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Abstract

An insurer’s ability to accurately estimate the accumulation of risk, particularly in the right hand

tail, is vital in ensuring that his risk appetites matches his risk exposures. This paper, therefore,

focuses on the modeling of the extremal dependence structure between insurance risks using the

Generalized Pareto distribution and the copula technique. The results obtained after comparing the

dependence between large losses from two lines of business (motor and fire) of the Nigerian insurance

industry and two specific non-life insurance companies, indicates that the correlation coefficients vary

and is generally weak. With the aid of the archimedean copula, the analysis makes use of the data

pair exhibiting the highest correlation to draw particular attention to the importance of taking into

account the extremal dependence structure when quantifying the risk capital, allocating risk and when

estimating the net reinsurance premium under different reinsurance strategies.

Keywords: Tail dependent risks, Reinsurance treaties, Copulas, Economic capital, Stochastic simu-

lation, Extreme value.

1 Introduction

When we consider more than one extremal event of interest, it is most often not a true reflection of

reality to assume that the events are independent. Risk dependency can be seen between individual

risks within each insurance portfolio and across lines of business (LoB) (Gildas, 2016). According to

Li (2006), there are two broad sources of dependency between LoB - inherent dependency and other

dependency. The inherent dependency is driven by factors such as inflation, interest rate, exchange

rate, economic cycles and weather patterns. The other dependency arises as a result of the practices

implemented by the insurer across its various LoB. Similar reserving methods and claims management

procedures applied to different LoB are a few examples of such practices. Isaacs (2003) emphasizes

the need for the insurer to properly account for dependence between risks stating that it can lead

to inappropraite risk strategies as the insurer may be lulled to believe that he is less risky than he

actually is.

1Author: Lecturer at the University of Uyo, Department of Insurance, Nigeria. Currently a doctoral student in
financial mathematics at the Pan African University of Basic Sciences, Technology and Innovation Kenya.
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In this article, the tail dependence structure of large losses from the motor and fire insurance portfolios

are evaluated. Using the copula model, the aggregation of risks which is an important factor in the

determination of the capital requirement for both the insurer and the reinsurer, is addressed. The

reason for choosing the motor and fire portfolios stem from the fact that in Nigeria, cases exist where

truck tanks carrying flammable products, have collided with other cars leading to multiple motor

accidents and fire explosions. A recent example occured in Lagos at the Odetola bridge where over 50

vehicles were burnt including lives lost due to a fuel tanker that had rammed into another car, skidded

off the road, emptied its content on the ground and exploded (Ibrahim, 2018). Another event that

could lead to motor and fire risks being dependent is the act of terrorism especially in crisis-ridden

areas. There are situations were vehicles are shot at, some are battered and some are set ablaze. All

these lead to car crashes, people injuries and burns. Thus, there is the need to evaluate and model

the tail dependence structure of these losses in order to obtain more accurate inferences.

Using copulas, Frees and Valdez (1998) studied the dependence between liability insurance losses and

allocated loss adjustment expenses (ALAE). Varying the insurer's retention at different values, they

computed the reinsurance premium. Depuis and Jones (2006) used the same method and data to

model the dependence of the joint upper tail of the distribution. Simulated hurricane losses in two

U.S. states were investigated by Venter (2002). Belguise and Levi (2003) also made use of the copula

technique to model the tail dependence between automobile and fire insurance losses. Other authors

that have modelled the dependence between risk factors include Constantinescu et al.(2011), Denuit

et al. (2005) and Tang and Valdez (2006).

To the best of the author’s knowledge, there has been no study making use of African data that eval-

uates the extremal dependence structure of multiple lines of insurance claims and assesses its impact

on reinsurance premium. This is the first research work done in this regard.

The structure of the paper is as follows - important copula concepts are presented along with the basic

theory underlining the generalized Pareto distribution (GPD) in section 2. In section 3, the strength

of the dependence for the three data pairs of losses (motor and fire) are analyzed. Illustrating using

the motor and fire loss pair exhibiting the highest correlation, section 4 studies the impact of tail

dependence on risk capital quantification and risk allocation. With the aid of stochastic simulation,

section 5 focuses on estimating the net reinsurance premium under different reinsurance treaties in

the presence of dependent risks and in each case, compares the results with those obtained when the

risks are assumed to be independent. A summary of the analysis is presented in section 6 together

with pathways to related future ideas.

