication, transport of debrits and stress equilibrium purposes.

Increase of reliability of wells can be obtained by a more detailed study of the stress state around the well,
including the non-linear material behavior due to plastic deformation and by including numerical models of
breakout of material. In this context, the main purpose of the present article is to study the stress state around
the well-bore using computational elastoplasticity [1, 2, 3, 4]. A finite element formulation of the stress state
of excavated wells is developed. Additionally, the second invariant of the plastic deformation tensor is adopted
as a damage criterion to simulate material collapse (breakout), which is represented numerically by adjusting
the geometry of the domain.

The following advanced numerical finite element algorithms have been combined to construct the proposed
numerical model of breakout:

• An improved numerical integration algorithm proposed in [5], which holds for associative models.

• hp-Refinement around the well-bore. In order to enhance the precision of the elastoplastic simulation,
curved meshes directional refined towards the well-bore are used, and the polynomial order is increased
in the plastification area.

• A specific transfer procedure for elastoplastic deformation history. Considering the fact that in elasto-
plastic simulations the stress state is path dependent, adaptive simulations require the communication of
the deformation history from one mesh to another.

• An automatic numerical method adapting the geometry of the computational domain by removing the
region where the material loss occurs, which is associated to an given value of plastic shear.

Concerning the constitutive plastic model, the focus on this work has been on cases that could test the versa-
tility of the plastic integration algorithm and still resemble the major mechanical response of a rock under high
burial stresses. In order to capture the true mechanical behavior of the rock, the shear and traction failure modes
must be reproduced. Rocks are materials with intrinsic nonlinear mechanical response. Although all the non-
linearities, such as those in the elastic behavior, cap envelop with hardening/softening and non-associativeness



of plasticity in the shear envelope could possibly be modeled, it is challenging to devise numerical properties to
fulfill the most sophisticated constitutive models. Material availability and test facility capabilities often reduce
the amount of real material information at hand when determining material parameters. The real rock behaviour
also includes pore collapse and excessive dilatation.

The Dimaggio-Sandler model [6, 7] is an accepted model to represent the behavior of soil materials, and
can reproduce all the phenomena described above. Originally, this model has been conceived for a specific
sand material, but the perfectly-plastic shear and strain hardening compression cap potentials have shown good
overall match of the laboratory observed rock behavior [8, 9]. Based on these facts, the Dimaggio-Sandler
model [6, 7] has been chosen to test the versatility of the plastic integration algorithm adopted in the currently
proposed numerical finite model.

It could be argued that the use of associative models to simulate the behavior of brittle and dilative mate-
rials may be limited. But this behavior happens at low confining pressures. At high confining pressures the
cap plasticity is dominant and the material compacts. This is what happens in the reservoir and in the near-
wellbore domains, except at the wellbore walls where shear and shear dilation causes breakouts. However, this
shear dilation occurs at small hydrostatic stresses and thus small shear strength, presenting a low impact in the
overall cavity stresses. However, the “controled dilation” of the Dimaggio-Sandler model, caused by volume
expansion, cap softening and transition from shear envelope to cap envelop plasticity, can be used to reduce
this effect. These reasons also justify the choice of this model in the present numerical study.

Note also that other models have also been tested in the research that supported this paper. For instance, the
Lade-Kin model, in its complete version with the 12 parameters, had been implemented and tested, but it was
early abandoned due to its large amount of parameters, lack of clear mechanical meaning of each individual
parameter. This mechanical meaning of each parameter is important in the material characterization so that the
modelers are prone to detect misleading extrapolation along non-tested load paths. Other important aspect is
that this model comprehends two distinct envelopes with a discontinuity in the derivatives in their interception.
The code has been devised to support sub-differentiation in a numerical manner and this capability needed to
be tested. A more conventional Cam-Clay constitutive model could have been used, but would not test this
functionality.

