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Abstract

In this paper we propose a boosting based multiview learning algorithm, referred as PB-MVBoost,
which iteratively learns i) weights over view-specific voters capturing view-specific information, and ii)
weights over views by optimizing a PAC-Bayes multiview C-Bound that takes into account the accuracy
of view-specific classifiers and the diversity between the views. We derive a generalization bound for
this strategy following the PAC-Bayes theory which is a suitable tool to deal with models expressed as
weighted combination over a set of voters. Different experiments on three publicly available datasets
show the efficiency of the proposed approach with respect to state-of-art models.

1 Introduction

With the tremendous generation of data, there are more and more situations where observations are
described by more than one view. This is for example the case with multilingual documents that convey the
same information in different languages or images that are naturally described according to different set of
features (for example SIFT, HOG, CNN, etc). In this paper, we study the related machine learning problem
that consists in finding an efficient classification model from different information sources that describe
the observations. This topic, called multiview (or multimodal) learning[ Atrey et al. [2010], Sun [2013],
Baltrušaitis et al. [2019]], has been expanding over the past decade, spurred by the seminal work of Blum
and Mitchell [1998] on co-training (with only two views). The aim is to learn a classifier which performs
better than classifiers trained over each view separately (called here view-specific classifier). Usually, this
is done by directly concatenating the representations (early fusion) or by combining the predictions of
view-specific classifiers (late fusion) Snoek et al. [2005]. In this work, we stand in the latter situation.
Concretely, we study a two-level multiview learning strategy based on the PAC-Bayesian theory (introduced
by McAllester [1999] for monoview learning). This theory provides Probably Approximately Correct (PAC)
generalization guarantees for models expressed as a weighted combination over a set of functions/voters
(i.e., for a weighted majority vote). In this framework, given a prior distribution over a set of functions,
called voters, H and a learning sample, one aims at learning a posterior distribution over H leading to a
well-performing majority vote; each voter from H is weighted by its probability to appear according to
the posterior distribution. Note that, PAC-Bayesian studies have not only been conducted to characterize
the error of such weighted majority votes Catoni [2007], Seeger [2002], Langford and Shawe-Taylor [2002],
Germain et al. [2009, 2015], but have also been used to derive theoretically grounded learning algorithms
(such as for supervised learning Germain et al. [2009], Parrado-Hernández et al. [2012], Alquier et al. [2015],
Roy et al. [2016], Morvant et al. [2014] or transfer learning Germain et al. [2016]). To tackle multiview
learning in a PAC-Bayesian fashion, we propose to define a two-level hierarchy of prior and posterior
distributions over the views: i) for each view v, we consider a prior Pv and a posterior Qv distributions
over view-specific voters to capture view-specific information and ii) a hyper-prior πv and a hyper-posterior
ρv distributions over the set of views to capture the accuracy of view-specific classifiers and diversity
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Figure 1: Illustration of the multiview distributions hierarchy with 3 views. For all views v ∈ {1, 2, 3}, we
have a set of voters Hv = {hv1, . . . , hvnv} on which we consider prior Pv view-specific distribution (in blue),
and we consider a hyper-prior π distribution (in green) over the set of 3 views. The objective is to learn a
posterior Qv (in red) view-specific distributions and a hyper-posterior ρ distribution (in orange) leading to
a good model. The length of a rectangle represents the weight (or probability) assigned to a voter or a
view.

between the views (see Figure 1). Following this distributions’ hierarchy, we define a multiview majority
vote classifier where the view-specific classifiers are weighted according to posterior and hyper-posterior
distributions. By doing so, we extend the classical PAC-Bayesian theory to multiview learning with more
than two views and derive a PAC-Bayesian generalization bound for our multiview majority vote classifier.

From a practical point of view, we design an algorithm based on the idea of boosting Freund [1995],
Freund and Schapire [1997], Schapire [1999, 2003], an ensemble method well known to be able to learn
well-performing majority vote. Our boosting-based multiview learning algorithm, called PB-MVBoost, deals
with the two-level hierarchical learning strategy. PB-MVBoost is then an ensemble method that outputs
a multiview classifier expressed as a weighted combination of view-specific voters. It is important to
notice that controlling the diversity between the view-specific classifiers or the views is a key element
in multiview learning Amini et al. [2009], Goyal et al. [2017], Chapelle et al. [2010], Kuncheva [2004],
Maillard and Vayatis [2009], Morvant et al. [2014]. Therefore, to learn the weights over the views, we
minimize an upper-bound on the error of the majority vote, called the multiview C-bound Germain et al.
[2015], Roy et al. [2016], Goyal et al. [2017], allowing us to control a trade-off between accuracy and
diversity. Concretely, at each iteration of our multiview algorithm, we learn i) weights over view-specific
voters based on their ability to deal with examples on the corresponding view (capturing view-specific
information), and ii) weights over views by minimizing the multiview C-bound. To show the potential
of our algorithm, we empirically evaluate our approach on MNIST1, MNIST2 and Reuters RCV1/RCV2
collectionsLecun et al. [1998], Amini et al. [2009]. We observe that our algorithm PB-MVBoost, empirically
minimizes the multiview C-Bound over iterations, and leads to good performances even when the classes
are unbalanced. We compare PB-MVBoost with a previously developed multiview algorithm, denoted by
Fusion

Cq
all Goyal et al. [2017], which first learns the view-specific voters at the base level of the hierarchy,

and then, combines the predictions of view-specific voters using a PAC-Bayesian algorithm CqBoost Roy
et al. [2016]. From the experimental results, it came out that PB-MVBoost is more stable across different
datasets and computationally faster than Fusion

Cq
all.

In the next section, we discuss some related works. In Section 3, we present the PAC-Bayesian
multiview learning framework Goyal et al. [2017]. In Section 4, we derive our multiview learning algorithm
PB-MVBoost. Before concluding in Section 6, we experiment our algorithm in Section 5.