2 Extremes and Extremal Dependence

This section reviews some basic concepts underlying the GPD and copulas. Tail dependence and some

of the methods that can be used to estimate it are discussed. Then, the section is concluded with a

description of the selected techniques for the application.
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2.1 The Generalized Pareto distribution

This is one of the more common techniques used in the EVT field for correctly choosing the data that

lies in the extremes. Pickands (1975) developed the method.

Suppose X1, X2, ... is a sequence of independent random variables with common distribution function

F and

Mn = max{X1, X2, ..., Xn}

Then,

IP[Mn ≤ z] ≤ z → G(z) as n→∞

given that X = {Xi}ni=1 satisfies the generalized extreme value conditions.

G is a non-degenerate distribution function given as

G(z) = exp

{
−
(

1 + ξ

(
z − µ
σ

))−1
ξ

+

}

for some µ, σ > 0 and ξ. For a large enough u the distribution function of X conditional on X > u

can be approximated by

IP[X ≤ y|X > u]→ H(y) as u→∞

where

H(y) = 1−
(

1 + ξ
y − u
σu

)−1
ξ

+

y > u (2.1)

H(y) is the GPD with the modified scale parameter σu = σ+ ξ(u− µ) corresponding to the excess of

the threshold u. z+ = max(z, 0). For X > u we can set X = X − u and thus rewrite the equation as

IP[X ≤ y|X > u]→ H(u)(y) as u→∞

where

H(u)(y) = 1−
(

1 + ξ
y

σu

)−1
ξ

+

y > u

For all cases, the GPD is given as

IP(X < y|X > u) =

1−
{

1 + ξ
(
y−u
σu

)}−1
ξ

+
ξ 6= 0

1− exp
{
−y−u

σu

}
+

ξ = 0
(2.2)

2.2 The Concept of Tail Dependence

Generally, dependence between two random variables X and Y , imply that there is some kind of

relationship between the variables. This implies that when we have information on X we can say

something about the Y variable. Specifically, tail dependence focuses on the likelihood of one extreme
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event or a series of extreme events giving rise to another extreme event. Hence, according to Shaw et

al. (2012), we are able to model the dependency between risks conditional on the underlying values of

the risks themselves. Given that dependencies create riskier worlds, it is important to understand how

the changes in an economy affect the dependency structure of risks and by extension, the economic

capital of a firm. This will help in the evaluation of the amount of loss we may experience under very

bad economic conditions versus under normal conditions.

Tail Dependence Coefficient (TDC)

This is a copula-based parameter developed by Ledford and Tawn (1996) which is defined as the

probability that one risk variable Xi takes an extreme value assuming that another risk variable Xj

also takes on an extreme value at the same probability level. Given the two dimensional random vector

(Xi, Xj) with marginal distribution functions Fi and Fj , then the coefficient of upper tail dependence

λu and lower tail dependence λl of (Xi, Xj) respectively are:

λu = lim
u↓1

IP(Xi > F−1i (u)|Xj > F−1j (u))

λl = lim
u↓0

IP(Xi < F−1i (u)|Xj < F−1j (u)) (3)

provided that the limit exists in both cases. F−1i (u) and F−1j (u) are the quantiles of risks Xi and Xj

at level u. If C is the copula of (Xi, Xj) and C̄ is the survival copula, we can represent λu and λl in

terms of the copula function.

λu = lim
u↓1

C̄(u, u)

1− u
= lim

u↓1

1− 2u+ C(u, u)

1− u

λl = lim
u↓1

C(u, u)

u
(4)

Therefore, in general, we would have to use copulas with a higher tail dependence parameter if the

variables are a lot more dependent than in a normal situation.

2.2.1 Measures of Tail Dependence

Traditionally, the linear (Pearson) correlation coefficient is used to describe the dependence between

risks. Shaw et. al. (2012) argue that this measure falls short when we want to measure tail dependence

because it does not represent all the possible relationships between risks. Moreover there is the need

to understand the nature of the dependence structure. Other drawbacks of the Pearson correlation

coefficient include the fact that it measures linear dependence and the assumption that must be

satisfied by the random variables i.e. normally distributed. The Spearman rho and Kendall tau

measures are better than the Pearson. More accurate measures have been developed to model tail

dependence and compute the tail dependence coefficient.