Numerical analyses for well stability and breakout simulations have been previously considered in the
literature. For instance, the study in [10] shows how to determine the collapse and fracture-initiation pressure
in inclined boreholes using an ideal linear elastic and isotropic model. The conclusion is that the the borehole
collapse at low pressures is caused by shear failure in combination with tensile failure. Using von Mises
yield condition, the increase in borehole angle does not increase the sensitivity toward collapse. The method
presented in [11] determines the failure criteria from limited unconsolidated samples. The simplicity of the
approach allows realistic appreciation of the mechanical characteristics derived in laboratory. A conclusion is
that unconsolidated formation appears to react mechanically in similar manner to consolidated formation. Well
stability analysis for horizontal or highly inclined wells in weak formations is considered in [12], showing that
local failure initiation does not necessarily lead to a global borehole instability for some anisotropic rocks. The
work in [13] concerns with the development of a shear failure criterion, which is a combination of the effective
strength concept and the Drucker-Prager criterion, objecting to quantify the stresses at which borehole breakout
will occur. Furthermore, it is shown that the mechanical stability of inclined wells can be improved by adopting
optimum deviation angle and drilling direction. The work in [14] presents numerical examples and laboratory
tests to show the onset of failure and the growth of the plastic zone development and propagation during
production. A method is proposed in [15] for the calculation of linear thermo-poroelastic tangential stresses
around a borehole, in a medium with isotropic permeability for the case of constant borehole temperature
and pore pressure change. In [16] the authors consider the stability of hollow cylinders with holes of various
geometries, which is analyzed experimentally and numerically. They showed that the elliptical breakouts are
a more stable structure in terms of hole stability. The numerical simulations showed that the stability of the
hole increases with increasing breakouts depth, i.e. the breakout propagation is a stable process where higher



external stress is required to drive further the breakout. Laboratory tests simulating a breakout in a vertical
well are presented in [17] using a synthetic sandstone. The same problem is solved using the commercial finite
elements software Ansys and using analytical calculations, with good correlation results.

Adaptive numerical treatment of problems by high order finite element schemes has proved to be very
effective [18], by incorporating local mesh refinement (h-adaptivity) and/or different orders of approximating
polynomials on separate elements in the same mesh (p-adaptivity). These methods are usually based on a
posteriori error control which has been well established for linear problems. For elastoplasticity, and using a
representation in terms of variational inequalities, this analysis is more recent [19].

Our adaptive approach is more empirical, and the purpose is to guarantee high quality resolution in the part
of the domain where the material is subjected to plastic deformation. A refinement criterion is introduced to
define regions where the material has disintegrated, which is based on the magnitude of plastic deformation
second invariant. Then, a numerical procedure is constructed to automatically adapt the geometry of the com-
putational domain by removing the region where the values of the refinement indicator is larger than a given
threshold.

Implementation of hp-adaptive strategies is generally more complex than for standard finite element schemes,
since the differences in polynomial orders and the presence of hanging sides introduce additional difficulties
in the enforcement of continuity constraints [20]. The mesh refinement process for elastoplastic problems is
even more challenging. The tension at an integration point in the domain depends not only on the current de-
formation state, but also on its loading history. Therefore, a general purpose procedure had to be developed to
transfer the elastoplastic deformation history to newly created integration points.

The text is organized in the following way. In Section 2 the elastoplastic mathematical model is described,
and its discretized version is summarized in Section 3. The verification of the numerical model is presented
in Section 4. The developed method for the breakout simulation is documented in Section 5, and the obtained
results are discussed. Some important aspects of the adopted constitutive plastic model are presented in A.

The proposed numerical model has been implemented using the NeoPZ1 library [21, 22], which is an
object-oriented programming environment providing a framework for the development of finite element simu-
lations. Specific classes have been developed and integrated into NeoPZ for the implementation of elastoplastic
constitutive models.

2 Mathematical Elastoplastic Model

The mathematical elastoplastic model is composed of two parts: the equilibrium equation coupled with a
constitutive initial value problem, as described in [2].

2.1 Finite Element Formulation for the Mechanical Equilibrium Problem

Given the reservoir occupying the region Ω, under the action of body force~b, traction ~τ applied at the boundary
part ΓN ⊂ ∂Ω, and assuming no displacement elsewhere at ΓD = ∂Ω \ ΓN , the infinitesimal quasi-static
mechanical problem consists in finding the displacement field ~u ∈ V such that the weak statement of the
equilibrium equation is satisfiedˆ

Ω
σ : ∇~v dω −

ˆ
Ω

~b.~v dω =

ˆ
ΓN

~τ .~v ds ∀~v ∈ V, (1)

where V = {~q ∈ H1(Ω)| ~q = 0 on ΓD}, σ = σ(ε) is the solution of the constitutive initial value problem, as
described in the next section, and the deformation tensor is

ε =
∇~u+∇~uT

2
.

