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Two Efficient Methods for Gas Distributive Network 
Calculation 

Dejan Brkić 

Ministry of Science and Technological Development, Beograd, Serbia 

Abstract:  Today, two very efficient methods for calculation of flow distribution per branches of a 

looped gas pipeline are available. Most common is improved Hardy Cross method, while the second 

one is so-called unified node-loop method. For a gas pipeline, gas flow rate through a pipe can be 

determined using Colebrook equation modified by AGA (American Gas Association) for calculation of 

friction factor accompanied with Darcy-Weisbach equation for pressure drop while second approach is 

using Renouard equation adopted for gas pipeline calculation. For the development of Renouard 

equation for gas pipelines some additional thermodynamic properties are involved in comparisons with 

Colebrook and Darcy-Weisbach model. These differences will be explained. Both equations, the 

Colebrook’s (accompanied with Darcy-Weisbach scheme) and Renouard’s will be used for calculation 

of flow through the pipes of one gas pipeline with eight closed loops which are formed by pipes. 

Consequently four different cases will be examined because the network is calculated using improved 

Hardy Cross method and unified node-loop method. Some remarks on optimization in this area of 

engineering also will be mentioned. 

Keywords:  Calculation methods, Flow rate equation, Hydraulic pipeline systems, Natural gas 

distribution systems, Pipeline networks. 

1. Introduction 
A pipeline network is a collection of elements 

such as pipes, compressors, pumps, valves, 

regulators, heaters, tanks, and reservoirs 

interconnected in a specific way. This article is 

focused on pipes. The behavior of the network is 

governed by two factors: (i) specific 

characteristics of the elements and (ii) how 

elements are connected together. Assumption is 

that pipes are connected in a smooth way, i.e. so 

called minor hydraulic loses are neglected. The 

difficulty to solve the turbulent flow problem in a 

single pipe lies in the fact that friction factor is a 

complex function of relative surface roughness 

and the Reynolds number. Since the value of 

hydraulic resistance depends on flow rate, problem 

of flow distribution per pipes in gas distributive 

looped pipelines have to be solved using some 

kind of iterative procedures. Similar situation is 

with electrical resistances when diode is in circuit. 

With common resistors in electrical circuits where 

the electrical resistances are not depends on the 

value of electrical current in a conduit, problem is 

linear and no iterative procedure has to be used. So 

problem of flow through single tube is already 

complex. Despite of it, very efficient procedures 

are available for solution of flow problem in a 

complex pipeline such as looped pipeline like 

natural gas distribution network is. 

Here has to be noted that in a municipal gas 

pipeline, natural gas can be treated as 

incompressible fluid (liquid) i.e. as water. Even 

under this circumstance, calculation of water 

pipelines cannot be literary copied and applied for 

calculation of gas pipelines. Assumption of gas 

incompressibility means that it is compressed and 

forced to convey through pipes, but inside the 

pipeline system pressure drop of already 

compressed gas is small and hence further changes 

in gas density can be neglected. This means that 

gas is compressible fluid in general, but inside a 

distribution pipeline where the pressure drops can 

be neglected, natural gas can be treated as 

incompressible fluid. This is main difference 

between liquid and incompressible flow. 

According to this, water flow in pipelines is liquid 

incompressible flow, while the gas flow is gaseous 

incompressible flow. Fact is that gas is actually 

compressed and hence that volume of gas is 

decreased and then such compressed volume of 

gas is conveying with constant density through gas 

distribution pipeline. Hence, mass of gas is 

constant, but volume is decreased while gas 

density is according to this, increased.  
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Operate pressure for distribution gas network is 

4·10
5
 Pa abs i.e. 3·10

5
 Pa gauge and accordingly 

volume of gas is decreased four times compared to 

volume of gas at normal conditions. Hence, 

velocity of gaseous fluids depends on the pressure 

in pipe since they are compressible (1): 
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2. Hydraulics frictions and gas flow 
rates in pipes 

Each pipe is connected to two nodes at its ends. In 

a pipe network system, pipes are the channels used 

to convey fluid from one location to another. The 

physical characteristics of a pipe include the 

length, inside diameter, roughness coefficient, and 

minor loss coefficients. The pipe roughness 

coefficient is associated with the pipe material and 

age. When fluid is conveyed through the pipe, 

hydraulic energy is lost due to the friction between 

the moving fluid and the stationary pipe surface. 

This friction loss is a major energy loss in pipe 

flow. Losses of energy or head (pressure) losses 

depend on the shape, size and roughness of a 

channel, the velocity density and viscosity of a 

fluid. 

