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Abstract

This paper considers nonparametric density estimation with directional data. A new rule is proposed for bandwidth
selection for kernel density estimation. The procedure is automatic, fully data-driven, and adaptive to the degree of
smoothness of the density. An oracle inequality and optimal rates of convergence for the L2 error are derived. These
theoretical results are illustrated with simulations.
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1. Introduction

Directional data arise in many fields such as wind direction for the circular case, and astrophysics, paleomag-
netism, geology for the spherical case. Many efforts have been made to devise statistical methods to tackle the density
estimation problem. We refer to [19] and more recently to [18] for a comprehensive review. Nonparametric procedures
have been well developed.

In this article we focus on kernel density estimation. Various works [3, 11] have used projection methods on
localized bases adapted to the sphere. Classical references for kernel density estimation with directional data include
the seminal papers [2, 9]. It is well known that the choice of the bandwidth is a key and intricate issue when using
kernel methods. In practice, various techniques for selecting the bandwidth have been suggested since the popular
cross-validation rule in [9]. Let us mention the plug-in and refined cross-validatory methods in [21, 24] for the circular
case, and [5] on the torus.

Recently, Garcı́a-Portugués [6] devised an equivalent of the rule-of-thumb of [23] for directional data, and Amiri
et al. [1] explored computational problems with recursive kernel estimators based on the cross-validation procedure
of [9]. To the best of our knowledge, however, the various rules that have been proposed so far for selecting the
bandwidth in practice have not been assessed from a theoretical point of view. In particular, there are no results
proving that cross-validation is adaptively rate-optimal, even in the linear case. From a theoretical point of view,
Klemelä [12] studied convergence rates for L2 error over some regularity classes. Unfortunately, the asymptotically
optimal bandwidth in [12] depends on the density and its degree of smoothness, which is infeasible in practice.

In the linear case, kernel bandwidth selection rules have been proposed, leading to adaptive estimators which
attain optimal rates of convergence. By adaptive we mean that the estimator is adaptive to the degree of smoothness
of the underlying density: the method does not require the specification of the regularity of the density. In this regard,
we may cite the remarkable series of papers [8, 15, 16] and the recent work of Lacour et al. [14]. The drawback of
the methods in [8, 15, 16] is that they involve tuning parameters. It is well known that in nonparametric statistics,
minimax and oracle theoretical results rarely give optimal choices for tuning parameters from a practical point of view
with very conservative choices. The major interest of the procedure in [14] is that it is free of tuning parameters, which
constitutes a great advantage in practice. The approach in [14] called PCO (Penalized Comparison of Overfitting) is
based on concentration inequalities for U-statistics.
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In the present paper, we aim at filling the gap between theory and practice in the directional kernel density estima-
tion literature. Our goal is to construct a fully data-driven bandwidth selection rule providing an adaptive estimator
which reaches minimax rates of convergence for L2 risk over some regularity classes. This motivates our choice to
adapt the method of Lacour et al. [14] to the directional setting. Our procedure is simple to implement and in examples
based on simulations, it shows quite good performances in a reasonable computation time.

This paper is organized as follows. In Section 2, we present our estimation procedure. In Section 3 we provide an
oracle inequality and rates of convergences of our estimator for the MISE (Mean Integrated Squared Error). Section 4
gives some numerical illustrations. Section 5 gives the proofs of theorems. Finally, the Appendix gathers technical
propositions and lemmas.

The following notation is used throughout. For two integers a, b, we denote a∧b = min(a, b) and a∨b = max(a, b).
For arbitrary y ∈ R, byc denotes the integer part of y. Depending on the context, ‖ · ‖ denotes the classical L2 norm
on R or Sd−1. For any integer d ≥ 2, we denote the unit sphere of Rd by Sd−1 = {x ∈ Rd : x2

1 + · · · + x2
d = 1} and the

associated scalar product by 〈·, ·〉. For a vector x ∈ Rd, ‖x‖ stands for the Euclidean norm on Rd while ‖ · ‖∞ is the
usual L∞-norm on Sd−1. Finally, the scalar product of two vectors x and y, is denoted by x>y, where > is the transpose
operator.