1http://github.com/labmec/neopz



2.2 Constitutive elastoplastic model

According to [2], an elastic-plastic constitutive model defines the history of an irreversible dissipative process to
which the material has been submitted, which is defined by three fundamental axioms: the plasticity criterion,
the flow rule, and the hardening law. They are defined in terms of a plasticity function Φ and a plastic potential
function Ψ.

The history of the infinitesimal deformation tensor ε(t), t ∈ [t0, T ] allows to compute the evolution of
the plastic deformation tensor εp(t), the internal damage variable α(t) and a plastic multiplier

.
γ(t) through a

system of ordinary differential equations, as described in A
In the present paper, we shall adopt the associative DiMaggio-Sandler plastic model proposed in [6], whose

definition is included in A.1. It was conceived for granular soils, and is currently widely applied in the oil
industry to represent the behavior of rocks subject to large confinement stresses. As described in [9], this
model fits well the plasticity envelopes of a weak carbonate reservoir, which exhibits a consistent shear envelop
throughout the triaxial tests under different hydrostatic loadings. It fits well even in those cases where the rock
is compacted prior to shear breaking, meaning that the cap plasticity with hardening took place prior to the
achievement of a perfectly-plastic shear envelope. More information can found in [9]

3 Numerical Elastoplastic Model

The numerical model for the elastoplastic problem uses a H1-conforming finite element discretization of the
weak statement (1) of the mechanical equilibrium boundary value problem. The computation of the constitutive
law associated with each integration point uses an efficient numerical integration method for the initial value
problem corresponding to associative plastic models. These two numerical schemes are summarized in the next
sections.

3.1 Numerical Integration of the plastic model

An algorithm for the integration of general elasto-plastic constitutive initial value problems is summarized in
A. It is composed of two major steps: the elastic trial step, and the plastic correction step. For the numerical
integration of the DiMaggio-Sandler model an improved algorithm is adopted, which has been proposed in [5]
for associative models. It is based on the following aspects:

• The elastoplastic model is represented in terms of the principal stresses.

• For the plastic correction step, a distance function is defined, which has to be minimized in order to de-
termine the projection of the trial stress onto the yield surface (closest point projection). This projection
is made possible thanks to the Haigh–Westergaard representation. This geometric interpretation of the
plastic corrector step not only improves the numerical efficiency, but also the stability of the computa-
tions.

3.2 Finite Element Model for the Mechanical Equilibrium Problem

The finite element discretization of the equilibrium problem starts by the construction of a partition T = {K}
of the computational domain, and of a finite dimensional approximation space VT ⊂ V, formed by functions
which are piecewise defined in terms of polynomials based on T . Then, the approximate solution ~uT ∈ T is
searched such that the variational formulation (1) is verified for all ~vT ∈ V.

Due to the vertical extension of the problem, we shall consider a two dimensional plane strain model, and
restrict the computational region Ω to one quadrant. The computational domain representing the reservoir, the
boundary conditions, and the geometrical mesh are illustrated in Figure 2. Because of the symmetry properties,



Figure 2: Computation domain and boundary conditions.

no penetration is imposed at ΓD = {(x, 0), (0, y)| 0 < x, y < 1}. At the well-bore, the normal stress
corresponds to the hydrostatic stress of the drilling fluid, and at the far field the normal stress is equal to the
in-situ stress. In our simulation the gravity effects are neglected, so that~b = 0.

The stress state is sensitive to the accuracy of geometry representation. Element removing and/or non
smooth boundary produce concentration of non physical stresses. The use of smooth curved elements adapted
to the well-bore geometry is crucial. Thus, in order to enhance the precision of the elastoplastic simulation,
elements with quadratic geometry are used, and they are directional refined towards the well-bore, as shown in
Figure 2.