2 Related Work

Learning a weighted majority vote is closely related to ensemble methods Dietterich [2000], Re and
Valentini [2012]. In the ensemble methods literature, it is well known that we desire to combine voters
that make errors on different data points Kuncheva [2004]. Intuitively, this means that the voters disagree
on some data points. This notion of disagreement (or agreement) is sometimes called diversity between
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classifiers Dı́ez-Pastor et al. [2015], Brown and Kuncheva [2010], Kuncheva [2004]. Even if there is no
consensus on the definition of “diversity”, controlling it while keeping good accuracy is at the heart of a
majority of ensemble methods: indeed if all the voters agree on all the points then there is no interest to
combine them, only one will be sufficient. Similarly, when we combine multiple views (or representations),
it is known that controlling diversity between the views plays a vital role for learning the final majority
vote Amini et al. [2009], Goyal et al. [2017], Chapelle et al. [2010], Maillard and Vayatis [2009]. Most of the
existing ensemble-based multiview learning algorithms try to exploit either view consistency (agreement
between views) Janodet et al. [2009], Koço and Capponi [2011], Xiao and Guo [2012] or diversity between
views Xu and Sun [2010], Goyal et al. [2017], Peng et al. [2011, 2017] in different manners. Janodet et al.
[2009] proposed a boosting based multiview learning algorithm for two views, called 2-Boost. At each
iteration, the algorithm learns the weights over the view-specific voters by maintaining a single distribution
over the learning examples. Conversely, Koço and Capponi [2011] proposed Mumbo that maintains separate
distributions for each view. For each view, the algorithm reduces the weights associated with the examples
hard to classify, and increases the weights of those examples in the other views. This trick allows a
communication between the views with the objective to maintain view consistency. Compared to our
approach, we follow a two-level learning strategy where we learn (hyper-)posterior distributions/weights
over view-specific voters and views. In order to take into account accuracy and diversity between the views,
we optimize the multiview C-Bound (an upper-bound over the risk of multiview majority vote learned, see
e.g. Germain et al. [2015], Roy et al. [2016], Goyal et al. [2017]).

Xu and Sun [2010] proposed EMV-AdaBoost, an embedded multiview Adaboost algorithm, restricted
to two views. At each iteration, an example contributes to the error if it is misclassified by any of
the view-specific voters and the diversity between the views is captured by weighting the error by the
agreement between the views. Peng et al. [2011, 2017] proposed variants of Boost.SH (boosting with
SHared weight distribution) which controls the diversity for more than two views. Similarly than our
approach, they maintain a single global distribution over the learning examples for all the views. To
control the diversity between the views, at each iteration they update the distribution over the views
by casting the algorithm in two ways: i) a multiarmed bandit framework (rBoost.SH) and ii) an expert
strategy framework (eBoost.SH) consisting of set of strategies (distribution over views) for weighing views.
At the end, their multiview majority vote is a combination of T weighted base voters, where T is the
number of iterations for boosting. Whereas, our multiview majority vote is a weighted combination of the
view-specific voters over all the weighted views.

Furthermore, our approach encompasses the one of Amini et al. [2009] and Xiao and Guo [2012]. Amini
et al. [2009] proposed a Rademacher analysis for expectation of individual risks of each view-specific
classifier (for more than two views). Xiao and Guo [2012] derived a weighted majority voting Adaboost
algorithm which learns weights over view-specific voters at each iteration of the algorithm. Both of these
approaches maintain a uniform distribution over the views whereas our algorithm learns the weights over
the views such that they capture diversity between the views. Moreover, it is important to note that Sun
et al. [2017] proposed a PAC-Bayesian analysis for multiview learning over the concatenation of views
but limited to two views and to a particular kind of voters: linear classifiers. This has allowed them to
derive a SVM-like learning algorithm but dedicated to multiview with exactly two views. In our work, we
are interested in learning from more than two views and without any restrictions on the classifier type.
Contrary to them, we followed a two-level distributions’ hierarchy where we learn weights over view-specific
classifiers and weights over views.

3 The Multiview PAC-Bayesian Framework

3.1 Notations and Setting

In this work, we tackle multiview binary classification tasks where the observations are described with
V ≥ 2 different representation spaces, i.e., views. Let V be the set of these V views. Formally, we focus
on tasks for which the input space is X = X1 × · · · × XV , where ∀v ∈ V, Xv ⊆ Rdv is a dv-dimensional
input space, and the binary output space is Y = {−1,+1}. We assume that D is a fixed but unknown
distribution over X × Y. We stand in the PAC-Bayesian supervised learning setting where an observation
x = (x1, x2, . . . , xV ) ∈ X is given with its label y ∈ Y, and is independently and identically drawn (i.i.d.)
from D. A learning algorithm is then provided with a training sample S of n examples i.i.d. from D:
S = {(xi, yi)}ni=1 ∼ (D)n, where (D)n stands for the distribution of a n-sample. For each view v ∈ V,
we consider a view-specific set Hv of voters h : Xv → Y, and a prior distribution Pv on Hv. Given a
hyper-prior distribution π over the views V , and a multiview learning sample S, our PAC-Bayesian learner
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objective is twofold: i) finding a posterior distribution Qv over Hv for all views v ∈ V, and ii) finding a
hyper-posterior distribution ρ on the set of the views V . This defines a hierarchy of distributions illustrated
on Figure 1. The learned distributions express a multiview weighted majority vote1 defined as

Bρ(x) = sign

[
E
v∼ρ

E
h∼Qv

h(xv)

]
. (1)

Thus, the learner aims at constructing the posterior and hyper-posterior distributions that minimize the
true risk RD(Bρ) of the multiview weighted majority vote

RD(Bρ) = E
(x,y)∼D

1[Bρ(x)6=y],

where 1[π] = 1 if the predicate π is true and 0 otherwise. The above risk of the deterministic weighted
majority vote is closely related to the Gibbs risk RD(Gρ) defined as the expectation of the individual risks
of each voter that appears in the majority vote. More formally, in our multiview setting, we have

RD(Gρ) = E
(x,y)∼D

E
v∼ρ

E
h∼Qv

1[h(xv)6=y],

and its empirical counterpart is

RS(Gρ) =
1

n

n∑
i=1

E
v∼ρ

E
h∼Qv

1[h(xvi ) 6=yi].

In fact, if Bρ misclassifies x ∈ X , then at least half of the view-specific voters from all the views (according
to hyper-posterior and posterior distributions) makes an error on x. Then, it is well known Shawe-Taylor
and Langford [2003], McAllester [2003], Germain et al. [2015] that RD(Bρ) is upper-bounded by twice
RD(Gρ):

RD(Bρ) ≤ 2RD(Gρ).