2. Estimation procedure

We are given n mutually independent and identically distributed observations X1, . . . , Xn on Sd−1 for some integer
d ≥ 2. The Xis are absolutely continuous with respect to the Lebesgue measure ωd on Sd−1 with common density f .
Therefore, a directional density f satisfies ∫

Sd−1
f (x)ωd(dx) = 1.

We aim at constructing an adaptive kernel estimator of the density f with a fully data-driven choice of bandwidth.

2.1. Directional approximation kernel

We present some classical conditions that are required for the kernel.

Assumption 1. The kernel K : [0,∞)→ [0,∞) is a bounded and Riemann integrable function such that

0 <
∫ ∞

0
x(d−3)/2K(x)dx < ∞.

Assumption 1 is usual in kernel density estimation with directional data; see, e.g., Assumptions D1–D3 in [7] and
Assumption A1 in [1]. An example of kernel which satisfies Assumption 1 is the popular von Mises kernel K(x) = e−x.

2.2. Family of directional kernel estimators

We consider the following standard directional kernel density estimator
(
Kh(x, y) = K

{
(1 − x>y)/h

})
. For all x ∈

Sd−1,

f̂h(x) =
c0(h)

n

n∑
i=1

K
(

1 − x>Xi

h2

)
=

c0(h)
n

n∑
i=1

Kh2 (x, Xi) ,

where K is a kernel satisfying Assumption 1 and c0(h) a normalizing constant such that f̂h(x) integrates to unity:

c−1
0 (h) =

∫
Sd−1

Kh2 (x, y)ωd(dy).

It remains to select a convenient value for the bandwidth h.
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Remark 1. Note that c0(h) does not depend on x. The “tangent-normal” decomposition (see [19]) says that if y
is a vector and x a fixed element of Sd−1, then denoting t = x>y their scalar product, we may always write y =

tx + (1 − t2)1/2ξ, where ξ is a unit vector orthogonal to x. Further, the area element on Sd−1 can be written as

ωd(dx) = (1 − t2)(d−3)/2dt ωd−1(dξ).

Thus, using these conventions, one obtains

c−1
0 (h) =

∫
Sd−1

K
(

1 − x>y
h2

)
ωd(dy)

=

∫
Sd−2

∫ 1

−1
K

[
1 − x>{tx + (1 − t2)1/2ξ}

h2

]
(1 − t2)(d−3)/2dt ωd−1(dξ)

=

∫
Sd−2

ωd−1(dξ)
∫ 1

−1
K

(
1 − tx>x

h2

)
(1 − t2)(d−3)/2dt

= σd−2

∫ 1

−1
K

(
1 − t
h2

)
(1 − t2)(d−3)/2dt,

where σd−1 = ωd(Sd−1) denotes the area of Sd−1. We recall that σd−1 = (2πd/2)/Γ(d/2) with Γ the Gamma function.

2.3. Bandwidth selection

In kernel density estimation, a delicate step consists in selecting the proper bandwidth h for f̂h. We present our
data-driven choice of bandwidth ĥ inspired from [14]. We name our procedure SPCO (Spherical Penalized Compari-
son to Overfitting). Consider a setH of bandwidths defined by

H =

h :
{
‖K‖∞

n
1

R0(K)

}1/(d−1)

≤ h ≤ 1, and 1/h is an integer

 , (1)

with R0(K) = 2(d−3)/2σd−2
∫ ∞

0 x(d−3)/2K(x)dx. We obtain the selected bandwidth by setting, for λ ∈ R,

ĥ = argmin h∈H {‖ f̂h − f̂hmin‖
2 + penλ(h)}, (2)

where hmin = minH and the penalty term penλ(h) is defined, for h ∈ H , as

penλ(h) =
λc2

0(h)c2(h)
n

−
1
n

∫
Sd−1
{c0(hmin)Kh2

min
(x, y) − c0(h)Kh2 (x, y)}2ωd(dy), (3)

with c2(h) =
∫
Sd−1 K2

h2 (x, y)ωd(dy).