Copulas
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A copula C is a joint distribution function of standard uniform random variables

C(u1, ..., un) = IP{U1 ≤ u1, ..., Ud ≤ un} (5)

where Ui = U(0, 1) for i = 1, ..., n. Copulas allow one to characterize the dependence structure of a

set of random variables separately from the marginal distributions.

Sklars theorem: This theorem forms the foundation for the use and application of copulas. Let

F be the joint distribution function of the random variables X1, ..., Xn with continuous marginal

distribution functions F1(x1), .., Fn(xn). Then, there exists a unique copula function C given by

C(u1, ..., un) = F (x1, ..., xn) = F (F−11 (u1), ..., F
−1
n (un))

The quantile function F−1i is defined by F−1i (u) = inf{x : Fi(x) ≥ u}. Furthermore, the survival

copula denoted as C̄ is defined as,

IP{X1 > x1, ..., Xn > xn} = C̄(IP{X1 > x1}, ..., IP{Xn > xn})

.

In this study we will focus on the bivariate case. Thus for two random variables X1 and X2, the

copula is a parameterization of the joint cumulative distribution function

F (X1, X2) = IP(X1 ≤ x1, X2 ≤ x2) = C(F1(x1), F2(x2))

and the survival function can be expressed as

C̄(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2)

It should be noted that C̄ is also a copula. It can also be used to model the dependence structure of

two or more random variables. In this case it is termed the 'associated' copula. In general, though

copulas are used to model the dependence structure of the whole distribution, it is also used to model

tail dependence. The Archimedean and EV copulas are useful in this regard.

Families of copulas

i. Elliptical copulas

This family consists of the bivariate normal and bivariate t copulas. The formula for the bivariate

normal copula is

C(u1, u2) = Φρ(Φ
−1(u1),Φ

−1(u2)) (6)

Where Φρ is the standard normal distribution function for the bivariate case, having linear correlation
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ρ. Φ−1 is the inverse of the standard normal distribution function.

ii. The Archimedean copulas

This family of copulas is very useful when modeling tail dependence on one side, for instance, the

upper tail dependence. The general representation is given by

C(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)) (7)

The generator, ϕ : (0, 1] → [0,∞) is a strictly decreasing convex function with ϕ(1) = 0. We assume

that ϕ−1(t) = 0 for all t ≥ limu↓0ϕ(u). Some well-known copulas in this family are the Clayton,

Gumbel and Frank copulas.

iii. Extreme value copulas

For an independent and identically disributed (iid) sequence of random variables, the bivariate extreme

value (BEV) copula come into play when we focus on the limit distribution of linearly normalized

component wise maxima. It is represented by the formula:

C(u1, u2) = exp

{
−V

(
−1

log u1
,
−1

log u2

)}
(8)

where

V (x, y) =

∫ 1

0
max

{
w

x
,
1− w
y

}
2dH(w)

H is a distribution function with support in [0, 1] and mean 1
2 .

The main limitation with the BEV copulas is that it cannot capture dependence structures that exhibit

dependence at extreme values but independence in the limit (Depuis and Jones, 2006).

For an in-depth review on copulas see Frees and Valdez (1998) and Embrechts et.al. (2003)

Archimedean copulas for insurance claims

The most common Archimedean copulas are employed to compute the extremal dependence between

two classes of insurance claims- auto and fire. That is, it is assumed that the portfolio is made up of

these two classes of risks. The Archimedean copulas are used because we are particularly interested

in understanding the dependence structure of two random variables in one region i.e. the joint upper

tail. We will compare the results obtained with that from theindependence assumption to highlight

the importance of incorporating tail dependence when modeling dependent insurance losses.