In consequence, a generalization bound for RD(Gρ) gives rise to a generalization bound for RD(Bρ).
There exist tighter relations Langford and Shawe-Taylor [2002], Germain et al. [2015], Lacasse et al.

[2006], such as the C-Bound Lacasse et al. [2006], Germain et al. [2015] which captures a trade-off between
the Gibbs risk RD(Gρ) and the disagreement between pairs of voters. This latter can be seen as a measure
of diversity among the voters involved in the majority vote Roy et al. [2011], Morvant et al. [2014], that is
a key element to control from a multiview point of view Atrey et al. [2010], Amini et al. [2009], Goyal et al.
[2017], Kuncheva [2004], Maillard and Vayatis [2009]. The C-Bound can be extended to our multiview
setting as below.

Lemma 1 (Multiview C-Bound) Let V ≥ 2 be the number of views. For all posterior {Qv}Vv=1 distri-
butions over {Hv}Vv=1 and hyper-posterior ρ distribution over views V, if RD(Gρ) <

1
2 , then we have

RD(Bρ) ≤ 1−
(
1− 2RD(Gρ)

)2
1− 2dD(ρ)

(2)

≤ 1−

(
1− 2Ev∼ρRD(GQv )

)2
1− 2Ev∼ρ dD(Qv)

, (3)

where dD(ρ) is the expected disagreement between pairs of voters defined as

dD(ρ) = E
x∼DX

E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv)6=h′(xv′ )],

and RD(GQv ) and dD(Qv) are respectively the true view-specific Gibbs risk and the expected disagreement
defined as

RD(GQv ) = E
(x,y)∼D

E
h∼Qv

1[h(xv)6=y] ,

dD(Qv) = E
x∼DX

E
h∼Qv

E
h′∼Qv

1[h(xv) 6=h′(xv)].

1In the PAC-Bayesian literature, the weighted majority vote is sometimes called the Bayes classifier.
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Proof. Similarly than done for the classical C-Bound Germain et al. [2015], Lacasse et al. [2006],
Equation (2) follows from the Cantelli-Chebyshev’s inequality (we provide the proof in B).
Equation (3) is obtained by rewriting RD(Gρ) as the ρ-average of the risk associated to each view, and
lower-bounding dD(ρ) by the ρ-average of the disagreement associated to each view. First we notice that
in the binary setting where y ∈ {−1, 1} and h : X → {−1, 1}, we have 1[h(xv)6=y] = 1

2 (1− y h(xv)), and

RD(Gρ) = E
(x,y)∼D

E
v∼ρ

E
h∼Qv

1[h(xv) 6=y]

=
1

2

(
1− E

(x,y)∼D
E
v∼ρ

E
h∼Qv

y h(xv)

)
= E

v∼ρ
RD(GQv ) .

Moreover, we have

dD(ρ) = E
x∼DX

E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv)6=h′(xv′ )]

=
1

2

(
1− E

x∼DX
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h∼Qv′

h(xv)× h′(xv
′
)

)
=

1

2

(
1− E

x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)

]2)
.

From Jensen’s inequality (Theorem 4, in Appendix) it comes

dD(ρ) ≥ 1

2

(
1− E

x∼DX
E
v∼ρ

[
E

h∼Qv
h(xv)

]2)
= E

v∼ρ

[
1

2

(
1− E

x∼DX

[
E

h∼Qv
h(xv)

]2)]
= E

v∼ρ
dD(Qv) .

By replacing RD(Gρ) and dD(ρ) in Equation (2), we obtain

1−
(
1− 2RD(Gρ)

)2
1− 2dD(ρ)

≤ 1−

(
1− 2Ev∼ρRD(GQv )

)2
1− 2Ev∼ρ dD(Qv)

.

Equation (2) suggests that a good trade-off between the Gibbs risk and the disagreement between pairs
of voters will lead to a well-performing majority vote. Equation (3) controls the diversity among the views
(important for multiview learning Amini et al. [2009], Goyal et al. [2017], Chapelle et al. [2010], Maillard
and Vayatis [2009]) thanks to the disagreement’s expectation over the views Ev∼ρ dD(Qv).

3.2 The General Multiview PAC-Bayesian Theorem

In this section, we give a general multiview PAC-Bayesian theorem Goyal et al. [2017] that takes the form
of a generalization bound for the Gibbs risk in the context of a two-level hierarchy of distributions. A
key step in PAC-Bayesian proofs is the use of a change of measure inequality [McAllester, 2003], based on
the Donsker-Varadhan inequality [Donsker and Varadhan, 1975]. Lemma 2 below extends this tool to our
multiview setting.

Lemma 2 For any set of priors {Pv}Vv=1 over {Hv}Vv=1 and any set of posteriors {Qv}Vv=1 over {Hv}Vv=1,
for any hyper-prior distribution π on views V and hyper-posterior distribution ρ on V, and for any
measurable function φ : Hv → R, we have

E
v∼ρ

E
h∼Qv

φ(h) ≤ E
v∼ρ

KL(Qv‖Pv) + KL(ρ‖π) + ln

(
E
v∼π

E
h∼Pv

eφ(h)
)
.

Proof. Deferred to C

Based on Lemma 2, the following theorem gives a generalization bound for multiview learning. Note
that, as done by Germain et al. [2009, 2015] we rely on a general convex function D : [0, 1]× [0, 1]→ R,
which measures the “deviation” between the empirical and the true Gibbs risk.
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Theorem 1 Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior
distributions {Pv}Vv=1 over {Hv}Vv=1, for any hyper-prior distributions π over V, for any convex function
D : [0, 1] × [0, 1] → R, for any δ ∈ (0, 1], with a probability at least 1 − δ over the random choice of
S ∼ (D)n, for all posterior {Qv}Vv=1 over {Hv}Vv=1 and hyper-posterior ρ over V distributions, we have:

D (RS(Gρ), RD(Gρ)) ≤
1

m

[
E
v∼ρ

KL(Qv‖Pv)

+ KL(ρ‖π) + ln

(
1

δ
E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

)]
.

Proof. First, note that E
v∼π

E
h∼Pv

enD(RS(h),RD(h)) is a non-negative random variable. Using Markov’s

inequality, with δ ∈ (0, 1], and a probability at least 1− δ over the random choice of the multiview learning
sample S ∼ (D)n, we have

E
v∼π

E
h∼Pv

enD(RS(h),RD(h)) ≤ 1

δ
E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h)).