Our SPCO estimator of f is f̂ĥ. The procedure SPCO involves a real parameter λ. In Section 3, we study how to
choose the optimal value of λ leading to a fully data-driven procedure.

Remark 2. Let us give some explanations about the terms involved in the expression of the selection rule (2). One
can decompose the risk E‖ f − f̂h‖2 with the classical bias-variance decomposition. Hence, heuristically, the idea is
to find the best bandwidth h minimizing an estimate of the bias-variance decomposition of the risk. Developing the
quantity

‖ f̂h − f̂hmin‖
2 −

1
n

∫
Sd−1
{c0(hmin)Kh2

min
(x, y) − c0(h)Kh2 (x, y)}2ωd(dy),

one realizes that it is in fact an estimator of the bias. Since the variance is bounded by c2
0(h)c2(h)/n, the term

λc2
0(h)c2(h)/n acts as an estimator of the variance term. For more details, see Section 3.1 in [14].
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Note that again c2(h) and penλ(h) do not depend on x using Remark 1. Indeed, similar computations lead to

c2(h) = σd−2

∫ 1

−1
K2

(
1 − t
h2

)
(1 − t2)(d−3)/2dt,

and

penλ(h) =
λc2

0(h)c2(h)
n

−
σd−2

n

∫ 1

−1

c0(hmin)K
1 − t

h2
min

 − c0(h)K
(

1 − t
h2

)
2

(1 − t2)(d−3)/2dt.

3. Rates of convergence

3.1. Oracle inequality
First, we state an oracle-type inequality which highlights the bias-variance decomposition of the L2 risk when

λ > 0. In what follows, |H| denotes the cardinality of the setH . We denote fh = E( f̂h).

Theorem 1. Assume that the kernel K satisfies Assumption 1 and ‖ f ‖∞ < ∞. Let x ≥ 1 and ε ∈ (0, 1). Then there
exists n0 independent of f such that, for n ≥ n0, with probability larger than 1 −C1|H|e−x,

‖ f̂ĥ − f ‖2 ≤ C0(ε, λ) min
h∈H
‖ f̂h − f ‖2 + C2(ε, λ)‖ fhmin − f ‖2 + C3(ε,K, λ){‖ f ‖∞x2/n + c0(hmin)x3/n2}, (4)

where C1 is an absolute constant and C0(ε, λ) = λ + ε if λ ≥ 1, C0(ε) = 1/λ + ε if 0 < λ < 1. The constant C2(ε, λ)
only depends on ε and λ and C3(ε,K, λ) only depends on ε, K and λ.

This oracle inequality bounds the quadratic risk of SPCO estimator by the infimum overH of the tradeoff between
the approximation term ‖ fhmin − f ‖2 and the variance term ‖ f̂h − f ‖2 provided that λ > 0. In fact, we need that λ > 0
to use concentration inequalities to prove the oracle inequality. The terms C3(ε,K, λ){‖ f ‖∞x2/n + c0(hmin)x3/n2} are
remainder terms. Hence, this oracle inequality justifies our selection rule. For further details about oracle inequalities
and model selection see [20].

Nonetheless one could wonder what would happen if λ < 0. The next theorem shows that we cannot choose λ
too small (λ < 0) as it would lead to select a bandwidth close to hmin with high probability. One would obtain an
overfitting estimator. To this purpose, we suppose

‖ f − fhmin‖
2 n

c2
0(hmin)c2(hmin)

= o(1). (5)

Let us focus on Assumption (5). For h ∈ H , the bias of f̂h is equal to ‖ f − fh‖2. As fhmin is the best approximation
of f among the grid H , the smallest bias for f̂h, h ∈ H is equal to ‖ f − fhmin‖

2. Since the variance of f̂h is of order
c2

0(h)c2(h)/n, this assumption means that the smallest bias ‖ f − fhmin‖
2 is negligible with respect to the corresponding

integrated variance. Thus this assumption is mild.

Theorem 2. Assume that the kernel K satisfies Assumption 1 and ‖ f ‖∞ < ∞. Assume also (5) and, for β > 0,

‖K‖∞/{nR0(K)} ≤ hd−1
min ≤ (ln n)β/n.

