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CONVERGENCE OF A TWO-STEP METHOD FOR THE

NONLINEAR LEAST SQUARES PROBLEM WITH

DECOMPOSITION OF OPERATOR

S.M. Shakhno, R. P. Iakymchuk, H.P.Yarmola

Ðåçþìå. Ó ðîáîòi çàïðîïîíîâàíî òà äîñëiäæåíî çáiæíiñòü äâîêðîêîâîãî
ìåòîäó äëÿ ðîçâ'ÿçóâàííÿ íåëiíiéíî¨ çàäà÷i íàéìåíøèõ êâàäðàòiâ ç äåêîì-
ïîçèöi¹þ îïåðàòîðà çà êëàñè÷íèõ óìîâ Ëiïøèöÿ äëÿ ïîõiäíèõ ïåðøîãî i
äðóãîãî ïîðÿäêiâ äèôåðåíöiéîâíî¨ ÷àñòèíè òà ïîäiëåíèõ ðiçíèöü ïåðøîãî
ïîðÿäêó íåäèôåðåíöiéîâíî¨ ÷àñòèíè äåêîìïîçèöi¨. Âñòàíîâëåíî ïîðÿäîê
i ðàäióñ çáiæíîñòi ìåòîäó, à òàêîæ îáëàñòü ¹äèíîñòi ðîçâ'ÿçêó íåëiíiéíî¨
çàäà÷i ïðî íàéìåíøi êâàäðàòè. Ïðîâåäåíî ÷èñåëüíi åêñïåðèìåíòè íà ðÿäi
òåñòîâèõ çàäà÷àõ.

Abstract. In this article, we propose a two-step method for the nonlinear
least squares problem with the decomposition of the operator. We investigate
the convergence of this method by applying the classical Lipschitz condition
for the �rst- and second-order derivatives of the di�erentiable part and for
the �rst-order di�erences of the non-di�erentiable part of the decomposition.
The convergence order as well as the convergence radius of the method are
studied and the uniqueness ball of the solution of the nonlinear least squares
problem is examined. Finally, we carry out numerical experiments on a set of
test problems.

1. Introduction
Let us consider the nonlinear least squares problem:

min
x∈IRn

1

2
F (x)TF (x), (1)

where F is a Fr�echet di�erentiable operator de�ned on IRn with its values on
IRm , m ≥ n. The best known method for �nding an approximate solution of
the problem (1) is the Gauss-Newton method, which is de�ned as

xk+1 = xk − [F ′(xk)
TF ′(xk)]

−1F ′(xk)
TF (xk), k = 0, 1, 2, .... (2)

The convergence analysis of the method (2) under various conditions was con-
ducted in [6, 7, 8]. In paper [17], three free-derivative iterative methods were
investigated under the classical Lipschitz conditions. The radius of the conver-
gence ball and the convergence order of these methods were determined. The
study of these methods was conducted in the case of both zero and nonzero
residuals.

Key words. Nonlinear least squares problem, two-step method, Gauss-Newton method,
decomposition of operator, Lipschitz conditions, radius of convergence, uniqueness ball.
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In particular, Shakhno [17] proposed the Secant-type method, which was
later also studied by Ren and Argyros in [12], as follows

xk+1 = xk − [F (xk, xk−1)
TF (xk, xk−1)]

−1F (xk, xk−1)
TF (xk), k = 0, 1, 2, ....

(3)
This study [17] also determines the convergence order of the method (3) in case

of zero residual, which equals to
1 +
√
5

2
= 1, 618....