By taking the logarithm on both sides, with a probability at least 1− δ over S ∼ (D)n, we have

ln

[
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

]
≤ ln

[
1

δ
E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

]
(4)

We now apply Lemma 2 on the left-hand side of Inequality (4) with φ(h) = nD(RS(h), RD(h)). Therefore,
for any Qv on Hv for all views v ∈ V, and for any ρ on views V, with a probability at least 1 − δ over
S ∼ (D)n, we have

ln

[
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

]
≥ n E

v∼ρ
E

h∼Qv
D(RS(h), RD(h))− E

v∼ρ
KL(Qv‖Pv)−KL(ρ‖π)

≥ nD

(
E
v∼ρ

E
h∼Qv

RS(h), E
v∼ρ

E
h∼Qv

RD(h)

)
− E
v∼ρ

KL(Qv‖Pv)−KL(ρ‖π),

where the last inequality is obtained by applying Jensen’s inequality on the convex function D. By
rearranging the terms, we have

D

(
E
v∼ρ

E
h∼Qv

RS(h), E
v∼ρ

E
h∼Qv

RD(h)

)
≤ 1

m

[
E
v∼ρ

KL(Qv‖Pv) + KL(ρ‖π)

+ ln

(
1

δ
E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

)]
.

Finally, the theorem statement is obtained by rewriting

E
v∼ρ

E
h∼Qv

RS(h) = RS(Gρ), (5)

E
v∼ρ

E
h∼Qv

RD(h) = RD(Gρ) . (6)

Compared to the classical single-view PAC-Bayesian Bound of Germain et al. [2009, 2015], the main
difference relies on the introduction of the view-specific prior and posterior distributions, which mainly leads
to an additional term Ev∼ρ KL(Qv‖Pv) expressed as the expectation of the view-specific Kullback-Leibler
divergence term over the views V according to the hyper-posterior distribution ρ.

Theorem 1 provides tools to derive PAC-Bayesian generalization bounds for a multiview supervised
learning setting. Indeed, by making use of the same trick as Germain et al. [2009, 2015], by choosing a
suitable convex function D and upper-bounding E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h)), we obtain an instantiation

of Theorem 1. In the next section, we give an example of this kind of deviation through the approach of
Catoni [2007], that is one of the three classical PAC-Bayesian Theorems McAllester [1999], Catoni [2007],
Seeger [2002], Langford [2005].
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3.3 An Example of Instantiation of the Multiview PAC-Bayesian Theorem

To obtain the following theorem which is a generalization bound with the Catoni [2007]’s point of view,
we put D as D(a, b) = F(b)− C a where F is a convex function F and C > 0 is a real number [Germain
et al., 2009, 2015].

Corollary 1 Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior
distributions {Pv}Vv=1 on {H}Vv=1, for any hyper-prior distributions π over V, for any δ ∈ (0, 1], with a
probability at least 1− δ over the random choice of S ∼ (D)n for all posterior {Qv}Vv=1 and hyper-posterior
ρ distributions, we have:

RD(Gρ)

≤ 1

1−e−C

(
1−exp

[
−
(
C RS(Gρ) +

1

n

[
E
v∼ρ

KL(Qv‖Pv) + KL(ρ‖π) + ln 1
δ

])])
.

Proof. Deferred to D.

This bound has the advantage of expressing a trade-off between the empirical Gibbs risk and the
Kullback-Leibler divergences.

3.4 A Generalization Bound for the C-Bound

From a practical standpoint, as pointed out before, controlling the multiview C-Bound of Equation (3) can
be very useful for tackling multiview learning. The next theorem is a generalization bound that justify
the empirical minimization of the multiview C-bound (we use in our algorithm PB-MVBoost derived in
Section 4).

Theorem 2 Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior
distributions {Pv}Vv=1, for any hyper-prior distributions π over views V, and for any convex function
D : [0, 1]× [0, 1]→ R, with a probability at least 1− δ over the random choice of S ∼ (D)n for all posterior
{Qv}vv=1 and hyper-posterior ρ distributions, we have:

RD(Bρ) ≤ 1−

(
1− 2 E

v∼ρ
sup

(
r
δ/2
Qv,S

))2

1− 2 E
v∼ρ

inf d
δ/2
Qv,S

,

where

r
δ/2
Qv,S =

{
r : kl(RS(Qv)‖r) ≤

1

n

[
KL(Qv‖Pv) + ln

4
√
m

δ

]
and r ≤ 1

2

}
, (7)

and d
δ/2
Qv,S =

{
d : kl(dSQv‖d) ≤ 1

n

[
2.KL(Qv‖Pv) + ln

4
√
m

δ

]}
. (8)

Proof. Similarly to Equations (23) and (24) of Germain et al. [2015], we define the sets r
δ/2
Qv,S (Equation (7))

and d
δ/2
Qv,S (Equation (8)) for our setting. Finally, the bound is obtained (from Equation (3) of Lemma 1) by

replacing the view-specific Gibbs risk RD(GQv ) by its upper bound sup r
δ/2
Qv,S and expected disagreement

dD(Qv) by its lower bound inf d
δ/2
Qv,S .

4 The PB-MVBoost algorithm

In this section we exploit our two-level hierarchical strategy (see Figure 1) in order to learn a well-performing
weighted combination of view-specific voters (or views) as in Equation (1). Therefore, we propose to follow
a well-known approach to learn weighted combination of voters, that is boosting. Indeed, boosting aims
at combining a set of weak voters2 to construct a good majority vote. Typically, boosting algorithms
repeatedly learn a “weak” voter (using a learning algorithm) with different probability distribution over
the learning sample S. Finally, it combines all the weak voters in order to have one single strong classifier

2In boosting, the performance of a weak classifier is only slightly better than random guessing.
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Algorithm 1 PB-MVBoost

Input: Training set S = (xi, yi), . . . , (xn, yn), where xi = (x1, x2, . . . , xV ) and yi ∈ {−1, 1}.
For each view v ∈ V, a view-specific hypothesis set Hv.
Number of iterations T .