Experiments show that in many cases pressure 

drop are approximately proportional to the square 

of the velocity (2): 
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Equation (2) is called the Darcy-Weisbach 

equation, named after Henry Darcy, a French 

engineer of the nineteenth century, and Julius 

Weisbach, a German mining engineer and the 

scientist of the same era. In previous equation 

velocity and gas density must be correlated, since 

the gas is incompressible fluid, and hence for gas 

is more suitable equation in next form (3) because 

Q·ρ=Qst·ρst: 
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Density of gas can be noted as (4): 
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Considering that gas density (4) at standard 

pressure conditions is equal as in average pressure 

in pipeline, general equation for steady-state flow 

of gas can be written (5) [1]: 
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Main parameter related to the hydraulic regime is 

Darcy’s friction factor (λ). Note that the Darcy 

friction factor is defined in theory as 

λ=(8·τ)/(ρ·v
2
). To predict whether flow will be 

laminar, hydraulically ‘smooth’, partially turbulent 

or fully turbulent, it is necessary to explore the 

characteristics of flow. Hydraulically ‘smooth’ 

regime is characteristic of flow through plastic, i.e. 

polyethylene pipes and it is also sort of turbulent 

regime. For the steel pipes, partially turbulent 

regime is most common. In considerations related 

to the hydraulic frictions has to be very careful 

because some of the authors use Darcy’s friction 

factor while the others use Fanning’s factor. The 

Darcy’s friction coefficient is four times larger 

than Fanning’s while the physical meaning is 

equal. Graphically, friction factor for known 

Reynolds number and relative roughness can be 

determined using well known Moody diagram. 

The Darcy friction factor and the Moody friction 

factor are synonyms. 

2.1. Gas flow through plastic pipes 

Inner surface of polyethylene pipes which are 

almost always used in gas distribution networks 

are practically smooth and hence flow regime in 

the typical network is hydraulically ‘smooth’. For 

this regime is suitable Renouard’s equation [2] 

adjusted for natural gas flow (6): 
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In Renouard’s formula flow rate is expressed for 

standard conditions of pressure and temperature. 

Renouard’s formula is adjusted for gas flow 

calculations in plastic pipes with no explicit 

determining of hydraulic resistances. This means 

that Darcy’s friction factor is not necessary to be 

calculated. This is accomplished by simplification 

of general steady-state flow equation for gaseous 

fluids (5). 

Using formulation for Darcy friction factor in 

hydraulically smooth region Renouard suggest his 

equation for liquid flow (7): 

18.0Re

172.0
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In Renoard’s equation adjusted for gas pipelines 

friction factor is rearranged in the way to be 

expressed using other flow parameters and also 

using some thermodynamic properties of natural 

gas. Using an absolute viscosity of µ=1.0757·10
-5

 

Pa·s, neglecting the potential energy term and 

assuming that temperature of natural gas is 

Tavr=Tst=288.15 K, pressure is pst=1.01325·10
5
 Pa 

and compressibility factor is Z=1, general steady-

state flow equation can be simplified as (8): 
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It must be stressed that in the development leading 

to this more simplified equation (8), Renouard 

used a constant value for city gas kinematic 

viscosity ν=2.2·10
-5

 m
2
/s. Note that kinematic gas 

viscosity (ν) and dynamic gas viscosity (µ) is 

connected using gas density (ρ). Relative density 

of typical natural gas is 0.64. Assumed flow 

temperature in Renouard’s equation is 15 ºC. This 

means that by fixing the value of gas cinematic 

viscosity, the density is also kept fixed, which is 

physically inaccurate when considering 

compressible gas flows at medium or high 

pressure, because the cinematic viscosity of gases 

is highly dependent upon pressure. Every time a 

gas with a cinematic viscosity different from the 

city gas is being used, a multiplying correction 

factor (ν/2.2·10
-5

 m
2
/s)

0.18
·must be applied in (6). 

This product multiplied with gas density is usually 

called the corrected density. Estimated error in 

calculation of the pressure differential by using (6) 

instead of (8) is no more than 9%. The use of (6) 

without the viscosity correction, although quite 

common in the daily practice, leads to an 

overestimation on the calculation of the pressure 

drop, as the quadratic pressure difference of C is 

about 6% to 9% higher than the value obtained 

through (8). 

Regarding to Renouard’s formula has to be careful 

since it does not relate pressure drop but actually 

difference of the quadratic pressure at the input 

and the output of pipe. This means that C  is not 

actually pressure drop in spite of the same unit of 

measurement is as used for the pressure (Pa). But, 

for gas pipeline calculation, fact that when C →0 

that consecutive means that also C→0 is very 

useful. Parameter C  can be noted as pseudo-

pressure drop. 