In [2, 4, 10, 11], there was considered a two-step modi�cation of the Gauss-
Newton method for solving the problem (1){

xk+1 = xk − [F ′(zk)
TF ′(zk)]

−1F ′(zk)
TF (xk),

yk+1 = xk+1 − [F ′(zk)
TF ′(zk)]

−1F ′(zk)
TF (xk+1), k = 0, 1, 2, ...,

(4)

where zk = (xk+yk)/2; x0 and y0 are given. In case whenm = n, this method is
equivalent to the methods proposed by Bartish [3] and Werner [23]. On each it-
eration, the method (4) computes the inversion of the matrix [F ′(zk)

TF ′(zk)]
−1

only once.
In [16], we proposed the di�erential variant of the method (4) that uses

divided di�erences instead of derivatives as follows{
xk+1 = xk − [F (xk, yk)

TF (xk, yk)]
−1F (xk, yk)

TF (xk),
yk+1 = xk+1 − [F (xk, yk)

TF (xk, yk)]
−1F (xk, yk)

TF (xk+1), k = 0, 1, 2, ....
(5)

This method is built on top of the Secant-type method [12, 17] (3) for solving the
nonlinear least squares problem. This method can also be applied to problems
with non-di�erentiable operators.

However, for some problems the nonlinear function in (1) is composed of the
di�erentiable and non-di�erentiable parts. In this case, the problem (1) can be
written as

min
x∈IRn

1

2
(F (x) +G(x))T (F (x) +G(x)), (6)

where the residual function F + G is de�ned on IRn with its values on IRm

and it is nonlinear by x; F is a continuously di�erentiable function; G is a
continuous function, di�erentiability of which, in general, is not required. To
solve the problem (6), we proposed in [13, 18] a method that takes into account
the speci�c features of both F and G as

xk+1 = xk − [AT
kAk]

−1AT
k (F (xk) +G(xk)), k = 0, 1, ..., (7)

where Ak = F ′(xk) + G(xk, xk−1); F
′(xk) is a Fr�echet derivative of F (x);

G(xk, xk−1) is the divided di�erence of the �rst-order of the function G(x)
at points xk, xk−1; x0, x−1 are given starting points. This method has the

convergence order of
1 +
√
5

2
for solving the problem (6) with zero residual. In

case when m = n, the method (7) reassembles the well-know Newton-Secant
method for nonlinear equations [1, 5, 14].
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In this article, we propose a two-step iterative method, for solving the prob-
lem (6), which considers the decomposition of the nonlinear operator, as follows{

xk+1 = xk − [AT
kAk]

−1AT
k (F (xk) +G(xk)),

yk+1 = xk+1 − [AT
kAk]

−1AT
k (F (xk+1) +G(xk+1)), k = 0, 1, ...,

(8)

where Ak = F ′(
xk + yk

2
)+G(xk, yk). The main goal of this paper is to analyze

the local convergence of the method (8) for the problem (6) with zero as well
as non-zero residuals. Additionally, we study both the order and the radius of
the convergence of the method (8) as well as the uniqueness ball of the solution
of the problem (6). To note, this method as well as the method (5) have the
same convergence order of 1 +

√
2 in case of zero residual.

In case ofm = n, the problem (6) converges to solving a system of n nonlinear
equations with n unknown and the method (8) to the method [15, 19, 20].

2. Preliminaries
Let us denote B(x∗, r) = {x ∈ D ⊆ IRn : ‖x− x∗‖ ≤ r} as a closed ball with

the radius r (r > 0) at x∗, D is an open convex subset of IRn .
Let IRm×n , m ≥ n, denote a set of all m × n matrices. Then, for a full

rank matrix A ∈ IRm×n , its Moore-Penrose pseudo-inverse [8] is de�ned as
A† = (ATA)−1AT .

Lemma 1 ([21, 22]). Let A,E ∈ IRm×n . Assume that C = A+E, ‖A†‖‖E‖ <
1, and rank(A) = rank(C). Then,

‖C†‖ ≤ ‖A†‖
1− ‖A†‖‖E‖

.

If rank(A) = rank(C) = min(m,n), we can obtain

‖C† −A†‖ ≤
√
2‖A†‖2‖E‖

1− ‖A†‖‖E‖
.

Lemma 2 ([6]). Let A,E ∈ IRm×n . Assume that C = A+E, ‖EA†‖ < 1, and
rank(A) = n, then rank(C) = n.

3. Local Convergence Analysis of the Method (8)
In this section, we investigate the convergence of the method (8) and deter-

mine its convergence radius.