1: for xi ∈ S do
2: D1(xi)← 1

n

3: ∀v ∈ V ρ1v ← 1
V

4: for t = 1, . . . , T do
5: ∀v ∈ V, htv ← argminh∈Hv E

(xi,yi)∼Dt

[
1[h(xvi ) 6=yi]

]
6: Compute error: ∀v ∈ V, εtv ← E

(xi,yi)∼Dt

[
1[htv(x

v
i ) 6=yi]

]
7: Compute voter weights (taking into account view specific information):

∀v ∈ V, Qtv ←
1

2

[
ln

(
1− εtv
εtv

)]
8: Optimize the multiview C-Bound to learn weights over the views

ρt ← argmaxρ

[
1− 2

∑V
v=1 ρvr

t
v

]2
1− 2

∑V
v=1 ρvd

t
v

such that

V∑
v=1

ρv = 1, ρv ≥ 0 ∀v ∈ {1, . . . , V }
where ∀v ∈ V, rtv ← E

(xi,yi)∼Dt
E

h∼Hv

[
1[h(xvi )6=yi]

]
∀v ∈ V, dtv ← E

(xi,yi)∼Dt
E

h,h′∼Hv

[
1[h(xvi )6=h′(xvi )]

]
9: for xi ∈ S do

10: Dt+1(xi)←
Dt(xi) exp

(
−yi

∑V
v=1 ρ

t
vQ

t
vh
t
v(x

v
i )
)

∑n
j=1Dt(xj) exp

(
−yj

∑V
v=1 ρ

t
vQ

t
vh
t
v(x

v
j )
)

11: Return: For each view v ∈ V, weights over view-specific voters and weights over views, i.e., ρT
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which performs better than the individual weak voters. Recall that in multiview learning it is crucial
to take into account the interactions between voters and views Amini et al. [2009], Goyal et al. [2017],
Chapelle et al. [2010], Maillard and Vayatis [2009]. We adapt this principle to our setting for combining a
set of view-specific weak voters while taking into account the accuracy and diversity between them. We
develop a multiview learning algorithm PB-MVBoost (see Algorithm 1), which allows to iteratively learn
the set of view-specific classifiers that the algorithm will combine.

Concretely, for a given training set S = {(xi, yi), . . . , (xn, yn)} ∈ (X × {−1,+1})n of size n, our
algorithm PB-MVBoost maintains a distribution over the examples which is initialized as uniform. Then at
each iteration, V view-specific weak classifiers are learned according to the current distribution Dt (Step
5), and their corresponding errors εtv are estimated (Step 6).

Similarly to the Adaboost algorithm Freund and Schapire [1997], the weights of each view-specific
classifier (Qtv)1≤v≤V are then computed with respect to these errors as

∀v ∈ V, Qtv ←
1

2

[
ln

(
1− εtv
εtv

)]
.

To learn the weights (ρv)1≤v≤V over the views, we optimize the multiview C-Bound, given by Equation
(3) of Lemma 1 (Step 8 of algorithm), which in our case writes as a constraint maximization problem:

maxρ

[
1− 2

∑V
v=1 ρvr

t
v

]2
1− 2

∑V
v=1 ρvd

t
v

,

s.t.

V∑
v=1

ρv = 1, ρv ≥ 0 ∀v ∈ {1, ..., V } .

where rv is the view-specific Gibbs risk, and dv the expected disagreement over all view-specific voters
defined as follows.

rtv = E
(xi,yi)∼Dt

E
h∼Hv

1[h(xvi )6=yi], (9)

dtv = E
(xi,yi)∼Dt

E
h,h′∼Hv

1[h(xvi )6=h′(xvi )]. (10)

Intuitively, the multiview C-Bound tries to diversify the view-specific voters and views (Equation (10))
while controlling the classification error of the view-specific classifiers (Equation (9)). This allows us to
control the accuracy and the diversity between the views which is an important ingredient in multiview
learning Xu and Sun [2010], Goyal et al. [2017], Peng et al. [2011, 2017], Morvant et al. [2014].

In Section 5, we empirically show that our algorithm minimizes the multiview C-Bound over the
iterations of the algorithm (this is theoretically justified by the generalization bound of Theorem 2). Finally,
we update the distribution over training examples xi (Step 9), by following the Adaboost algorithm and
in a way that the weights of misclassified (resp. well classified) examples by the final weighted majority
classifier increase (resp. decrease).

Dt+1(xi)←
Dt(xi) exp

(
−yi

∑V
v=1 ρ

t
vQ

t
vh
t
v(x

v
i )
)∑n

j=1Dt(xj) exp
(
−yj

∑V
v=1 ρ

t
vQ

t
vh
t
v(x

v
j )
) .

Intuitively, this forces the view-specific classifiers to be consistent with each other, which is important for
multiview learning Janodet et al. [2009], Koço and Capponi [2011], Xiao and Guo [2012]. Finally, after T
iterations of the algorithm, we learn the weights over the view-specific voters and weights over the views
leading to a well-performing weighted multiview majority vote defined as

Bρ(x) = sign

(
V∑
v=1

ρTv

T∑
t=1

Qtvh
t
v(x

v)

)
.

4.1 A note on the Complexity of PB-MVBoost

The complexity of learning a decision tree classifier is O(dnlog(n)), where d is the depth of the de-
cision tree. We learn the weights over the views by optimizing Equation (3) (Step 8 of our algo-
rithm) using SLSQP method which has time complexity of O(V 3). Therefore, the overall complexity
is O

(
T
(
V 3 + V dv n.log(n)

))
. Note that it is easy to parallelize our algorithm: by using V different

machines, we can learn the view-specific classifiers and weights over them (Steps 4 to 7).
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Strategy
MNIST1 MNIST2 Reuters

Accuracy F1 Accuracy F1 Accuracy F1

Mono .9034± .001↓ .5353± .006↓ .9164± .001↓ .5987± .007↓ .8420± .002↓ .5051± .007↓

Concat .9224± .002↓ .6168± .011↓ .9214± .002↓ .6142± .013↓ .8431± .004↓ .5088± .012↓

Fusiondt .9320± .001↓ .5451± .019↓ .9366± .001↓ .5937± .020↓ .8587± .003↓ .4128± .017↓

MV-MV .9402± .001↓ .6321± .009↓ .9450± .001↓ .6849± .008↓ .8780± .002↓ .5443± .012↓

rBoost.SH .9256± .001↓ .5315± .009↓ .9545± .0007 .7258± .005↓ .8853± .002 .5718± .011↓

