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CONVERGENCE OF A TWO-STEP METHOD FOR THE
NONLINEAR LEAST SQUARES PROBLEM WITH
DECOMPOSITION OF OPERATOR

S. M. SHAKHNO, R. P.TAKYMCHUK, H. P. YARMOLA

PE3IOME. ¥ po060Ti 3a1IpOII0HOBAHO Ta AOCIIIZKEHO 3012KHICTh JIBOKPOKOBOIO
MEeTO/Ty JJjisi PO3B’sI3yBaHHs HEJIIHINHOT 33,024l HAMEHIIX KB IPATIB 3 IEKOM-
TIO3UITEI0 OMEePATOPA 33 KJAACUIHUX YMOB JIIMIUIS [/ MOXiJHUX TEePIoro i
APYTOro HOPAAKIB AudepeHifloBHOI YJaCTHHI Ta [TOJLIEHUX PI3HUIb IEPIIOro
MOPSAAKY HeaudepeHIiifoBHOI YaCTUHN TeKOMIIO3uIlii. BcTaHoBIeHO MOpsmok
i paziyc 36iKHOCTI MeTOy, & TAaKOXK 00JIACTD €IMHOCTI PO3B’A3KY HEJIHINHOL
3a/a4i 11po HaviMeHmi KBajaparu. [IpoBeieHO YucesbHI eKCIIEPUMEHTH Ha Pl
TECTOBUX 33Ia9axX.

ABSTRACT. In this article, we propose a two-step method for the nonlinear
least squares problem with the decomposition of the operator. We investigate
the convergence of this method by applying the classical Lipschitz condition
for the first- and second-order derivatives of the differentiable part and for
the first-order differences of the non-differentiable part of the decomposition.
The convergence order as well as the convergence radius of the method are
studied and the uniqueness ball of the solution of the nonlinear least squares
problem is examined. Finally, we carry out numerical experiments on a set of
test problems.

1. INTRODUCTION
Let us consider the nonlinear least squares problem:

1
in —F(z)TF 1
min “F ()T F(z), 1)
where F' is a Fréchet differentiable operator defined on IR™ with its values on
IR™, m > n. The best known method for finding an approximate solution of

the problem (1) is the Gauss-Newton method, which is defined as
Thy1 = o — [F' ()" F (2p)] 7 F (2) F(ar), k=0,1,2,.... (2)

The convergence analysis of the method (2) under various conditions was con-
ducted in [6, 7, 8]. In paper [17], three free-derivative iterative methods were
investigated under the classical Lipschitz conditions. The radius of the conver-
gence ball and the convergence order of these methods were determined. The
study of these methods was conducted in the case of both zero and nonzero
residuals.

Key words. Nonlinear least squares problem, two-step method, Gauss-Newton method,
decomposition of operator, Lipschitz conditions, radius of convergence, uniqueness ball.
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In particular, Shakhno [17] proposed the Secant-type method, which was
later also studied by Ren and Argyros in [12], as follows

Tht1 = Tk — [F(wk,xk_l)TF(iL‘k, :Ek_l)]_lF(xk,l‘k_l)TF(a?k), k=0,1,2,....
(3)

This study [17] also determines the convergence order of the method (3) in case
+2‘/3 —1,618....

In |2, 4, 10, 11], there was considered a two-step modification of the Gauss-
Newton method for solving the problem (1)

{ Ti41 = Tk — [F'(Zk)TF/(Zk)]_IF,(Zk)TF(xk)a (4)
Yrr1 = Trg1 — [F'(z1)TF (20)] 7 F (20) T F (2041), K =0,1,2, ..,

of zero residual, which equals to

where 2z, = (2 +yk)/2; xo and yo are given. In case when m = n, this method is
equivalent to the methods proposed by Bartish [3] and Werner [23]. On each it-
eration, the method (4) computes the inversion of the matrix [F’(z;)T F'(z;,)] 7!
only once.

In [16], we proposed the differential variant of the method (4) that uses
divided differences instead of derivatives as follows

{ whp1 = ok — [F (g, yp) T F (g, )|~ F (2, yi) T F (),

Y1 = Tp1 — [F(er, yp) " F (2, yp)) 7 F (2r, yp) T F (24), k= 0,1,2, ( )
5

This method is built on top of the Secant-type method [12, 17] (3) for solving the

nonlinear least squares problem. This method can also be applied to problems

with non-differentiable operators.