Theorem 1. Let F + G : IRn → IRm , m ≥ n, be continuous, where F is a
twice Fr�echet di�erentiable operator and G is a continuous operator on a subset
D ⊆ IRn . Assume that the problem (6) has a solution x∗ ∈ D and an operator
F ′(x∗) + G(x∗, x∗) has full rank. Suppose that Fr�echet derivatives F ′(x) and
F ′′(x) satisfy the Lipschitz conditions on D

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖, (9)

‖F ′′(x)− F ′′(y)‖ ≤ N‖x− y‖, (10)
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and the function G has the �rst order divided di�erence G(x, y) and

‖G(x, y)−G(u, v)‖ ≤M(‖x− u‖+ ‖y − v‖) (11)

for all x, y, u, v ∈ D; L, N , and M are non-negative numbers.
Also, the radius r > 0 is a root of the equation

βNp2 + 120βTp+ 48
√
2αβ2T − 24 = 0, (12)

where

2
√
2αβ2T < 1. (13)

Then, for all x0, y0 ∈ B(x∗, r) ⊂ D the sequences {xk} and {yk}, which are
generated by the method (8), are well de�ned, remain in B(x∗, r) for all k ≥ 0,
and converge to x∗ such that

ρ(xk+1) ≤
β

1− βTτk
(
(N/24)ρ(xk)

3 + Tρ(xk)ρ(yk) +
√
2αβTτk

)
, (14)

ρ(yk+1) ≤
β

1− βTτk
(
(N/24)ρ(xk)

3 + T (ρ(xk+1) + ρ(xk) + ρ(yk))ρ(xk+1) +

+
√
2αβTτk

)
, (15)

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0, (16)

where

0 < q =
β
(
(N/24)ρ(x0)

2 + T (2ρ(x0) + ρ(y0)) +
√
2αβTτ0/r0

)
1− βTτ0

< 1,(17)

ρ(x) = ‖x−x∗‖, τk = τ(xk, yk) = ‖xk−x∗‖+‖yk−x∗‖, r0 = max{ρ(x0), ρ(y0)},
zk = (xk + yk)/2, α = ‖F (x∗) +G(x∗)‖, β = ‖(AT

∗A∗)
−1AT

∗ ‖, A∗ = F ′(x∗) +

G(x∗, x∗), T =
L+ 2M

2
, βTτ0 < 1.

Proof. From (13) it follows that (12) has the unique positive root, which we
annotate as r.

Let choose arbitrary x0, y0 ∈ B(x∗, r) and denote An = F ′(
xn + yn

2
) +

G(xn, yn). For n = 0, we have the following estimate

‖A0 −A∗‖ =
∥∥∥F ′(x0 + y0

2

)
+G(x0, y0)− (F ′(x∗) +G(x∗, x∗))

∥∥∥ =

=
∥∥∥F ′(x0 + y0

2

)
− F ′(x∗) +G(x0, y0)−G(x∗, x∗)

∥∥∥ ≤
≤

∥∥∥F ′(x0 + y0
2

)
− F ′(x∗)

∥∥∥+ ‖G(x0, y0)−G(x∗, x∗)‖ ≤
≤ L

2
(‖x0 − x∗‖+ ‖y0 − x∗‖) +M(‖x0 − x∗‖+ ‖y0 − x∗‖) ≤

≤ L+ 2M

2
(‖x0 − x∗‖+ ‖y0 − x∗‖) = T (‖x0 − x∗‖+ ‖y0 − x∗‖)

and

‖(AT
∗A∗)

−1AT
∗ [A0 −A∗]‖ ≤ βT (‖x0 − x∗‖+ ‖y0 − x∗‖) = βTτ0 < 1.
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According to Lemma 1

‖(AT
0A0)

−1AT
0 ‖ ≤

β

1− βT (‖x0 − x∗‖+ ‖y0 − x∗‖)
=

β

1− βTτ0
,

and to Lemma 2

‖(AT
0A0)

−1AT
0−(AT

∗A∗)
−1AT

∗ ‖ ≤
√
2β2T (‖x0 − x∗‖+ ‖y0 − x∗‖)

1− βT (‖x0 − x∗‖+ ‖y0 − x∗‖)
=

√
2β2Tτ0

1− βTτ0
.

