Predictive models can overcome reductionism in cognitive neuroimaging

Abstract : Understanding the organization of complex behavior as it relates to the brain requires modeling the behavior, the relevant mental processes, and the corresponding neural activity. Experiments in cognitive neuroscience typically study a psychological process via controlled manipulations, reducing behavior to one of its component. Such reductionism can easily lead to paradigm-bound theories. Predictive models can generalize brain-mind associations to arbitrary new tasks and stimuli. We argue that they are needed to broaden theories beyond specific paradigms. Predicting behavior from neural activity can support robust reverse inference, isolating brain structures that govern mental processes. The converse prediction enables modeling brain responses as a function of a complete description of the task, rather than building on oppositions.
Liste complète des métadonnées
Contributeur : Gaël Varoquaux <>
Soumis le : vendredi 10 août 2018 - 21:31:17
Dernière modification le : mercredi 15 août 2018 - 01:09:43
Document(s) archivé(s) le : dimanche 11 novembre 2018 - 13:27:32


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01856412, version 1


Gaël Varoquaux, Russell Poldrack. Predictive models can overcome reductionism in cognitive neuroimaging. 2018. 〈hal-01856412〉



Consultations de la notice


Téléchargements de fichiers