However, for some problems the nonlinear function in (1) is composed of the
differentiable and non-differentiable parts. In this case, the problem (1) can be
written as

min 1(F(«’L") +G(2)T (F(x) + G(x)), (6)
zeR" 2
where the residual function F' + G is defined on IR™ with its values on IR™
and it is nonlinear by x; F' is a continuously differentiable function; G is a
continuous function, differentiability of which, in general, is not required. To
solve the problem (6), we proposed in |13, 18] a method that takes into account
the specific features of both F' and G as

i1 = o — [Ap AT AR (F(zr) + G(aw)), k=0,1,..., (7)

where A = F'(xp) + G(xg,xp—1); F'(zk) is a Fréchet derivative of F(x);
G(xg,xk—1) is the divided difference of the first-order of the function G(x)
at points g, xr_1; xg, r—1 are given starting points. This method has the

convergence order of for solving the problem (6) with zero residual. In

case when m = n, the method (7) reassembles the well-know Newton-Secant
method for nonlinear equations [1, 5, 14].
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In this article, we propose a two-step iterative method, for solving the prob-
lem (6), which considers the decomposition of the nonlinear operator, as follows

{ Th1 = g — [AL AR) TLAT(F (a) + G(z)), (8)
Yr+1 = Tg41 — [AgAk}_lAg(F(mk-‘rl) + G($k+1))7 k= 07 ]-7 ey

where Ay, = F’(w)

the local convergence of the method (8) for the problem (6) with zero as well
as non-zero residuals. Additionally, we study both the order and the radius of
the convergence of the method (8) as well as the uniqueness ball of the solution
of the problem (6). To note, this method as well as the method (5) have the
same convergence order of 1 4 V2 in case of zero residual.

In case of m = n, the problem (6) converges to solving a system of n nonlinear
equations with n unknown and the method (8) to the method [15, 19, 20].

+ G(xk, yr)- The main goal of this paper is to analyze

2. PRELIMINARIES
Let us denote B(zy,r) = {z € D CIR": ||x — .|| < r} as a closed ball with
the radius r (r > 0) at 2., D is an open convex subset of IR".
Let R™*™, m > n, denote a set of all m x n matrices. Then, for a full

rank matrix A € IR™*", its Moore-Penrose pseudo-inverse [8] is defined as
Al = (AT A)~1AT.

Lemma 1 ([21, 22]). Let A, E € R™*". Assume that C = A+ E, ||AT||| E| <
1, and rank(A) = rank(C). Then,

14T
Ict| < -
1— [ ATl[I£]]

If rank(A) = rank(C) = min(m,n), we can obtain

V2| AT | B

lct — AT < :
1— ATl £]]

Lemma 2 ([6]). Let A, E € R™*". Assume that C = A+ E, |[EAT|| < 1, and
rank(A) = n, then rank(C) = n.

3. LocAL CONVERGENCE ANALYSIS OF THE METHOD (8)
In this section, we investigate the convergence of the method (8) and deter-
mine its convergence radius.

Theorem 1. Let F + G : R™ — IR™, m > n, be continuous, where F is a
twice Fréchet differentiable operator and G is a continuous operator on a subset
D CRR". Assume that the problem (6) has a solution x. € D and an operator
F'(x4) + G(4, ) has full rank. Suppose that Fréchet derivatives F'(x) and
F"(x) satisfy the Lipschitz conditions on D

I1F () = F'(y)l < Llz—yl, (9)
17" (z) = F"(y)ll < Nz -yl (10)
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and the function G has the first order divided difference G(x,y) and
1G (2, y) = Glu,v)|| < M([lx —ul| + [ly — vl]) (11)

for all x,y,u,v € D; L, N, and M are non-negative numbers.
Also, the radius r > 0 is a root of the equation

BNp? + 1208Tp + 48V2aB*T — 24 = 0, (12)
where
2V208%T < 1. (13)