For x1, y1 that are generated by (8), we have

x1 − x∗ = x0 − x∗ −
[
AT

0A0

]−1
AT

0 (F (x0) +G(x0)) =

=
[
AT

0A0

]−1
AT

0 [A0(x0 − x∗)− (F (x0) +G(x0)) + (F (x∗) +G(x∗))] +

+
[
AT
∗A∗

]−1
AT
∗ (F (x∗) +G(x∗))−

[
AT

0A0

]−1
AT

0 (F (x∗) +G(x∗)) =

=
[
AT

0A0

]−1
AT

0

[
F ′
(
x0 + x∗

2

)
(x0 − x∗)− F (x0) + F (x∗)+

+ G(x0, x∗)(x0 − x∗)−G(x0) +G(x∗) +

+

(
A0 − F ′

(
x0 + x∗

2

)
−G(x0, x∗)

)
(x0 − x∗)

]
+

+
[
AT
∗A∗

]−1
AT
∗ (F (x∗) +G(x∗))−

[
AT

0A0

]−1
AT

0 (F (x∗) +G(x∗));

y1 − x∗ = x1 − x∗ −
[
AT

0A0

]−1
AT

0 (F (x1) +G(x1)) =

=
[
AT

0A0

]−1
AT

0 [A0(x1 − x∗)− (F (x1) +G(x1)) + (F (x∗) +G(x∗))] +

+
[
AT
∗A∗

]−1
AT
∗ (F (x∗) +G(x∗))−

[
AT

0A0

]−1
AT

0 (F (x∗) +G(x∗)) =

=
[
AT

0A0

]−1
AT

0

[
F ′
(
x1 + x∗

2

)
(x1 − x∗)− F (x1) + F (x∗) +

+ G(x1, x∗)(x1 − x∗)−G(x1) +G(x∗) +

+

(
A0 − F ′

(
x1 + x∗

2

)
−G(x1, x∗)

)
(x1 − x∗)

]
+

+
[
AT
∗A∗

]−1
AT
∗ (F (x∗) +G(x∗))−

[
AT

0A0

]−1
AT

0 (F (x∗) +G(x∗)).

According to Lemma 1 from [23] with the value ω = 1/2 we can write

F (x)− F (y)− F ′
(
x+ y

2

)
(x− y) =

=
1

4

∫ 1

0
(1− t)

[
F ′′
(
x+ y

2
+
t

2
(x− y)

)
− F ′′

(
x+ y

2
+
t

2
(y − x)

)]
(x− y)2dt.

By setting x = x∗ and y = x0 in the equation above, we receive∥∥∥∥F (x∗)− F (x0)− F ′(x0 + x∗
2

)
(x∗ − x0)

∥∥∥∥ =

=
1

4

∥∥∥∥∫ 1

0
(1− t)

[
F ′′
(
x0 + x∗

2
+
t

2
(x∗ − x0)

)
−
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− F ′′
(
x0 + x∗

2
+
t

2
(x0 − x∗)

)]
(x∗ − x0)2dt

∥∥∥∥ ≤
≤ 1

4

∫ 1

0
t(1− t)N‖x0 − x∗‖3dt =

1

24
Nρ(x0)

3.

Using to the Lipschitz conditions (9), (10) and (11), we get the following
estimates∥∥∥A0 − F ′

(x0 + x∗
2

)
−G(x0, x∗)

∥∥∥ =
∥∥∥F ′(x0 + y0

2

)
− F ′(x0 + x∗

2
) +

+G(x0, y0)−G(x0, x∗)
∥∥∥ ≤ T‖y0 − x∗‖,

∥∥∥A0 − F ′
(x1 + x∗

2

)
−G(x1, x∗)

∥∥∥ =
∥∥∥F ′(x0 + y0

2

)
− F ′

(x1 + x∗
2

)
+

+G(x0, y0)−G(x1, x∗)
∥∥∥ ≤

≤ L
∥∥∥x0 − x1

2
+
y0 − x∗

2

∥∥∥+
+M(‖x1 − x0‖+ ‖y0 − x∗‖) =

=
L+ 2M

2
‖x0 − x1‖+

L+ 2M

2
‖y0 − x∗‖ ≤

≤ T (‖x0 − x∗‖+ ‖x1 − x∗‖+ ‖y0 − x∗‖).