Constant polynomial degree k = 2 is adopted for approximations in the absence of material damage.
However, for simulations involving breakout, the elements that intersect the plastic region are divided and their
polynomial orders are increased, as described in Section 5. The construction of shape functions and assembly
of the adopted H1-conforming finite element approximation spaces are described in [23, 24, 20] for h, p and
hp-adaptive curved meshes.

4 Verification Tests

In order to verify the implementation of the proposed finite element numerical model, we simulate the stress
state around a well-bore and compare the computed solutions with the analytic Airy solution for the elastic
stress state [25]. The stress state is given by the DiMaggio-Sandler model, whose parameters are defined in
Table 1, corresponding to a carbonate reservoir material of the Brazil Offshore Santos Basin. Its characterization
has been presented in paper [9]. The well radius is rwb = 0.10795 m, the reservoir radius is re = 3 m, and
the effective in situ tension components are maximum horizontal stress in the y-direction S

′
H = −62.1 MPa,

minimum horizontal stress in the x-direction S
′
h = −45.9 MPa, and vertical stress S

′
v = −48.2 MPa.

The mesh configuration for this test is obtained by 40 subdivisions in the radial direction, and 80 circular
ones, and the polynomial degree is k = 2. The results are documented in Figure 3 by the graphs of the values
of the plasticity function Φ along the well-bore circular curve. Three cases are represented, corresponding to
different values of well-bore fluid pressures P

′
f . The corresponding values of the yield function Φ(I1,

√
J2, L),

the plastic deformation second invariant
√
J2(εp), the first invariant of the stress tensor I1(σ) and the second

invariant of the deviatoric stress tensor J2(σ) are graphically represented in Figure 4-Figure 6



Parameter Value

E (elasticity modulus) 29269 MPa

ν (Poisson coefficient) 0.203

A 152.54 MPa

B 0.0015489 MPa−1

C 146.29 MPa

D 0.018768 MPa−1

R 0.91969

W 0.06605

Table 1: Parameters for DiMaggio-Sandler elastoplastic model.

Case 1: P ′f = 28.9 MPa In Figure 3 (top left side), the plot for the yield function along the well-bore
circular curve is such that Φ < 0, which means that the problem is purely elastic. The values of Φ(I1,

√
J2, L),√

J2(εp), I1(σ) and J2(σ) are graphically represented in Figure 4. As expected, Φ < 0 and
√
J2(εp) = 0.

Case 2: P ′f = 23.4 MPa The results for this case are graphically represented in Figure 5. The lower fluid
pressure causes the occurrence of a region with plastic deformation around the well-bore, where Φ = 0. The
extent of the region corresponds to approximately 1.3% of the area of the reservoir model. The comparison
with the analytic Airy solution in Figure 3 (top right side) shows that the plastification extends to an angle of
46.5◦.

Case 3: P ′f = 19.5 MPa Decreasing the fluid pressure even more, the region with plastific deformation
grows, as shown in Figure 6, occupying around 4.28% of the modeled reservoir area, and extending to a 72.12◦

angle at the well-bore curve, as illustrated in Figure 3 (bottom side). As suggested by [26], a safe threshold is
60◦. Thus, according to this criterion, the stress state of Case 3 corresponds to a dangerous scenario for well
stability.



Case 1 Case 2

Case 3

Figure 3: Plasticity function Φ (MPa) computed at the circular well-bore curve by the Airy solution (red lines)
and by the numerical finite element solution (dotted lines) for the Case 1, Case 2, and Case 3.

(a) Φ(I1,
√
J2, L) (MPa) (b)

√
J2(εp)

(c) I1(σ) (MPa2) (d) J2(σ) (MPa)

Figure 4: Case 1: Φ(I1,
√
J2, L), and

√
J2(εp) (top side); I1(σ), and J2(σ) (bottom side).



(a) Φ(I1,
√
J2, L) (MPa) (b)

√
J2(εp)

(c) I1(σ) (MPa) (d) J2(σ) (MPa2)

Figure 5: Case 2: Φ(I1,
√
J2, L), and

√
J2(εp) (top side); I1(σ), and J2(σ) (bottom side).