MV-AdaBoost .9514± .001 .6510± .012↓ .9641± .0009 .7776± .007↓ .8942± .006 .5581± .013↓

MVBoost .9494± .003↓ .7733± .009↓ .9555± .002 .7910± .006↓ .8627± .007↓ .5789± .012↓

FusionallCq .9418± .002↓ .6120± .040↓ .9548± .003↓ .7217± .041↓ .9001 ± .003 .6279 ± .019

PB-MVBoost .9661± .0009 .8066± .005 .9674± .0009 .8166± .006 .8953± .002 .5960± .015↓

Table 1: Test classification accuracy and F1-score of different approaches averaged over all the classes and
over 20 random sets of n = 500 labeled examples per training set. Along each column, the best result is in
bold, and second one in italic. ↓ indicates that a result is statistically significantly worse than the best
result, according to a Wilcoxon rank sum test with p < 0.02.

5 Experimental Results

In this section, we present experiments to show the potential of our algorithm PB-MVBoost on the following
datasets.

5.1 Datasets

MNIST

MNIST is a publicly available dataset consisting of 70, 000 images of handwritten digits distributed over ten
classes Lecun et al. [1998]. For our experiments, we generated 2 four-view datasets3 where each view is a
vector of R14×14. Similarly than done by Chen and Denoyer [2017], the first dataset (MNIST1) is generated
by considering 4 quarters of image as 4 views. For the second dataset (MNIST2), we consider 4 overlapping
views around the centre of images: this dataset brings redundancy between the views. These two datasets
allow us to check if our algorithm is able to capture redundancy between the views. We reserve 10, 000 of
images as test samples and remaining as training samples.

Multilingual, Multiview Text categorization

This dataset is a multilingual text classification data extracted from Reuters RCV1/RCV2 corpus4. It
consists of more than 110, 000 documents written in five different languages (English, French, German,
Italian and Spanish) distributed over six classes. We see different languages as different views of the data.
We reserve 30% of documents as test samples and remaining as training data.

5.2 Experimental Protocol

While the datasets are multiclass, we transformed them as binary tasks by considering one-vs-all classifica-
tion problems: for each class we learn a binary classifier by considering all the learning samples from that
class as positive examples and the others as negative examples. We consider different sizes of learning
sample S (150, 200, 250, 300, 500, 800, 1000) that are chosen randomly from the training data. Moreover,
all the results are averaged over 20 random runs of the experiments. Since the classes are unbalanced, we
report the accuracy along with F1-measure for the methods and all the scores are averaged over all the
one-vs-all classification problems.

We consider two multiview learning algorithms based on our two-step hierarchical strategy, and
compare the PB-MVBoost5 algorithm described in Section 4, with a previously developed multiview learning
algorithm Goyal et al. [2017], based on classifier late fusion approach Snoek et al. [2005], and referred
to as FusionallCq . Concretely, at the first level, this algorithm trains different view-specific linear SVM

models with different hyperparameter C values (12 values between 10−8 and 103). And, at the second
level, it learns a weighted combination over the predictions of view-specific voters using PAC-Bayesian

3MNIST1 and MNIST2 datasets are available at https://github.com/goyalanil/Multiview_Dataset_MNIST
4Reuters RCV1/RCV2 corpus is available at https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+

Multilingual,+Multiview+Text+Categorization+Test+collection
5Code for PB-MVBoost is available at https://github.com/goyalanil/PB-MVBoost
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algorithm CqBoostRoy et al. [2016] with a RBF kernel. Note that, algorithm CqBoost tends to minimize the
PAC-Bayesian C-Bound Germain et al. [2015] controlling the trade-off between accuracy and disagreement
among voters. The hyperparameter γ of the RBF kernel is chosen over a set of 9 values between 10−6 and
102; and hyperparameter µ is chosen over a set of 8 values between 10−8 and 10−1. To study the potential
of our algorithms (FusionallCq and PB-MVBoost), we considered following 7 baseline approaches:

• Mono: We learn a view-specific model for each view using a decision tree classifier and report the
results of the best performing view.

• Concat: We learn one model using a decision tree classifier by concatenating features of all the views.

• Fusiondt: This is a late fusion approach where we first learn the view-specific classifiers using 60%
of learning samples. Then, we learn a final multiview weighted model over the predictions of the
view-specific classifiers. For this approach, we used decision tree classifiers at both levels of learning.

• MV-MV: We compute a multiview uniform majority vote (similar to approach followed by Amini et al.
[2009]) over all the view-specific classifiers’ outputs in order to make final prediction. We learn
view-specific classifiers using decision tree classifiers.

• rBoost.SH: This is the multiview learning algorithm proposed by Peng et al. [2011, 2017] where a
single global distribution is maintained over the learning sample for all the views and the distribution
over views are updated using multiarmed bandit framework. At each iteration, rBoost.SH selects
a view according to the current distribution and learns the corresponding view-specific voter. For
tuning the parameters, we followed the same experimental setting as Peng et al. [2017].

• MV-AdaBoost: This is a majority vote classifier over the view-specific voters trained using Adaboost
algorithm. Here, our objective is to see the effect of maintaining separate distributions for all the
views.

• MVBoost: This is a variant of our algorithm PB-MVBoost but without learning weights over views by
optimizing multiview C-Bound. Here, our objective is to see the effect of learning weights over views
on multiview learning.

For all boosting based approaches (rBoost.SH, MV-AdaBoost, MVBoost and PB-MVBoost), we learn the
view-specific voters using a decision tree classifier with depth 2 and 4 as a weak classifier for MNIST, and
Reuters RCV1/RCV2 datasets respectively. For all these approaches, we kept T = 100 as the number
of iterations. For optimization of multiview C-Bound, we used Sequential Least SQuares Programming
(SLSQP) implementation provided by SciPy6 Jones et al. [2001–] and the decision trees implementation
from scikit-learn Pedregosa et al. [2011].