Hence, from (12) it follows that

0 < q =
β
(
(N/24)ρ(x0)

2 + T (ρ(x0) + ρ(x1) + ρ(y0)) +
√
2αβTτ0/r

)
1− βTτ0/r0

<

<
β
(
(N/24)r2 + 3Tr + 2

√
2αβT

)
1− 2βTr

= 1.

Thus, by Lemmas 1, 2, conditions (9), (10) and (11), we obtain

‖x1 − x∗‖ ≤
β
(
(N/24)ρ(x0)

3 + Tρ(x0)ρ(y0) +
√
2αβTτ0

)
1− βTτ0

< qr0 < r.

Similarly,

‖y1 − x∗‖ ≤
β
(
(N/24)ρ(x1)

3 + T (ρ(x0) + ρ(x1) + ρ(y0))ρ(x1)
)

1− βTτ0
+

+

√
2αβ2Tτ0
1− βTτ0

< qr0 < r.

Therefore, x1, y1 ∈ B(x∗, r) and both (14) and (15) follow. Also, (16) is satis�ed

r1 = max{‖x1 − x∗‖, ‖y1 − x∗‖} ≤ qr0.
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Using mathematical induction, assume that xk, yk ∈ B(x∗, r) and (16) holds
for k > 0. Then, for k + 1 from (8) we obtain that

‖xk+1 − x∗‖ ≤
β
(
(N/24)ρ(xk)

3 + Tρ(xk)ρ(yk) +
√
2αβTτk

)
1− βTτk

≤

≤
β
(
(N/24)ρ(x0)

2 + Tρ(x0) + 2
√
2αβT

)
rk

1− βTτ0
< qrk < r

and

‖yk+1 − x∗‖ ≤
β
(
(N/24)ρ(xk+1)

3 + T (ρ(k) + ρ(xk+1) + ρ(yk))ρ(xk+1)
)

1− βTτk
+

+

√
2αβ2Tτk
1− βTτk

≤
β
(
(N/24)ρ(x0)

2 + 3Tρ(x0) + 2
√
2αβT

)
rk

1− βTτ0
<

< qrk < r.

According to (17) and both inequalities (14) and (15), we receive

rk+1 = max{‖xk+1 − x∗‖, ‖yk+1 − x∗‖} ≤ qrk ≤ q2rk−1 ≤ · · · ≤ qk+1r0.

Thus, xk+1, yk+1 ∈ B(x∗, r) as well as (14), (15) and (16) hold. �

From (12) it follows that the convergence radius of the method (8) is

r =
2(1− 2

√
2αβ2T )

5βT +
√
(5βT )2 + 1

6βN(1− 2
√
2αβ2T )

.

Remark 1. Note that the condition (11) can be replaced with the weaker one

‖G(x, y)−G(u, v)‖ ≤M1‖x− u‖+M2‖y − v‖ (18)

for all x, y, u, v ∈ D, M1 and M2 are positive numbers. This enlarges applica-
bility of the method (8).