Clayton copula:

C(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1
θ

θ > 0 and the generator is ϕ(t) = t−θ − 1

Gumbel copula:

C(u1, u2) = exp

{
−
(

(−lnu1)θ + (−lnu2)θ
) 1
θ

}
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θ ≥ 1 and the generator is ϕ(t) = (−logt)θ

Frank copula:

C(u1, u2) =
1

θ
log

(
1 +

(eθu1 − 1)(eθu2 − 1)

eθ − 1

)

−∞ < θ <∞ and the generator is ϕ(t) = log e
θt−1
eθ−1

In this paper, only the Clayton and Gumbel copulas are used in the example.

2.3 Aggregation of risks

Two random variables Xi ∼ Fi i = 1, 2 are considered. Fi = F , the marginal distribution function,

is known. In this case, it is the GPD. Xi represents seperate classes of business that are correlated. If

we set X1 as X and X2 as Y the the aggregate homogenous portfolio is given as

S = X + Y

The joint distribution of (X,Y ) is also specified. Thus we can uniquely determine the risk measures

of the aggregate portfolio.

2.3.1 Reinsurance premiums

The XL reinsurance, stop loss (SL) reinsurance and a mix of both reinsurances are considered in this

study. The XL reinsurance is represented as

XL = IE

{
n∑
i=1

[(Xi + Yi)− r]

}

while stop loss is given as

SL = IE

{
[
n∑
i=1

(Xi + Yi)− r]

}
where r > 0 is the retention level. Xi and Yi represent motor and fire losses respectively.

2.4 Risk measures

To ensure that a firm continues operating under a worst-case scenario, the economic capital is the

amount of capital that the firm must hold. A common way to determine this is by estimating the

VaR at a remote probability. Other risk metrics that can be used to determine the economic capital

include tail VaR (TVaR), excess TVaR (XTVaR) and expected policyholder (EPD).

TV aR = IE[X|X ≥ VaR] =

∫∞
p xf(x)dx

1− p
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Closely-related to TVaR is XTVaR given as TVaR minus the mean. In this case we assume that the

mean is already financed by some other funding, thus we only need capital for the losses that exceed

the mean.

Assuming the capital is set at VaR, EPD is then defined as the expected value of defaulted losses.

That is,

EPD = (TVaR−VaR)(1− p)

EPD estimate is of importance to the policyholder because the policyholder is expected to bear the

amount of loss in the situation where the insurer defaults on payment.

3 Bivariate Analysis

Data is obtained from Nigerian Insurance Commission (NAICOM 2013, 2014, 2015 and 2016) available

at www.naicom.gov.ng. The large claims (3.5 million naira and above) are considered for years 2013

to 2016. First, the correlation between the individual losses for the industry-wide data and data from

the Custodian and American International Insurance Company Limited (AIICO) are evaluated. Then,

the pair with the highest correlation is used for illustrative purposes.

3.1 Nonlinear correlations

The dependence between motor and fire losses for the Nigerian insurance industry is positive but lower

than that of AIICO, while that of the Custodian insurer is negative. The dependence structure varies

from negative to positive correlations although the dependence is generally weak.

Table 1: Kendall tau and Spearman rho
Motor and fire claims kendall tau Spearman rho

Industry-wide data 0.044 0.0662
Custodian -0.054 -0.0838

AIICO 0.124 0.122

3.2 Illustrative example

Amongst the selected insurers, the losses from AIICO exhibits the highest correlation (table 1). Thus

it is used to illustrate the impact of dependency on some quantities that are of interest to the insurer.

The four year data is made up of 132 losses for each risk.

The rank transform plot (figure 1) displays a distinct lack of data points in the upper-left (especially)

and lower-right corners of the plot, although a general weak dependence can be observed. This

indicates that the probability of a small fire claim accompanying a large motor claim and vice versa

is low. In other words , the likelihood is higher for large losses or quantiles of motor to follow large

losses or quantiles of fire and vice versa.

From the mep (figure 2), it can be seen that the same threshold of 4e6 is an appropraite threshold for
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Table 2: Descriptive statistics for AIICO’s individual losses
Industry data motor fire

Min. 3247500 42601
1st Qu 4050000 5050086

Median 4631500 7957982
Mean 5599483 18099085

3rd Qu. 5913000 15465777
Max. 51810400 345156235

AIICO

Min. 3247500 3509775
1st Qu. 4041112 5801860
Median 4569500 9674585

Mean 5206237 23048856
3rd Qu. 5636156 27801345

Max. 14073345 152991576

 

 Figure 1: Scatterplot of AIICO log claims (left) and rank transformed data(right)

the individual losses. The GPD is fitted at this threshold and the model adequacy is confirmed by

the goodness of fit (gof) plots (figure 2).