Then, for all zo,yo € B(x«,r) C D the sequences {xy} and {yi}, which are
generated by the method (8), are well defined, remain in B(z.,r) for all k > 0,
and converge to x. such that

place) < i (V200" + Tooolu) + VEadTr), (14

pksr) < g (N/20p(en)® + T(plansn) + plan) + plu)plonsn) +

+\@aBT7'k), (15)

repr = max{p(xps1), p(Urs1)} < qrie < -+ < ¢F g, (16)
where

o<y - B((N/24)p(0)* + T(2p(x0) + plyo)) + V2aBTT0/ro) _ LA

1—6TT7

p(x) = [|[z—2.l|, Tk = T(2h, Yr) = |2k —2||+|lyr =24, 70 = max{p(z0), p(y0)},
2k = (e +yr)/2, a = [|[F(z) + G(z.)ll, B=I(ATA)TTAL, Av = F'(z.) +
G(xy,xy), T = — BT1y < 1.

Proof. From (13) it follows that (12) has the unique positive root, which we

annotate as r.
Tn + Yn

2

Let choose arbitrary zg,yo € B(xs,r) and denote A, = F'( ) +

G(xn,yn). For n =0, we have the following estimate

lo— Al = [[F/(22) + Glao, o) — (F(@) + Glanz)| =
_ HF’(“’TJ“%) — F'(2.) + Gz, 10) — Gl 2)| <
< |7 (52) - P + 1660, w) - Glan )] <
< Slleo = @ull + llgo = zell) + M(llzo 2l + lgo = 2]} <
< ZE 2 (zo — ol + llgo — zell) = T(llzo — 2l + o — 2]

and

1(AT AT AT [Ag — Al < BT (llwo — | + llyo — z.]l) = BTmo < 1.
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According to Lemma 1

| < b __F__
1= AT(J70 — o+ oo —2-]) _ 1- AT

1(A5 Ag) ™ AT,

and to Lemma 2

. . 28T (2o — | + lgo — ) V2T
AT Ag) AT (AT 4,1 AT| < Y2 = .
1040 A0)™ Ao =(A A Al < T im0 —wll + o —22]) — 1= BT

For x1,y; that are generated by (8), we have

T —w = wo—z — [ATAg] T AT (F(0) + Glao)) =
= [ATA)] T AT [Ao(wo — 2.) — (F(xo) + G(x0)) + (Flay) + G(z:))] +
+[ATA] AT (F(2.) + G(x.)) — [ATAo) T AT (F(22) + G(x.)) =

— [AF A AT [P () (oo - ) = Plao) + Pl

+ G(zo, z:)(x0 — 24) — G(20) + G(24) +
+ (Ao —F (W) - G(fﬂo,x*)) (zo — :c*)] +

+[ATA) T AT(F (o) + Glan)) — [AT A] 7 AT (F(2) + Gla));

Yl — Ty = T — Ty — [AOTAO]_1 AT (F(z1) + G(z1)) =
= [AT40] " AT [Ao(z1 — 2.) — (F(z1) + Gla1)) + (F(a) + Gla.))] +
ATA) T AT(F () + Glen)) — [ATAg] 7 AT(F(z) + Glaa) =

= [AT A AT [F’ (”“"1 ;x> (z1 — 22) — F(z1) + F(2.) +

+ G(z1,24) (21 — 24) — G(21) + G(24) +

+ <A0 —F <m1—;—x*> - G(ml,:c*)) (x1 — x*)} +

+[ATA) T AT(F(2,) + G(2.)) — [AT A AT(F () + G(a.)).
According to Lemma 1 from [23] with the value w = 1/2 we can write

! x;y (x—y)=

_ i/glu_t) F (f"“gy +;<m—y>> P <””;y +;<y—x>>} (z — y)?dt.

By setting x = z, and y = zg in the equation above, we receive

F(r) - F(y) - F

F(z,) — F(xo) — F' xo;m* (T —20)|| =
:i /01(1—t) [F” <$0—;x*—|—;(a§*—xo)> _
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«
— F” <x0;x+2(x0_x*)>] (x*—xo)th‘ <
<1 /1t(1 O] Pt = - Np(ao)?®
- - Ty — Tx = — .
=1/, 0 o P\T0

Using to the Lipschitz conditions (9), (10) and (11), we get the following
estimates