For zero residual (F (x∗) +G(x∗) = 0), the Theorem 1 can be formulated as

Theorem 2. Let F + G : IRn → IRm , m ≥ n, is continuous, where F is
a twice Fr�echet di�erentiable operator and G is a continuous operator on a
subset D ⊆ IRn . Assume that the problem (6) has a solution x∗ ∈ D, and
the îðårator F ′(x∗) +G(x∗, x∗) has full rank. Suppose that Fr�echet derivatives
F ′(x) and F ′′(x) on D satisfy the classic Lipschitz conditions as in (9) and
(10), respectively; the function G has the �rst order divided di�erence G(x, y)
that satis�es the Lipschitz conditions as in (11). Moreover, the radius r > 0 is
a unique positive root of the following equation

βNp2 + 120βTp− 24 = 0.
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Then, the combined method (8) converges to x∗ for all
x0, y0 ∈ B(x∗, r) ⊂ D such that

ρ(xk+1) ≤
β

1− βTτk
(
(N/24)ρ(xk)

3 + Tρ(xk)ρ(yk)
)
, (19)

ρ(yk+1) ≤
β
(
(N/24)ρ(xk+1)

3 + T (ρ(xk+1) + ρ(xk) + ρ(yk))ρ(xk+1)
)

1− βTτk
,(20)

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0,

where ρ(x) = ‖x − x∗‖, τk = τ(xk, yk) = ‖xk − x∗‖ + ‖yk − x∗‖,
r0 = max{ρ(x0), ρ(y0)}, β = ‖(AT

∗A∗)
−1AT

∗ ‖, A∗ = F ′(x∗) + G(x∗, x∗),
βTτ0 < 1

0 < q =
β
(
(N/24)ρ(x0)

2 + T (2ρ(x0) + ρ(y0))
)

1− βTτ0
< 1.

From Theorem 2, the convergence radius is

r =
2

5βT +
√

(5βT )2 + 1
6βN

<
1

5βT
.

This radius is two times smaller than the convergence radius of the di�erential
method (4) from [11] (a two-step modi�cation of the Gauss-Newton method)
and equals to the convergence radius of the di�erence method (5) from [16].

Corollary 1. Convergence order of the iterative method (8) in case of zero
residual is equal to 1 +

√
2.

Proof. Let us denote γ =
βN/24

1− βTτ0
, η =

βT

1− βTτ0
, ak = ρ(xk), bk = ρ(yk),

k = 0, 1, 2, ... Since the residual is zero, i.e. α = ‖F (x∗)+G(x∗)‖ = 0, from the
inequalities (19) and (20) we have

ak+1 ≤ ak(γa
2
k + ηbk), (21)

bk+1 ≤ ak+1

[
γa2k+1 + η/3(ak + ak+1 + bk)

]
≤ (22)

≤ ak+1 [(γak + 2η/3)ak + ηbk/3] ≤
≤ ak+1ak [γr + η] = ak+1akφ1.

From (21) and (22) for large enough k, it follows

ak+1 ≤ ak(γa2k + ηbk) ≤ ak(γa2k + ηφ1akak−1) ≤ a2kak−1(γ + ηφ1) = a2kak−1φ2.

From this inequality, we obtain an equation

ρ2 − 2ρ− 1 = 0.

The positive root of the latter, which is ρ∗ = 1+
√
2, is the order of convergence

of the iterative method (8). �

Under the classic Lipschitz condition a theorem for the uniqueness of the
solution can be written as follow
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Theorem 3. Suppose x∗ satis�es (6) and F (x) has a continuous derivative
F ′(x) and G(x) has a divided di�erence G(x, y) in D. Moreover, F ′(x∗) +
G(x∗, x∗) has full rank; F ′(x) satis�es the Lipschitz condition as in (9); the
divided di�erence G(x, y) satis�es the Lipschitz condition as in (11). Let r > 0
satis�es

β(Lr/2 +M) + αβ0(L+ 2M) ≤ 1,

where β0 = ‖(F ′(x∗) +G(x∗, x∗))
T (F ′(x∗) +G(x∗, x∗))‖. Then, x∗ is a unique

solution of the problem (6) in B(x∗, r).

The proof of this theorem is analogous to the one in [6].
To note, in case when G(x) = 0, we obtain the same results as in Theorem

2 in [11].

5. Numerical experiments
In this section, we give two examples to show the application of our results.

We consider method (8) and its partial cases, namely the two-step Gauss-
Newton method (G ≡ 0) and the two-step Secant method (F ≡ 0). We use the

norm ‖x‖ =

√
p∑

i=1
x2i for x ∈ IRp .