(a) Φ(I1,
√
J2, L) (MPa) (b)

√
J2(εp)

(c) I1(σ) (MPa) (d) J2(σ) (MPa2)

Figure 6: Case 3: Φ(I1,
√
J2, L), and

√
J2(εp) (top side); I1(σ), and J2(σ) (bottom side).



In order to evaluate the effect of discretization resolutions on the numerical solution, the method is applied
to the reservoir configuration of Case 3 using three different mesh refinements, and polynomial degrees k = 1, 2
and 3. The first mesh is obtained by 20 subdivisions in the radial direction, and 40 circular ones (Mesh 1). The
second (Mesh 2) and third (Mesh 3) finer meshes consists of subsequent uniform subdivisions of the first
one. Defining the plasticized region where

√
J2(εp) > 0, its area for different discretizations is represented

graphically in Figure 8. Figure 7 displays the value of
√
J2(εp) for the solutions on Mesh 2 and Mesh 3, with

k = 2. It can be observed that the plastified area converges as the mesh is refined either in h or in polynomial
degree.

(a) 40 x 80 elements: plasticized area = 1.12 ×
10−3m2.

(b) 80 x 160 elements: plasticized area = 1.13 ×
10−3m2

Figure 7: Value of
√
J2(εp) associated to the solutions obtained with two mesh resolutions and k = 2.

Figure 8: The effect of the mesh resolution and polynomial degree on the plasticized area.

5 Breakout Simulation

The breakout phenomenon is characterized by the well-bore mechanical failure and loss of material in the
regions where the shear strains are critical. The elastoplastic simulation allows to identify the regions where
this is most likely to happen.

In the well drilling area of oil and gas industry, the information of damage extension is at a premium. Well
design and stability monitoring while drilling hence rely on generally poor, interpolated information, mainly
obtained from correlation from welllogs. On the other hand, rock is heterogeneous, brittle, anisotropic, some-
times is load-rate-dependent, etc. There must be a trade off between model sophistication and applicability.
This is the main reason for requiring models based on “mechanically meaningful” parameters, so that correla-
tion from physical properties inferred from the welllogs may be devised, as well as any misjudgements may be



detected at early stages (parameter-definition stages). Having that in mind, it should become clear that the nu-
merical solution on that backgroung must not be taken literally into consideration. The plastified zone does not
necessarily represent a damaged zone which remains attached to the formation, nor continuously. There is in-
sufficient amount of information to deploy real damage models that could determine the volume of fragmented
rock debris. There is also insufficient information to state whether the excavation could still be geometrically
stable.

The plastified zone or opening angle should be regarded as imperfect quantitative indications of a me-
chanical damage zone. From the drilling experience, global excavation instability occurs rarely and is always
preceded by local wall instabilities (breakout). The formation of breakouts poses more problems to the well
cleaning than to the cavity stability, as the breakouts may occur over a large extent along the wellbore axis. The
volume of rock debris produced by breakout may easily surpass the amount of cuttings from the drillbit. Pres-
sure fluctuations in the excavation associated to the drillstring vibration ease the freeing of damaged material.
The settlement of large amounts of debris around the drillstring may cause it to get stuck and prevent further
drilling with some other serious consequences.

Thus, each drilling company rely on ultimate plastified area or on opening angle indications to drive their
wellbore stability analysis. However, they usually rely on the simple Mohr-Coulomb shear-envelope-based-
plasticity models to evaluate those indicators. Although it captures the shearing processes at the wellbore wall,
they are unable to reproduce the amount of compaction experienced by the rock mass under depletion that
drives the evolution of far-field stresses.

Our proposal is to use the plastic deformation second invariant
√
J2(εp) to define a criterion for the regions

where the material has disintegrated. As described in the next sections, the numerical method automatically
adapts the geometry of the computational domain by removing the region where the values of

√
J2(εp) are

larger than a given threshold. Then, a moving-mesh algorithm is adopted to simulate how the cavity failure is
supposed to evolve based on the complete detachment of the plastified zone material.

5.1 Automatic Procedure for Adjusting the Geometry of the Domain

An attempt to adapt the geometry simply removing elements with excessive plastic deformation is not a viable
solution: the removal of the elements creates nonphysical re-entrant corners causing high stress concentrations
that are non physical.