5.3 Results

Firstly, we report the comparison of our algorithms FusionallCq and PB-MVBoost (for m = 500) with all the
considered baseline methods in Table 1. Secondly, Figure 2, illustrates the evolution of the performances
according to the size of the learning sample. From the table, proposed two-step learning algorithm
FusionallCq is significantly better than the baseline approaches for Reuters dataset. Whereas, our boosting
based algorithm PB-MVBoost is significantly better than all the baseline approaches for all the datasets.
This shows that considering a two-level hierarchical strategy in a PAC-Bayesian manner is an effective way
to handle multiview learning.

In Figure 3, we compare proposed algorithms FusionallCq and PB-MVBoost in terms of accuracy, F1-score
and time complexity for m = 500 examples. For MNIST datasets, PB-MVBoost is significantly better than
FusionallCq . For Reuters dataset, FusionallCq performs better than PB-MVBoost but computation time for
FusionallCq is much higher than that of PB-MVBoost. Moreover, in Figure 2, we can see that the performance
(in terms of F1-score) for FusionallCq is worse than PB-MVBoost when we have less training examples
(n = 150 and 200). This shows the proposed boosting based one-step algorithm PB-MVBoost is more stable
and more effective for multiview learning.

From Table 1 and Figure 2, we can observe that MV-AdaBoost (where we have different distributions
for each view over the learning sample) provides better results compared to other baselines in terms of
accuracy but not in terms of F1-measure. On the other hand, MVBoost (where we have single global

6https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 2: Evolution of accuracy and F1-measure with respect to the number of labeled examples in the
initial labeled training sets on MNIST1, MNIST2 and Reuters datasets.

distribution over the learning sample but without learning weights over views) is better compared to
other baselines in terms of F1-measure. Moreover, the performances of MVBoost first increases with an
increase of the quantity of the training examples, then decreases. Whereas our algorithm PB-MVBoost

provides the best results in terms of both accuracy and F1-measure, and leads to a monotonic increase of
the performances with respect to the addition of labeled examples. This confirms that by maintaining a
single global distribution over the views and learning the weights over the views using a PAC-Bayesian
framework, we are able to take advantage of different representations (or views) of the data.

Finally, we plot behaviour of our algorithm PB-MVBoost over T = 100 iterations on Figure 4 for all
the datasets. We plot accuracy and F1-measure of learned models on training and test data along with
empirical multiview C-Bound on training data at each iteration of our algorithm. Over the iterations, the
F1-measure on the test data keeps on increasing for all the datasets even if F1-measure and accuracy on
the training data reach the maximal value. This confirms that our algorithm handles unbalanced data
well. Moreover, the empirical multiview C-Bound (which controls the trade-off between accuracy and
diversity between views) keeps on decreasing over the iterations. This validates that by combining the
PAC-Bayesian framework with the boosting one, we can empirically ensure the view specific information
and diversity between the views for multiview learning.
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Figure 3: Comparison between FusionallCq and PB-MVBoost in terms Accuracy (a), F1-Measure (b) and
Time Complexity (c) for n = 500

6 Conclusion

In this paper, we provide a PAC-Bayesian analysis for a two-level hierarchical multiview learning approach
with more than two views, when the model takes the form of a weighted majority vote over a set of
functions/voters. We consider a hierarchy of weights modelled by distributions where for each view we aim
at learning i) posterior Qv distributions over the view-specific voters capturing the view-specific information
and ii) hyper-posterior ρv distributions over the set of the views. Based on this strategy, we derived
a general multiview PAC-Bayesian theorem that can be specialized to any convex function to compare
the empirical and true risks of the stochastic multiview Gibbs classifier. We propose a boosting-based
learning algorithm, called as PB-MVBoost. At each iteration of the algorithm, we learn the weights over
the view-specific voters and the weights over the views by optimizing an upper-bound over the risk of
the majority vote (the multiview C-Bound) that has the advantage of controlling a trade-off between
accuracy and the diversity between the views. The empirical evaluation shows that PB-MVBoost leads
to good performances and confirms that our two-level PAC-Bayesian strategy is indeed a nice way to
tackle multiview learning. Moreover, we compare the effect of maintaining separate distributions over the
learning sample for each view; single global distribution over views; and single global distribution along
with learning weights over views on results of multiview learning. We show that by maintaining a single
global distribution over the learning sample for all the views and learning the weights over the views is
an effective way to deal with multiview learning. In this way, we are able to capture the view-specific
information and control the diversity between the views. Finally, we compare PB-MVBoost with a two-step
learning algorithm FusionallCq which is based on PAC-Bayesian theory. We show that PB-MVBoost is more
stable and computationally faster than FusionallCq .

For future work, we would like to specialize our PAC-Bayesian generalization bounds to linear classifiers
Germain et al. [2009] which will clearly open the door to derive theoretically founded multiview learning
algorithms. We would also like to extend our algorithm to semi-supervised multiview learning where one
has access to an additional unlabeled data during training. One possible way is to learn a view-specific
voter using pseudo-labels (for unlabeled data) generated from the voters trained from other views (as
done for example in Xu et al. [2016]). Another possible direction is to make use of unlabeled data while
computing view-specific disagreement for optimizing multiview C-Bound. This clearly opens the door to
derive theoretically founded algorithms for semi-supervised multiview learning using PAC-Bayesian theory.
We would like to extend our algorithm to transfer learning setting where training and test data are drawn
from different distributions. An interesting direction would be to bind the data distribution to the different
views of the data, as in some recent zero-shot learning approaches Socher et al. [2013]. Moreover, we would
like to extend our work to the case of missing views or incomplete views e.g. Amini et al. [2009] and Xu
et al. [2015]. One possible solution is to learn the view-specific voters using available view-specific training
examples and adapt the distribution over the learning sample accordingly.
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 4: Plots for classification error and F1-measure on training and test data; and empirical multiview
C-Bound on training data over the iterations for all datasets with n = 500.
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Appendix

A Mathematical Tools

Theorem 3 (Markov’s ineq.) For any random variable X s.t. E(|X|) = µ, for any a > 0, we have

P(|X| ≥ a) ≤ µ

a
.

Theorem 4 (Jensen’s ineq.) For any random variable X, for any concave function g, we have g(E[X]) ≥
E[g(X)].

Theorem 5 (Cantelli-Chebyshev ineq.) For any random variable X s.t. E(X)=µ and Var(X) = σ2,

and for any a>0, we have P(X − µ ≥ a) ≤ σ2

σ2+a2 .