HAO_F,<350+:C*> — Glao,z)|| = HF,(xo—l—yo) _F,(:co+x*>+
2 2 2
+G (20, y0) — G(w0, 74)|| < Tllyo — ]l
T+ Ty o + Yo T+ Ty
-P(557) —Gne)| = |F(R5R) - ()
HAO 2 Glan, z) 2 > )7
+G(z0,y0) — G(21,24) || <
o — I1 Yo — T«
< LH
< 5 + 5 +
+M([Jz1 — 2ol + [lyo — ) =
L+2M L+2M
= S o~ + T o — | <
< T(llwo — @l + llzr — @l + llyo — @)

Hence, from (12) it follows that

0o — B((N/24)p(z0)* + T(p(x0) + p(z1) + p(yo)) + V20T 70 /7) -
7= 1 — pT'ro/r0
B((N/24)r% + 3Tr + 2/2a87)

1—23Tr B

Thus, by Lemmas 1, 2, conditions (9), (10) and (11), we obtain

B((N/24)p(x0) + Tp(z0)p(yo) + V2a5T 7))

lz1 — 2] < 1~ 3T <qro<r
Similarly,
B((N/24)p(21)* + T(p(x0) + p(x1) + p(y0)) p(1))
ly1 — 2| < +
1— 6T
203°T
+\1f_agT7_ZO < qro <.

Therefore, z1,y1 € B(x4,r) and both (14) and (15) follow. Also, (16) is satisfied

r1 = max{[|z1 — x|, [y1 — 2|} < gro.
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Using mathematical induction, assume that xy, v € B(x.,r) and (16) holds
for k > 0. Then, for £+ 1 from (8) we obtain that

BUN/24)p(x)* + Tp(ar)p(yr) + V28T 1) _
1— 3T <
B((N/24)p(z0)* + Tp(xo) + 2v/2a8T )y,
N 1— BT

|Trs1 — 24|

<qrp <r

and

lyess — 2ol < B(N/24)p(zk41)® + T(p(k) + p(zh41) + p(ys))p(Trt1)) .

1— BT
+\/§04ﬁ2TTk - B((N/24)p(w0)* + 3T p(x0) + 2v/20BT )1y -
1-6T1, — 1— 6T
< qri <.

According to (17) and both inequalities (14) and (15), we receive

Pt = max{ || zrr1 — al)s [Yrs1 — ]|} < qre < Prp—1 < - < .

Thus, Tg+1, Ykt1 € B(z«, ) as well as (14), (15) and (16) hold. O
From (12) it follows that the convergence radius of the method (8) is

o 2(1 — 2¢/203°T)
56T +/(56T)2 + AN (1 - 2v/2082T)

Remark 1. Note that the condition (11) can be replaced with the weaker one
1G(z,y) = G(u, v)|| < Miflz — ull + Mally - o] (18)

for all x,y,u,v € D, My and My are positive numbers. This enlarges applica-
bility of the method (8).

For zero residual (F(z.) + G(z«) = 0), the Theorem 1 can be formulated as

Theorem 2. Let '+ G : R" — IR™, m > n, is continuous, where F is
a twice Fréchet differentiable operator and G is a continuous operator on a
subset D C IR™. Assume that the problem (6) has a solution x. € D, and
the operator F'(xy) + G(x«, z4) has full rank. Suppose that Fréchet derivatives
F'(x) and F"(x) on D satisfy the classic Lipschitz conditions as in (9) and
(10), respectively; the function G has the first order divided difference G(x,y)
that satisfies the Lipschitz conditions as in (11). Moreover, the radius r > 0 is
a unique positive root of the following equation

BNp? +1208Tp — 24 = 0.
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Then,  the combined method (8) converges to x, for all
x0,Y0 € B(xy,7) C D such that

ﬂ(xk-i-l) < 1—§T7']€((N/24)p(xk)3 +Tp(xk)p(yk))7 (19)
pns) < BN/24)p(api1)® + T(ﬂi(fﬁk;;)T:— () + p(yi))p(zr1)) 20)
Terr = max{p(vpi1), p(Yrs1)} < qre <0 < q’f+17~0,

where p(x) = |z — @, 7% = T(@rue) = |z — 2l + llye — 2],
ro = max{p(:z:o),p(yo)}, 5 = |(AZA*)_1AIH: A = F,(:L'*) + G(ZL'*,ZL‘*),
ﬁTTo <1

B((N/24)p(x0)* + T(2p(x0) + p(y0)))

0< = < 1.
4 1— 3T

From Theorem 2, the convergence radius is
2 1

< .
58T + 1/ (58T)2 + 1N P0T

r =

This radius is two times smaller than the convergence radius of the differential
method (4) from [11] (a two-step modification of the Gauss-Newton method)
and equals to the convergence radius of the difference method (5) from [16].