Example 1. Consider function F +G : D = IR→ IR2 given by [12]:

F (x) +G(x) =

(
x+ µ

λx2 + x− µ

)
,

where λ, µ ∈ IR are two parameters.

It is known, that x∗ = 0 is the unique solution of the considered problem.
Therefore, we can de�ne constants α and β as follows:

α =
√
2|µ|, β =

1√
2
.

Let G(x) = (0, 0)T . Then

F ′(x) =

(
1

2λx+ 1

)
, F ′′(x) =

(
0
2λ

)
and

‖F ′(x)− F ′(y)‖ =
∥∥∥∥( 0

2λ(x− y)

)∥∥∥∥ = 2|λ||x− y|,

‖F ′′(x)− F ′′(y)‖ =
∥∥∥∥( 0

0

)∥∥∥∥ = 0|x− y|.

That is, we can set constants L = 2|λ|, N = 0, M = 0, T =
L

2
=

2|λ|
2

= |λ|.
Let F (x) = (0, 0)T . Then

G(x, y) =


x+ µ− y − µ

x− y
λx2 + x− µ− λy2 − y + µ

x− y

 =

(
1

λ(x+ y) + 1

)
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and

‖G(x, y)−G(u, v)‖ =
∥∥∥∥( 0

λ(x− u+ y − v)

)∥∥∥∥ ≤ |λ|(|x− y|+ |u− v|).
That is, we can set constants L = 0, N = 0, M = |λ|, T =M = |λ|.

Then equation (12) for both methods has form

5
√
2|λ|r + 4|λµ| − 2 = 0.

It has unique positive solution

r =

√
2− 2

√
2|λµ|

5|λ|
if parameters λ and µ satisfy

λ 6= 0, |λµ| < 1

2
.

Let x0 = 0.2, y0 = 0.2001. For this problem Ak =

(
1

λ(xk + yk) + 1

)
in

both cases. Therefore, we get the same result by the two-step Gauss-Newton
method and the two-step Secant method.

Tabl. 1. The results for λ = 1, µ = 0.

k ρ(xk+1) The right side of (14) ρ(yk+1) The right side of (15)
0 1.893e-002 3.946e-002 3.412e-003 7.821e-003
1 3.229e-005 4.640e-005 3.600e-007 5.190e-007
2 5.812e-012 8.220e-012 9.487e-017 1.342e-016
3 0 3.899e-028 0 0

Tabl. 2. The results for λ = 0.5, µ = 0.2.

k ρ(xk+1) The right side of (14) ρ(yk+1) The right side of (15)
0 2.624e-002 6.308e-002 1.881e-002 5.121e-002
1 2.326e-003 4.755e-003 2.230e-003 4.617e-003
2 2.284e-004 4.578e-004 2.274e-004 4.564e-004
3 2.280e-005 4.560e-005 2.279e-005 4.559e-005
4 2.279e-006 4.558e-006 2.279e-006 4.558e-006
5 2.279e-007 4.558e-007 2.279e-007 4.558e-007
6 2.279e-008 4.558e-008 2.279e-008 4.558e-008
7 2.279e-009 4.558e-009 2.279e-009 4.558e-009
8 2.279e-010 4.558e-010 2.279e-010 4.558e-010

If λ = 1, µ = 0 we obtain 2
√
2αβ2T = 0 < 1, βTτ0 = 0.28291342315 < 1,

r = 0.2828427124746190 and B(x∗, r) ⊂ D. If λ = 0.5, µ = 0.2 we obtain
2
√
2αβ2T = 0.2 < 1, βTτ0 = 0.14145671157 < 1, r = 0.4525483399593903

and B(x∗, r) ⊂ D. From Tables 1, 2, we can see that sequences {xk} and {yk}
converges to the solution x∗ and error estimates (14) and (15) are true for all
k ≥ 0.
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Example 2. Consider function F +G : D ⊆ IR→ IR2 given by:

F (x) +G(x) =

 x+ µ
λx3 + x− µ
λ|x2 − 1| − λ

 ,

F (x) =

 x+ µ
λx3 + x− µ

0

 , G(x) =

 0
0

λ|x2 − 1| − λ

 ,

where λ, µ ∈ IR are two parameters.