        
Figure 2: Left: Mean excess plot for motor (up) and fire (down). Center and right respectively: gof
tests for motor and fire.
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Two bivariate distributions are created using the GPD parameters (table 3) and each of the selected

copulas, then data is simulated from the distributions.

Table 3: GPD parameters
scale shape

motor 1.158340e6 0.318
fire 8.307612e6 0.759

3.2.1 Estimating the parameters of the bivariate distribution

Two methods are used to estimate the bivariate distribution - Maximum likelihood estimation (MLE)

and Inference for margins (IFM). The estimated Clayton and Gumbel parameters with their respective

standard errors are 0.285 (0.004) and 1.14282 (0.013).

Table 4: MLE and IFM estimation methods
Parameters motor fire

scale shape scale shape Clayton Gumbel

MLE 1.158e6 0.3028 (0.03) 8.308e6 0.7434(0.01) 0.2098 (0.004)
1.158e6 0.3103(0.03) 8.308e6 0.7800(0.05) 1.162 (0.013)

IFM 1.649e6 0.1444(0.03) 2.776e7 0.3.417(0.04) 0.2856
1.670e6 0.1563(0.03) 3.361e7 0.3172(0.04) 1.143

For both the MLE and IFM rows in each case, the first line involves the Clayton copula while the

second line is when the Gumbel is applied. The results indicate that the choice of the dependency

structure plays an important part in the estimation of the bivariate distribution parameters. Though

the values are similar under the MLE, there is a noticeable difference in the case of the IFM method.

4 Quantifying Risk Capital and Allocating Risk

The first six (of a thousand) entries of the simulated data used in each case (dependent and inde-

pendent) to quantify the risk capital, allocate risk and compute the reinsurance premium is shown in

tables 5 and 6. Aggregate losses in each line follows a GPD with the parameters given by the MLE

estimated parameters. For the dependent case, the Clayton and Gumbel copulas are included in the

model while the independence assumption is replicated by simply removing the copula dependency

structure from the model.

Table 5: Simulated data for the independent case
sim number motor loss fire loss aggregate portfolio loss

1 5771942 22318941 28090883
2 4286236 9309488 13595724
3 5198114 36983903 42182017
4 4147002 5399101 9546103
5 4071796 5461946 9533742
6 10088735 12223174 22311909
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Table 6: Simulated data for the dependent case (Clayton)
sim number motor loss fire loss aggregate portfolio loss

1 4414760 6749374 11164134
2 6326208 17286991 23613199
3 4663138 5707404 10370542
4 7565872 47799368 55365241
5 9294422 46886811 56181233
6 4054413 7178607 11233020

 

 
Figure 3: Density function of the aggregate losses: independent (left) and dependent (right) cases

The density plots for the both the independent and dependent (Clayton) cases look very much alike

except at the tails. A noticeable difference can be seen at the points where the arrow is ponting

at. The density function at this point is smoother with a slight bulge for the dependent case than

that of the independent case which exhibits a slightly roughened edge. This is clearly depicted in the

histograms below.

   

 

Figure 4: Histograms of the aggregate losses: independent (left) and dependent (right) cases
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Table 7: Risk capital for total risk
Indep 97% 99% 99.5%

VaR 156,678,722 291,569,402 575,659,669
TVaR 377,052,095 706,533,031 959,021,998

XTVaR 340,661,947 670,142,883 922,631,851
EPD 6,611,201 4,149,636 1,916,812

Dep (Clayton)

VaR 153,178,320 483,822,375 605,701,183
TVaR 448,168,109 772,008,670 984,129,772

XTVaR 410,753,821 734,594,381 946,715,483
EPD 8,849,694 2,881,863 1,892,143

Dep (Gumbel)

VaR 167,138,545 349,112,469 633,809,791
TVaR 588,770,049 1,272,882,384 2,122,309,339

XTVaR 545,484,629 1,229,596,964 2,079,023,919
EPD 12,648,945 9,237,699 7,442,498

Indep means independence, Dep means Dependence.