Corollary 1. Convergence order of the iterative method (8) in case of zero
residual is equal to 1+ /2.

BN/24 BT
R — = — = b =

k =0,1,2,... Since the residual is zero, i.e. a = ||F(z,)+ G(x,)|| =0, from the
inequalities (19) and (20) we have

Proof. Let us denote v =

apr1 < ar(yag + nby), (21)
b1 < apy1 [’yazH + 77/3(ak + ap41 + bk)] < (22)
< agyr [(vak +2n/3)ay + nbi /3] <
< agpiag [yr + 0] = agr1ax91.

From (21) and (22) for large enough k, it follows
ap1 < ag(vai +nbg) < ap(vai + néraxag—1) < aiag—1(y + nd1) = azag—_10s.
From this inequality, we obtain an equation

p2 —2p—1=0.

The positive root of the latter, which is p, = 14+/2, is the order of convergence
of the iterative method (8). O

Under the classic Lipschitz condition a theorem for the uniqueness of the
solution can be written as follow
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Theorem 3. Suppose x, satisfies (6) and F(x) has a continuous derivative
F'(z) and G(x) has a divided difference G(x,y) in D. Moreover, F'(z.) +
G(z«, ) has full rank; F'(z) satisfies the Lipschitz condition as in (9); the
divided difference G(x,y) satisfies the Lipschitz condition as in (11). Letr >0
satisfies
B(Lr/2+ M) + afo(L +2M) < 1,
where By = ||(F'(24) + G (24, 24)) T (F'(24) + G(24,74))||. Then, x4 is a unique
solution of the problem (6) in B(z«,r).
The proof of this theorem is analogous to the one in [6].

To note, in case when G(z) = 0, we obtain the same results as in Theorem
2 in [11].

5. NUMERICAL EXPERIMENTS
In this section, we give two examples to show the application of our results.
We consider method (8) and its partial cases, namely the two-step Gauss-
Newton method (G = 0) and the two-step Secant method (F' = 0). We use the

p
norm ||z|| =,/ > 2? for z € R?.
i=1

Example 1. Consider function F + G : D = R — IR? given by [12]:

P+ 60 = (a0, ).

where A, u € IR are two parameters.

It is known, that z, = 0 is the unique solution of the considered problem.
Therefore, we can define constants o and 3 as follows:

1
a=2ul, 8= ﬁ
Let G(x) = (0,0)T. Then

F(z) = < 2)\x1—|—1 > F(x) = < 20)\>

@) = FO = ( gy )| =271

P -l = ()| = ok

and

L 2|\
That is, we can set constants L =2|A[, N =0, M =0, T = 9= ‘2‘ = Al
Let F(z) = (0,0)T. Then
rhp-y—p

rT—=yY
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and

1G(z,y) = G(u,v)|| =

<A@_u1y_v))HSM(u—y%Hu—my

That is, we can set constants L =0, N =0, M = |\, T =M = |}|.
Then equation (12) for both methods has form

5V2|Alr + 4| Ap| — 2 =0.

It has unique positive solution

V2 = 2v/2|Ayl
5[A|

if parameters A and p satisfy
1

1 :
g + i) + 1 ) v
both cases. Therefore, we get the same result by the two-step Gauss-Newton
method and the two-step Secant method.

Let g = 0.2, yo = 0.2001. For this problem Ay =

TABL. 1. The results for A\=1, u = 0.

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 1.893e-002 3.946e-002 3.412e-003 7.821e-003

1 | 3.229¢-005 4.640e-005 3.600e-007 5.190e-007

2| 5.812e-012 8.220e-012 9.487e-017 1.342e-016

3 0 3.899e-028 0 0

TABL. 2. The results for A = 0.5, u = 0.2.