A different approach is considered based on the hypothesis that the isolines of the proposed breakout crite-
rion can be closely matched by ellipses whose center is the well-bore center. This same geometry can also be
observed in experiments conducted by [26]. Based on this principle, a numerical method has been developed
[25] to adjust the axes of an ellipse to points with constant values of the breakout criterion

√
J2(εp).

A motivation for this choice of criterion is that the plastic deformation is characterized by two components,
one hydrostatic and the other deviatoric. One can conjecture that the hydrostatic deformation does cause the
material to fail. The shear deformation, on the other hand, causes the sliding between the microscopic plains
possibly leading to rupture. Hence the value of

√
J2(εp) has been chosen as a criterion to quantify the tendency

of the material to disintegrate.
The computation of the axes of the ellipse corresponding to a given value of

√
J2(εp) is performed using

a standard least square algorithm. Precisely, a list with coordinates (xi, yi) of points with constant value of√
J2(εp) are computed. The error function E(a, b) =

∑
i

(
xi − a

√
1− y2i

b2

)
is defined to measure the devia-

tion of the points (xi, yi) from a general ellipse with focus at (0, 0). Then, the least squares method is used for
the determination of the values a and b minimizing this error function.

Once the ellipse equation is found, the mesh nodes on the contour of the well-bore are moved to fit the
position of the ellipse. The remaining nodes of the mesh that are moved to maintain the smoothness of the
mesh.



Figure 9: Boundary adjustment using an ellipse shape.

5.2 Refinement Process on the Plastic Zone

The mesh refinement process for elastoplastic problems is challenging. The tension at an integration point
in the domain depends not only on the current deformation state, but also on its loading history. For meshes
without adaptation, this history can be obtained by storing the history of the nodal displacements. In the case of
mesh movement, the displacements themselves do not allow to reconstruct the history of deformation. During
the refinement process, integration points are created and others are deleted. The adopted technique to refine
meshes arbitrarily is to implement a general procedure that allows to compute the solution at an arbitrary point
in a mesh. At each refinement step a new mesh object is created and the deformation history is obtained by
computing the history of deformation at a given coordinate by computing the incremental deformation at all
previous meshes (e.g. solutions). For more details see [25]. The implementation has two fundamental steps:

1. Identify the element and its coordinates in the master element domain corresponding to an (x, y) coordi-
nate.

2. Submit the newly created material point to the deformation tensor evolution according to the solution of
the previous meshes.

Refinements h and p in the plasticized zone are illustrated in Figure 10.

(a) p-refinement. (b) h-refinement

Figure 10: Illustration of h and p mesh refinements on the plasticized zone.

5.3 Results

The geometry adjustment and the hp mesh refinement are illustrate by numerical results for the confinement
state configuration in Case 3, described in Section 4. This choice is justified because, among the three consid-
ered cases, this is the worst case scenario, since the breakout damage has a breakout angle greater than 60◦, as
detailed in the reference [26]. Two parameters are defined: RefHP and AdjBK. In a first step, elements that



have
√
J2(εp) > RefHP are searched in the mesh, were an hp mesh refinement is performed. Secondly a

geometric adjustment criteria is specified to search a line with constant values of
√
J2(εp) = AdjBK, which

is adjusted by an ellipse. Therefore, four geometry adjustment stages are performed. Precisely,

1. Given an initial well-bore geometry, the problem is initially solved with p = 2, as described in Section 4.

2. A mesh adjustment procedure is performed, subdividing each element that has
√
J2(εp) ≥ RefHP ,

and increasing it’s polynomial order to p = 3.

3. The geometry is adjusted based on the criterion AdjBK and the problem is solved in the original mesh
that is restricted to the new geometry.