B Proof of C-Bound for Multiview Learning (Lemma 1)

In this section, we present the proof of Lemma 1, inspired by the proof provided by Germain et al. [2015].
Firstly, we need to define the margin of the multiview weighted majority vote Bρ and its first and second
statistical moments.

Definition 1 Let Mρ is a random variable that outputs the margin of the multiview weighted majority
vote on the example (x, y) drawn from distribution D, given by:

Mρ(x, y) = E
v∼ρ

E
h∼Qv

y h(xv).

The first and second statistical moments of the margin are respectively given by

µ1(MDρ ) = E
(x,y)∼D

Mρ(x, y). (11)

and,

µ2(MDρ ) = E
(x,y)∼D

[
Mρ(x, y)

]2
= E

x∼DX
y2
[
E
v∼ρ

E
h∼Qv

h(xv)
]2

= E
x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)
]2
. (12)

According to this definition, the risk of the multiview weighted majority vote can be rewritten as follows:

RD(Bρ) = P
(x,y)∼D

(
Mρ(x, y) ≤ 0

)
.

Moreover, the risk of the multiview Gibbs classifier can be expressed thanks to the first statistical
moment of the margin. Note that in the binary setting where y ∈ {−1, 1} and h : X → {−1, 1}, we have
1[h(xv)6=y] = 1

2 (1− y h(xv)), and therefore

RD(Gρ) = E
(x,y)∼D

E
v∼ρ

E
h∼Qv

1[h(xv) 6=y]

=
1

2

(
1− E

(x,y)∼D
E
v∼ρ

E
h∼Qv

y h(xv)

)
(13)

=
1

2
(1− µ1(MDρ )) .

Similarly, the expected disagreement can be expressed thanks to the second statistical moment of the
margin by

dD(ρ) = E
x∼DX

E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv) 6=h′(xv′ )]
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=
1

2

(
1− E

x∼DX
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h∼Qv′

h(xv)× h′(xv
′
)

)
=

1

2

(
1− E

x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)
]
×
[

E
v′∼ρ

E
h′∼Qv′

h′(xv
′
)
])

=
1

2

(
1− E

x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)

]2)
(14)

=
1

2
(1− µ2(MDρ )) .

From above, we can easily deduce that 0 ≤ dD(ρ) ≤ 1/2 as 0 ≤ µ2(MDρ ) ≤ 1. Therefore, the variance of
the margin can be written as:

Var(MDρ ) = Var
(x,y)∼D

(Mρ(x, y))

= µ2(MDρ )− (µ1(MDρ ))2.
(15)

The proof of the C-bound
Proof. By making use of one-sided Chebyshev inequality (Theorem 5 of A), with X = −Mρ(x, y),
µ = E

(x,y)∼D
(Mρ(x, y)) and a = E

(x,y)∼D
Mρ(x, y), we have

RD(Bρ) = P
(x,y)∼D

(
Mρ(x, y) ≤ 0

)
= P

(x,y)∼D

(
−Mρ(x, y) + E

(x,y)∼D
Mρ(x, y) ≥ E

(x,y)∼D
Mρ(x, y)

)

≤
Var

(x,y)∼D
(Mρ(x, y))

Var
(x,y)∼D

(Mρ(x, y)) +

(
E

(x,y)∼D
Mρ(x, y)

)2

=
Var(MDρ )

µ2(MDρ )−
(
µ1(MDρ )

)2

+

(
µ1(MDρ )

)2

=
Var(MDρ )

µ2(MDρ )

=

µ2(MDρ )−
(
µ1(MDρ )

)2

µ2(MDρ )

= 1−

(
µ1(MDρ )

)2

µ2(MDρ )

= 1−

(
1− 2RD(Gρ)

)2

1− 2 dD(ρ)

C Proof of Lemma 2

We have

E
v∼ρ

E
h∼Qv

φ(h) = E
v∼ρ

E
h∼Qv

ln eφ(h)

= E
v∼ρ

E
h∼Qv

ln

(
Qv(h)

Pv(h)

Pv(h)

Qv(h)
eφ(h)

)
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= E
v∼ρ

[
E

h∼Qv
ln

(
Qv(h)

Pv(h)

)
+ E
h∼Qv

ln

(
Pv(h)

Qv(h)
eφ(h)

)]
.

According to the Kullback-Leibler definition, we have

E
v∼ρ

E
h∼Qv

φ(h) = E
v∼ρ

[
KL(Qv‖Pv) + E

h∼Qv
ln

(
Pv(h)

Qv(h)
eφ(h)

)]
.

By applying Jensen’s inequality (Theorem 4, in Appendix) on the concave function ln, we have

E
v∼ρ

E
h∼Qv

φ(h) ≤ E
v∼ρ

[
KL(Qv‖Pv) + ln

(
E

h∼Pv
eφ(h)

)]
= E

v∼ρ
KL(Qv‖Pv) + E

v∼ρ
ln

(
ρ(v)

π(v)

π(v)

ρ(v)
E

h∼Pv
eφ(h)

)
= E

v∼ρ
KL(Qv‖Pv) + KL(ρ‖π) + E

v∼ρ
ln

(
π(v)

ρ(v)
E

h∼Pv
eφ(h)

)
.

Finally, we apply again the Jensen inequality (Theorem 4) on ln to obtain the lemma.

D A Catoni-Like Theorem—Proof of Corollary 1

The result comes from Theorem 1 by taking D(a, b) = F(b)−Ca, for a convex F and C > 0, and by
upper-bounding E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h)). We consider RS(h) as a random variable following a

binomial distribution of n trials with a probability of success R(h). We have:

E
S∼(D)n

E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

= E
S∼(D)n

E
v∼π

E
h∼Pv

enF(RD(h)−C nRS(h))

= E
S∼(D)n

E
v∼π

E
h∼Pv

enF(RD(h))
n∑
k=0

Pr
S∼(D)n

(
RS(h)=

k

n

)
e−Ck

= E
S∼(D)n

E
v∼π

E
h∼Pv

enF(RD(h))
n∑
k=0

(
n
k

)
RD(h)k(1−RD(h))n−ke−Ck

= E
S∼(D)n

E
v∼π

E
h∼Pv

enF(RD(h))
(
RD(h) e−C+(1−RD(h))

)n
.

The corollary is obtained with F(p)=ln 1
(1−p[1−e−C ])

.
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