2.2. Gas flow through steel pipes 

For commercial steel pipes, Colebrook [3] showed 

the transition region of turbulence could be 

described by (9): 
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This empirical equation is developed using 

measurements conducted by Colebrook and White 

[4]. Colebrook equation also can be noted as (10): 
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Colebrook’s equation describes a monotonic 

change in the friction factor from smooth to fully 

rough (Figure 1).  

 

Fig. 1.  Colebrook relation make transitional curve 

among hydraulically “smooth” regime and 

turbulent rough regime 

It is also the basis for the widely used Moody 

diagram. Many researchers [1] adopt a 

modification of the Colebrook equation, using the 

2.825 constant instead of 2.51 especially for gas 

flow calculation (modified Colebrook in Figure 2). 

Colebrook’s equation for determination of 

hydraulic resistances is implicit in fluid flow 

friction factor and hence it has to be approximately 

solved using iterative procedure or using some of 

the approximate explicit formulas developed by 

many authors (Table 1). All presented 

approximations shown in Table 1 are very 

accurate. 



Table 1.  Explicit approximations to Colebrook relation. 

Relation Name 

  
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D62.1   Wood
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      9.09.0 Re25.21Dlog214.11Re74.5D7.3/1log21   Swamee and Jain 
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Zigrang and Sylvester 
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Monzón 

    1S/SS/Re4587.0ln8686.01 

    Re4587.0lnDRe124.0S 

 

Sonnad and Goudar 

      /18.21/Re/log21

    D32.11/41.1)Reln774.0( 
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Buzzelli [6] 

    D71.3/110log21 S4343.0  

      D7.3/1ReS18.2log21 

    Re1.11lnRe/1.1ln816.1Re/lnS 

 

Brkić [7] 

*also cover laminar regime 



Percentage error for iterative formulas shown in 

Table 1 is less than 3% over the entire domain of 

Reynolds number [5]. Exceptions are Moody, 

Wood, Eck and Round approximations (Figure 2). 

These four formulas should not be used. 

 

Fig. 2.  Distribution of error for most inaccurate 

approximations of the Colebrook’s equation 

While iterative computations are trivial in the 

context of current computing power, iterative 

estimation of friction factor can significantly 

increase the computational burden in complex 

piping network like here presented where multiple 

calculations are necessary. So, flow distribution 

problem in a complex looped gas pipeline has to 

be solved using an iterative procedure and further 

to be more complex, when Colebrook equation is 

used, additional iterative procedure for computing 

of friction pipe in every pipe has to be performed. 

Presented approximations (Table 1) are usually 

used in computer programs to avoid iterative 

scheme. But some computers codes continue to 

use Newton-Raphson iteration scheme for solving 

to the friction factor. For these methods, finding a 

good starting guess is often difficult.  

Initial guess and further solution can be very easily 

done using common software tools like MS Excel 

2007. Maximal number of iterations in MS Excel 

2007 is 32767. To solve for unknown friction 

factor λ, one must start by somehow estimating the 

value of friction factor on the right side of the 

equation, solve for the new friction factor on the 

left, enter the new value back on the right side, and 

continue this process until there is a balance on 

both sides of the equation within an arbitrary 

difference. This difference must be small without 

causing endless computations.  

Colebrook equation consists of two parts; first part 

is equal to zero in first iteration i.e. 2.51/(Re·λ)=0, 

but second part has value different than zero 

ε/(D·3.71)≠0, so estimation of the value in the 

first iteration is unnecessary. Initial value in the 

first iteration is ε/(D·3.71). Sometimes, effective 

solutions are too simple on a first sight, and Excel 

is ideal tool to solve this kind of problem. Excel 

allows value of accuracy much more than 0.01 

(maximal accuracy can be set to 0.0000001).  

To solve implicit Colebrook equation using Excel, 

‘Office button’ in the left corner at the top of the 

screen has to be pressed and then in ‘Excel 

options’ in sheet ‘Formulas’, box ‘Enable iterative 

calculation’ has to be marked. Finally maximum 

number of iterations (max. allowed is 32767) have 

to be chosen. Also maximal change allowed 

between two successive iterations has to be set. 

When the Darcy’s friction factor is finally 

calculated using Colebrook’s equation, it has to be 

put in general steady-state gas flow equation (5). 