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0| 2.624e-002 6.308e-002 1.881e-002 5.121e-002

1 | 2.326e-003 4.755e-003 2.230e-003 4.617e-003

2 | 2.284e-004 4.578e-004 2.274e-004 4.564e-004

3 | 2.280e-005 4.560e-005 2.279e-005 4.559e-005

4| 2.279e-006 4.558¢e-006 2.279e-006 4.558e-006

5 | 2.279e-007 4.558e-007 2.279e-007 4.558e-007

6 | 2.279e-008 4.558e-008 2.279e-008 4.558e-008

7 | 2.279e-009 4.558e-009 2.279e-009 4.558e-009

8 | 2.279e-010 4.558e-010 2.279e-010 4.558e-010

IfA=1, u =0 we obtain 2v/2a82T = 0 < 1, ST = 0.28291342315 < 1,
r = 0.2828427124746190 and B(z.,7) C D. If A = 0.5, u = 0.2 we obtain
2¢/2aB%T = 0.2 < 1, BTy = 0.14145671157 < 1, r = 0.4525483399593903
and B(zs,r) C D. From Tables 1, 2, we can see that sequences {zy} and {y;}
converges to the solution z, and error estimates (14) and (15) are true for all
k>o0.
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Example 2. Consider function F + G : D C IR — IR? given by:

T+ W
F@)+G@a)=| M+xz—p |,
Az? — 1] — A
T+ u 0
Fx)=| M*+z—p |,G@)= 0 ,
0 ANz2 —1] = A

where A, u € IR are two parameters.

The unique solution of this problem is x, = 0. Therefore, we can set con-
stants « and S as follows:

1
Let D ={z: |z| < 0.5}. Then
/ ]- 1/ 0
F(I):(S)\x2+1>’ F (””):<6Ax>

and

0
17@) = P = |y ) )| = 3l + vl = ol < 30k =

17w = 71 = | gayy )| =6k =

0
Gla,y) = ’ -
Y= Na2 =1 = A= A2 =1 +A |~
-y
0 0
T M1 -22-1)-21-9%) |
( €z ) ( ) Az +)
-y
and
0
1660,5) = G0l = |(yp gy )| PG =l 1y o
. 57|
That is, we can set constants L = 3|A[, N = 6|\, M = |\, T = -

Then equation has form
V2IA[r? 4 50V2|A|r + 40| Ap| — 8 = 0.
It has unique positive solution
/30001 A2 — 4v/2A(40[A| - 8) — 50V
r =
2v/2|\|
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if parameters A and p satisfy

1

Let 29 = 0.2, yo = 0.2001.

TABL. 3. The results for A\=1, u = 0.

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 1.406e-002 2.465e-001 1.681e-003 3.999e-002
1] 1.027e-007 4.348e-005 2.225e-011 5.082e-007
2 ] 1.323e-022 4.039e-018 1.223e-036 1.913e-022
3 0 2.860e-058 0 4.098e-067
TABL. 4. The results for A = 0.5, u = 0.2.
k| p(xg+1)  The right side of (14) | p(yr+1)  The right side of (15)
0| 1.132e-002 2.106e-001 6.085e-003 1.622e-001
1] 1.179e-005 4.482e-003 1.136e-005 4.420e-003
2| 2.010e-011 5.788e-006 2.010e-011 5.788e-006
3 0 1.005e-011 0 1.005e-011

If A\ =1, u = 0 we obtain 2/2a3°T = 0 < 1, BT = 0.70728355788 < 1,
r = 0.1128822370012403 and B(x.,r) C D. If A = 0.5, u = 0.2 we obtain
2v2a6%T = 0.5 < 1, fT19 = 0.35364177894 < 1, r = 0.1128822370012403 and
B(z.,r) C D.

Therefore, all conditions in Theorem 1 are satisfied for the two-step Gauss-
Newton method (8). Hence, Theorem 1 applies.

6. CONCLUSIONS

We studied the local convergence of the method (8) for the nonlinear least
squares problem with the decomposition of the operator under the classic Lip-
schitz conditions for the first- and second-order derivatives and for the divided
differences of the first order. We determined the convergence order and the
radius of the method (8) as well as proved the uniqueness ball of the solu-
tion of the nonlinear least squares problem (6). Furthermore, the method (8)
has promising characteristics for parallelization, which we plan to utilize for
constructing and developing new parallel methods for solving the problem (6).
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