4. Return to step 1.

The results in Figure 11 are for an initial mesh with 40 × 80 elements (Test 1). The values for
√
J2(εp)

are shown at four instances of the breakout simulation. The thresholds AdjBK = RefHP = 0.0001 were
chosen such that the relevant parts of the domain where plastification occurs are refined. For comparison, the
curves corresponding to

√
J2(εp) = 0.0001 obtained at the four stages are presented in all figures, and plotted

in white color. At the first instance, shown in Figure 11 (a), the results are for the original geometry region,
and the hp adapted mesh is shown. At this initial instant, a maximum second invariant plastic deformation
value

√
J2(εp) = 0.000829 is observed. In a next simulation instant, represented by Figure 11 (b), the ge-

ometry adjustment is performed, by the removal of the plasticized area delimited by the ellipse that has been
adjusted to the points where

√
J2(εp) = AdjBK (first white isoline seen in Figure 11 (a)). At this instant, a

maximum value
√
J2(εp) = 0.001669 is observed. Again, a white isoline is used to mark the points where√

J2(εp) = AdjBK. Next, the plasticized region delimited by this isoline is removed and the simulation
returns to stage 1. Figure 11 (c) indicates the next result, after the hp refinement and running the problem in
a new mesh. It is observed a maximum value of

√
J2(εp) = 0.003159, which gives an evidence for a plastic

deviatoric deformation increasingly higher. Figure 11 (d) shows the result of the last procedure instance. The
last maximum value

√
J2(εp) = 0.006338 is more than twice the value observed in the previous step and the

plasticized area is considerably reduced.
Two tendencies have been noted. One is the tendency of the plasticized zone to move towards the inferior

symmetry axis, with decreasing angle of plastic deformation extent. The other evidence is that the plasticized
area decreases. The data shown in Table 2 for removed and plasticized areas, damage extension and breakout
opening angles at the four breakout simulation instants described before confirm these tendencies. Note that in
well-bore projects the angle of plastic deformation extent is an important parameter, and it is usually computed
based on linear elastic stress states, and limited to a predefined value.

Step
removed area (×10−3m2) plasticized area (×10−3m2) damage area (×10−3m2)
Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

1 - - - 1.148 1.113 1.126 1.148 1.113 1.126
2 1.173 1.122 1.124 1.238 1.235 1.222 2.411 2.357 2.346
3 2.441 2.379 2.386 1.203 1.181 1.221 3.644 3.560 3.607
4 3.688 3.615 3.719 1.010 1.069 1.168 4.698 4.684 4.887

Table 2: Breakout evolution using different mesh configurations: with hp adapted meshes with initial uniform
partition of 40x80 and polynomial order p = 2 (Test 1) and 80x160 elements, and polynomial degree p = 2
(Test 2), and without adaptativity, using the fine mesh of 80x160 elements and polynomial degree p = 3 (Test
3).

In Table 2 simulation results are presented for two other discretization configurations. Test 1 refers to an
adaptive simulation starting from an initial uniform mesh with 40× 80 elements and k = 2. Test 2 refers to an



(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 11: Breakout simulation: automatic geometric fitting to the plastic zone.

adaptive simulation starting from a refined initial uniform mesh, with 80 × 160 elements and k = 2, and Test
3 uses a mesh with 80 × 160 elements in all stages and k = 3, without applying further hp adaptive strategy.
The results of the removed, plasticized and damage areas are in close agreement in all the three strategies. This
table shows that the extent of plastic deformation and/or breakout is stable with respect to the choice of initial
mesh and polynomial order of approximation.

6 Conclusions

The DiMaggio-Sandler elastoplastic model has been applied to the study of well-bore stability, applying hp-
adaptive finite element approximations combined with mesh movement. The robustness of this elastoplastic
model is greatly improved by parametrizing the plastic yield surface and performing proper tensor analysis. A
failure criterion is proposed assuming that the material will disintegrate due to excessive shear strain. Based
on this criterion, the quality of the finite element simulation is guaranteed by applying h and p refinements in
the region were plastic deformation exceeds a given old. For the newly created adaptive meshes, the complete
deformation history is applied to each integration point. Stacks of meshes are used to keep track of this defor-
mation history. After this adaptive simulation, an automatic elliptic geometry fitting is applied to the region
of excessive deformation, and the corresponding material is removed, by using mesh movement. One of the
results of our work is that using the automatic successive application of the breakout damage criterion, and
after removing the area with excessive plastic deformation, realistically looking geometries are obtained, as
compared with experimental results reported in the literature, the area of plastic deformation migrating towards
the horizontal line, with decreasing angle of plastic deformation extent.
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A Constitutive elastoplastic model

As studied in [2], the total deformation tensor ε is divided into two components: ε = εe + εp, an elastic strain
εe and a plastic strain εp. The plastic strain is related to the history of irreversible dissipative processes to
which the material was submitted based on three fundamental axioms: the plasticity criterion, the flow rule,
and hardening law.