3. Looped gas pipeline calculations 
All methods for looped gas pipeline calculations 

assume equilibrium among pressure and friction 

forces in steady and incompressible flow. As a 

result, they cannot be successfully used in 

unsteady and compressible flow calculations with 

large pressure drop where inertia force is 

important. Minor drop of pressure in the networks 

for gaseous fluid distribution enables to treat this 

fluid as incompressible, i.e. as water. Of course, 

some different approach must exist, but problem is 

not much different. Since, the resistances in 

hydraulic networks depend on flow, problem is not 

linear like in electric circuits, and iterative 

procedure must be used. 

To solve flow distribution problem in the looped 

pipeline shown in figure 3, maximal consumption 

for each node including one of more inlet nodes 

has to be determined. In figure 3 inlet nodes are 1 

(through pipe 20) and 5 (through pipe 21) with 

inlet rates shown also in Figure 3. Four outlet 

nodes also exist in the example network from 

Figure 3 and these nodes are 4, 6, 9 and 11. 

All other nodes are neither inlet nor outlet nodes. 

First assumed flows are chosen to satisfy first 



Kirchhoff’s law (11). Pipe diameters and node 

input and output cannot be changed during the 

iterative procedure. Goal is to find final flow 

distribution for pipeline system (Figure 3). Second 

Kirchhoff’s law has to be satisfied with demanded 

accuracy at the end of calculation (12), i.e. L{x}≈0. 

 

 

Fig. 3.  Example of looped gas distributive pipeline network 
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3.1. The improved Hardy Cross method 

Hardy Cross iterative method with its modification 

by Epp and Fowler [8] today is widely used for 

calculation of fluid flow through pipes or related 

pipe diameters in loops-like distribution networks 

of conduits with known node fluid consumptions. 

Original Hardy Cross method is a sort of single 

adjustment methods in which equations are treated 

one by one, while the improved version treats 

whole system of equations simultaneously. In both 

version of the Hardy Cross method, results of 

calculation per iterations is correction of flow ΔQ 

rather than flow Q (in optimization problem, 

results of calculation per iterations is correction of 

pipe diameter rather than diameter). These 

corrections (13) should be added to or subtracted 

from flow (or diameter in inverse problem) 

calculated in previous iteration using some kind of 

complex algebraic rules [9].  

These rules can be implemented in a MS Excel 

spreadsheet. Lack of space prevents here detail 

discussion on these rules. 

3.2. The node-loop method 

The node matrix with all nodes included is not 

linearly independent [10]. To obtain linear 

independence any row of the node matrix [N] has 

to be omitted (15). No information on the topology 

in that way will be lost. Node 12 will be noted as 

referential and hence will be virtually omitted 

from the calculation. For the node-loop method, 

matrix [V] (14) and the node-loop matrix [NL] are 

formed to unite both, the node matrix [N] (15) and 

the loop matrix [L] (16). First eleven rows in [NL] 

matrix are from the first Kirchhoff’s law (matrix 

[N]), and next eight rows are from the second 

Kirchhoff’s law (matrix [L]) where each term is 

multiplied with first derivative (for each pipe) of C 

where Q is treated as variable. 
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Now, unknown flows can be calculated 

directly using (17): 

[Q]=inv[NL]x[V],        (17) 

4. Optimization problem 
In previous text, flow distribution problem for e.g. 

plastic pipes is solved using (18): 
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In the problem of optimization of pipe diameters, 

flow is not any more treated as variable (19): 
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Of course, some other adaptations of previously 

shown methods should be done for optimization 

problem. As the diameters have to be chosen 

among a finite set of available nominal values, 

optimization problem is highly combinatorial. 

5. Conclusions 
Compared modified Hardy Cross method and the 

node loop method, taking as a criterion the number 

of iteration to achieve final results, both presented 

methods are equally good. For more complex 

networks, using the node-loop method, number of 

required iteration is smaller even compared with 

the modified Hardy Cross method. But main 

strength of the node-loop method lays in the fact 

that it does not require complex numerical scheme 

for algebraic addition of corrections in each of 

iterations. In the node-loop method, final results of 

each of the iterations are flows directly and not 

correction of flows. Both methods can be used for 

calculation of gas pipelines made with steel or 

plastic pipes using the appropriate equation 

according to discussion in this paper. 

Nomenclature 
p pressure, (Pa) 

L length of pipe, (m) 

D diameter of pipe, (m) 

Q flow (m
3
/s) 

T temperature (K) 

z gas compressibility factor (-) 

M relative molecular mass (-) 

R universal gas constant = 8314.41 J/(kmol∙K) 

Greek symbols 

ε inside pipe wall roughness (m) 

λ Darcy (Moody) friction factor or coefficient (-) 

ρ density (kg/m
3
) 

Subscripts and superscripts 

r relative 

st standard (Tst=288.15 K, pst=101325 Pa) 

in inner 
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