Table 8: Risk capital for individual risk
97% 99% 99.5%

Indep

VaR(motor) 11,071,264 16,566,065 21,289,669
VaR(fire ) 152,545,832 286,563,060 571,014,146

Dep (Clayton)

VaR(motor) 11,362,522 15,698,533 17,976,197
VaR(fire) 145,111,384 474,897,549 595,986,491

The VaR, TVaR, XTVaR and EPD risk measures are evaluated (table 7). It is observed that when

the tail dependence structure is quantified using the Gumbel copula, the risk measure estimates are

all higher than in the case of the independence assumption . For the case of the Clayton copula, it

is also generally higher for all other risk measures with the exception of the EPD risk is lower for for

extreme quantiles when compared to the case of independence. In literature it has been shown that

dependence among LoB increases the risk of the aggregate portfolio (see Cerchiara and Acri, 2016;

Arachi and Belkacem, 2014). This is confirmed by the Clayton (V aR0.97 being an exception) and

Gumbel copulas. Overall, less capital will be reserved when dependence is disregarded and this can

lead to unanticipated solvency problems for the insurer. Another observation is that the VaR of the

aggregate portfolio differs (is lower) from that of the sum of the individual losses and the difference

widens at higher quantiles (table 8).

As an example, TVaR is allocated among LoB, given that it is a more useful risk measure than VaR

(see Embrechts et al. 2014). The proportion of risk allocated to motor is computed using the simple

formula
TV aRα(motor)

TV aRα(motor) + TV aRα(fire)

Fire is calculated in a similar way or we simply subtract allocation for motor loss from one.
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Table 9: Risk allocation for motor loss
97% 99% 99.5%

Indep 0.466 0.547 0.560
Dep (Clayton) 0.220 0.230 0.174
Dep (Gumbel) 0.062 0.035 0.023

Allocating risk to different LoB is very useful to the insurer as it helps him to be able to set capacity

controls, for example, premium targets and limits for each business unit. It also enables him to allocate

capital that is in proportion to the specified risk measure. If independence between the loss variables

is assumed when losses are actually correlated, the insurer will be led by this wrong assumption to

allocate much more capital to motor claims instead of fire claims since the result indicates that the

motor claims carry more weight when independence is assumed (table 9). In addition, an increasing

trend can be noticed under the independence hypothesis while a decreasing trend is observed when

tail dependence is accounted for. The choice of copula also affects the value of the estimate of the

allocated risk.

5 Premium Valuation

In this section, 4 possible reinsurance treaties are considered under both the dependence and inde-

pendence assumptions. They are as follows:

Option 1 No reinsurance treaty.

Option 2 Individual XL for each loss exceeding the specified layers.

Option 3 Mixed reinsurance treaty. Two cases are considered.

Case 1 - motor has proportional treaty covering 70% of the specified layers while fire has an

aggregate XL treaty covering same layers.

Case 2 - fire has proportional treaty covering 70% of the specified layers while motor has an

aggregate XL treaty covering same layers.

Option 4 Stop loss reinsurance covering the whole portfolio at the specified layers.

Only limited covers are considered for the three different layers in options 2 to 4. The layers represent

millions of naira. The stability of the result is quantified using standard error (SE) which can be seen

in the braces.

Table 10: No reinsurance (option 1)
Option 1

Indep 36,390,148 (87,405,034)
Dep (Clayton) 37,414,289 (92,627,942)
Dep (Gumbel) 43,285,420 (187,224,002)

The impact of the choice of copula is made visible from the results displayed on table 11. In general,

when the independent case is compared to dependent case, the difference between the reinsurance

premium estimates in each case is not much. Additionally, if the dependence structure is specified
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Table 11: Net reinsurance premium (options 2-4)
Layer Option 2 Option 3 Option 4