• Yield Criterion. Describes the transition between the elastic and plastic domains through a plasticity
function Φ, assuming non-positive values if the stress state is elastic and null values if the stress state
reaches its plastic limit.

• The plastic flow rule. The plastic flow rule is defined by a plastic potential function Ψ, which specifies
how the plastic deformation tensor εp evolves in a plasticity process

.
ε
p

=
.
γN, in which N = ∂Ψ/∂σ is

the flow direction.

• Hardening law. Specifies how the internal damage variable evolves
.
α =

.
γH, where H is defined as the

hardening modulus.

Following [2], the integration procedure to go from a time instant tn to the next one tn+1 is usually per-
formed by two major steps. The first step is a purely elastic predictor process (elastic trial step), with ∆γ = 0.
The trial elastic strain and internal variables are defined as εetrial = εe,n+ ∆ε and αtrial = αn. σtrial is calcu-
lated according to εetrial, and the corresponding Φ(σtrial,A) is computed. If Φ(σtrial,A) ≤ 0, a valid solution



to the system is reached, and the variables are updated by the trial values. Otherwise, a plastic corrector step
(also known as plastic return-mapping scheme) is performed reformulating the incremental problem solving
for εe,n+1, αn+1 and ∆γ satisfying

εe,n+1 = εetrial −∆γN(σn+1,A) (2)

αn+1 = αtrial + ∆γH(σn+1,A) (3)

∆γ > 0, Φ(σn+1,A) = 0 (4)

Next, the plastic strain is updated
εp,n+1 = εp,n + ∆ε−∆εe.

A.1 DiMaggio-Sandler plastic model

The plastic model adopted in the present study is the DiMaggio-Sandler model [6]. Its plasticity function Φ is
piecewise defined by the yield function F1(I1,

√
J2), and by the cap elliptical function F2(I1,

√
J2, L), where

I1 and J2 are the first invariant of the stress tensor and the second invariant of the deviatoric stress tensor,
respectively, and L is a parameter whose value is generally negative. Precisely,

Φ(I1,
√
J2, L) =

{
F1(I1,

√
J2), I1 > L,

F2(I1,
√
J2, L), L ≥ I1 ≥ X,

(5)

where
F1(I1,

√
J2) =

√
J2 − Ff (I1), (6)

F2(I1,
√
J2, L) =

(
I1 − L
RFf (L)

)2

+

( √
J2

Ff (L)

)2

− 1, (7)

and Ff (s) = A − C exp(Bs). A typical 2D profile of the yield surface is plotted in Figure 12. Note that |L|
specifies the distance of the origin to the center of the ellipse representing the cap of the yield surface.

Figure 12: Original DiMaggio-Sandler yield profile in the (I1,
√
J2) plane.

The relation between the value of L and the plastic volumetric strain εpv is defined by:

εpv = W [exp(DX)− 1], (8)

where
X = L−RFf (L). (9)

The constants A, B, C, D, R and W are material properties, which need to be obtained from laboratory tests.



The DiMaggio-Sandler model is associative such that Ψ = Φ. The corresponding hardening modulus H,
and the flow direction N are related by

H = tr(N).

Using this property, the equation for the damage variable at the plastic correction step can be reformulated as

.
α =

.
γ tr(N) = tr(

.
ε
p
) =

.
ε
p
v.

In terms of its Haigh–Westergaard stress representation σ∗ = [σ∗1, σ
∗
2, σ
∗
3]T , the yield surface is σ∗1-axially

oriented and is formed by two parts: one perfectly plastic surface S∗1 , where F1 = 0, and a cap S∗2(L), corre-
sponding to F2 = 0, as represented graphically in Figure 13. The plastic return-mapping considers these two
cases, and the return-mapping scheme is reduced to the resolution of a single non-linear equation.

Figure 13: Yield surface of the DiMaggio-Sandler model in the Haigh–Westergaard stress representation.
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