The unique solution of this problem is x∗ = 0. Therefore, we can set con-
stants α and β as follows:

α =
√
2|µ|, β =

1√
2
.

Let D = {x : |x| < 0.5}. Then

F ′(x) =

(
1

3λx2 + 1

)
, F ′′(x) =

(
0

6λx

)
and

‖F ′(x)− F ′(y)‖ =
∥∥∥∥( 0

3λ(x2 − y2)

)∥∥∥∥ = 3|λ||x+ y||x− y| ≤ 3|λ||x− y|,

‖F ′′(x)− F ′′(y)‖ =
∥∥∥∥( 0

6λ(x− y)

)∥∥∥∥ = 6|λ||x− y|;

G(x, y) =


0
0

λ|x2 − 1| − λ− λ|y2 − 1|+ λ

x− y

 =

=


0
0

λ(1− x2 − 1)− λ(1− y2)
x− y

 =

 0
0

−λ(x+ y)


and

‖G(x, y)−G(u, v)‖ =
∥∥∥∥( 0
−λ(x− u+ y − v)

)∥∥∥∥ ≤ |λ|(|x− u|+ |y − v|).
That is, we can set constants L = 3|λ|, N = 6|λ|, M = |λ|, T =

5|λ|
2

.

Then equation has form
√
2|λ|r2 + 50

√
2|λ|r + 40|λµ| − 8 = 0.

It has unique positive solution

r =

√
5000|λ|2 − 4

√
2λ(40|λµ| − 8)− 50

√
2|λ|

2
√
2|λ|



12 S.M. Shakhno, R. P. Iakymchuk, H. P.Yarmola

if parameters λ and µ satisfy

λ 6= 0, |λµ| < 1

5
.

Let x0 = 0.2, y0 = 0.2001.

Tabl. 3. The results for λ = 1, µ = 0.

k ρ(xk+1) The right side of (14) ρ(yk+1) The right side of (15)
0 1.406e-002 2.465e-001 1.681e-003 3.999e-002
1 1.027e-007 4.348e-005 2.225e-011 5.082e-007
2 1.323e-022 4.039e-018 1.223e-036 1.913e-022
3 0 2.860e-058 0 4.098e-067

Tabl. 4. The results for λ = 0.5, µ = 0.2.

k ρ(xk+1) The right side of (14) ρ(yk+1) The right side of (15)
0 1.132e-002 2.106e-001 6.085e-003 1.622e-001
1 1.179e-005 4.482e-003 1.136e-005 4.420e-003
2 2.010e-011 5.788e-006 2.010e-011 5.788e-006
3 0 1.005e-011 0 1.005e-011

If λ = 1, µ = 0 we obtain 2
√
2αβ2T = 0 < 1, βTτ0 = 0.70728355788 < 1,

r = 0.1128822370012403 and B(x∗, r) ⊂ D. If λ = 0.5, µ = 0.2 we obtain
2
√
2αβ2T = 0.5 < 1, βTτ0 = 0.35364177894 < 1, r = 0.1128822370012403 and

B(x∗, r) ⊂ D.
Therefore, all conditions in Theorem 1 are satis�ed for the two-step Gauss-

Newton method (8). Hence, Theorem 1 applies.

6. Conclusions
We studied the local convergence of the method (8) for the nonlinear least

squares problem with the decomposition of the operator under the classic Lip-
schitz conditions for the �rst- and second-order derivatives and for the divided
di�erences of the �rst order. We determined the convergence order and the
radius of the method (8) as well as proved the uniqueness ball of the solu-
tion of the nonlinear least squares problem (6). Furthermore, the method (8)
has promising characteristics for parallelization, which we plan to utilize for
constructing and developing new parallel methods for solving the problem (6).
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