Indep Case 1 Case 2

(30,50] 6,593,135 (14,933,221) 3,034,150 ( 6,785,407) 2,135,168 (4,762,575) 3,596,699 (7,166,243)
(50,100] 6,517,077 (21,618,930) 3,893,501 (12,398,693) 2,725,451 (8,679,085) 4,270,730 (12,842,469)
(100,150] 4,362,486 (21,850,155) 2,111,541 (9,595,674) 1,478,079 (6,716,972) 2,246,347 (9,838,489)

Dep (Clayton)

(30,50] 6,119,219 (14,255,698) 2,780,838 (6,423,849) 1,951,207 (4,501,630) 3,449,149 (6,983,800)
(50,100] 5,830,142 (20,458,000) 3,541,165 (12,027,183) 2,478,815 (8,419,028) 3,904,381 (12,468,506)
(100,150] 4,430,890 (23,603,272) 1,794,449 (8,998,193) 1,256,114 (6,298,735) 1,925,761 (9,238,512)

Dep (Gumbel)

(30,50] 6,898,429 (15,240,266) 3,082,984 (6,860,976) 2,170,264 ( 4,865,177) 3,723,200 (7,182,894)
(50,100] 6,980,472 (2,2440,949) 4,071,847 (12,643,110) 2,852,225 (8,857,816) 4,532,361 (13,185,444)
(100,150] 4,968,324 (23,662,251) 2,297,074 (10,016,701) 1,607,952 (7,011,691) 2,448,111 (10,339,137)

using the Gumbel copula the reinsurance net premium is higher than in the clayton example. The SE

also follows the same trend. For option 3, case 2 reports a lower net premium and SE than case 1.

The reinsurance net premiums across the options indicate that option 3 case 2 gives the insurer the

opportunity to pay the lowest premium along with the lowest SE while the highest premium to be paid

occurs when option 2 is chosen. In a situation where the insurer decides not to take up reinsurance,

the uncertainty associated with the mean aggregate claim shoots up (table 10).

A suprising find is observed under the mixed treaties and stop loss reinsurance (both independent

and dependent assumptions). Here, the layer (30,50] is generally lower than the (50,100] layer with

a much higher SE. This does not fall in line with the known fact which is, the higher the retention

layer, the lower the reinsurance premium. This fact is only broadly confirmed under the individual

XL reinsurance structure.

Eling and Toplek (2009) performed a similar analysis where they integrated several copula models

and reinsurance contracts. Their simulation study revealed large differences in risk assessment under

different copulas and reinsurance treaties. A similar situation is noted in this paper. Although the

introduction of nonlinear dependencies led to a higher number of large losses in their analysis for all

copulas when compared to the independent case, the situation differs a bit in this study given that

both higher and lower losses are experienced when different copulas are employed. A point of note

is that they focus on the expected gain of the insurer under the different reinsurance contracts while

the focus here is on the expected losses above specified retention levels. Dhane and Goovearts (1996)

showed that stop loss premium is higher when dependence is accounted for than under the indepen-

dence assumption. In this study, the situation depends on the selected dependence structure.

Gildas (2016) studied loss ALAE claims and generally noted that the portfolio is less risky when inde-

pendence is assumed. This find is confirmed true for a portfolio incorporating option 1 in this research

(table 10). An interesting point raised in his study was that as the retention level is increased, the

reinsurance premium for the XL treaty under different copula models tend to the estimates obtained

under the independent assumption and that of the stop loss reinsurance deviates more from the in-

dependence results as deductible increases. In contrast, the result here shows that the reinsurance

premiums under the copula models are much closer to the independent estimates when the lowest

retention level is considered (table 11).
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6 Conclusion

A homogenous portfolio consisting of the aggregate bivariate losses from the Nigerian insurance sector

was analyzed. The techniques employed were GPD and copulas. This paper showcased the impact

of tail dependence on risk measures, risk allocation and reinsurance net premium. When losses are

correlated, the value of the risk measure is increased and risk allocation is also affected. The choice

of copulas also plays a major role as we can see reinsurance premium generally being lower than (in

the case of the Clayton copula) and higher (in the case of the Gumbel copula) than the reinsurance

premium obtained under the independent hypothesis.

A related problem would be to look at the inhomogeneous case where the Fi's are not necessarily the

same. Another subject of investigation is dependence uncertainty which is a situation whereby the

marginal distributions are fixed and known but the joint model is unspecified.
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