Then if we consider penλ(h) defined in (3) with λ < 0, we have for n large enough, with probability larger than
1 −C1|H|e−(n/ ln n)1/3

,
ĥ ≤ C(λ)hmin ≤ C(λ){(ln n)β/n}1/(d−1),

where C1 is an absolute constant and C(λ) = {1.23 (2.1 − 1/λ)}1/(d−1).

Remark 3. Theorem 2 invites us to discard λ < 0. Indeed, setting λ to negative values leads the procedure to
select with large probability a bandwidth ĥ close to hmin. As a result, we would obtain an overfitting estimator which
behaves very poorly. Now considering oracle inequality (4), λ = 1 yields the minimal value of the leading constant
C0(ε, λ) = λ + ε. Thus, the theory urges us to take the optimal value λ = 1 in the SPCO procedure. Actually, we will
see in the numerical section that the choice λ = 1 is quite efficient.
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3.2. Free of tuning parameters estimator and rates of convergence

Results of Section 3.1 about the optimality of λ = 1 enable us to devise our estimator free of tuning parameters.
We call it f̂ȟ with bandwidth ȟ defined as in (2) with λ = 1.

We now compute rates of convergence for the MISE of our estimator f̂ȟ over some smoothness classes. In [12],
suitable smoothness classes are defined for the study of the MISE. In particular, these regularity classes involve a
concept of an “average” of directional derivatives which was first defined in [9]. Let us recall the definition of these
smoothness classes in [12].

Let η ∈ Sd−1 and Tη = {ξ ∈ Sd−1 : ξ ⊥ η}. Let φη : Sd−1 \ {η,−η} → Tη × (0, π) be a parameterization of Sd−1

defined by
φ−1
η (ξ, θ) = η cos(θ) + ξ sin(θ).

When g : Rd → R and x, ξ ∈ Rd, define the derivative of g at x in the direction of ξ to be Dξg(x) = limh→0 h−1{g(x+

hξ) − g(x)} and Ds
ξg = DξDs−1

ξ g, for some integer s ≥ 2.
We will now define the derivative of order s.

Definition 1. Let f : Sd−1 → R and define f̄ : Rd → R by f̄ (x) = f (x/‖x‖). The derivative of order s is Ds f : Sd−1 →

R defined by

Ds f (x) =
1

σd−1

∫
Tx

Ds
ξ f̄ (x)ωd(dξ),

where Tx = {ξ ∈ Sd−1 : ξ ⊥ x}.

Definition 2. When f : Sd−1 → R, define D̃s f : Sd−1 × R→ R by

D̃s f (x, θ) =
1

σd−1

∫
Tx

Ds
φ−1

x (ξ,θ+ π
2 ) f̄ {φ−1

x (ξ, θ)}ωd(dξ).

We are now able to define the smoothness class F2(s); see [12].

Definition 3. Let s ≥ 2 be even and p ∈ [1,∞]. Let F2(s) be the set of functions f : Sd−1 → R such that (i) ‖Di f ‖ < ∞
for all i ∈ {0, . . . , s}; (ii) for all x ∈ Sd−1 and all ξ ∈ Tx, ∂s f {φ−1

x (ξ, θ)}/∂θs is continuous as a function of θ ∈ R; (iii)
‖D̃s f (·, θ)‖ is bounded for θ ∈ [0, π] and (iv) limθ→0 ‖D̃s f (·, θ) − Ds f ‖ = 0.

To achieve optimal rates of convergence over the class F2(s), we need supplementary conditions on the kernel to
deal with the bias term. The idea of reducing the bias in the Euclidean case using a class s kernel dates back to [4, 22].
In the directional case, this has been early pointed out in [9]. Following [12], we will define what is called a kernel of
class s. For all i ∈ N, let

αi(K) =

∫ ∞

0
x(i+d−3)/2K(x)dx.

Assumption 2 Let s ≥ 0 be even. The kernel K is of class s, i.e., it is a measurable function K : [0,∞) → R which
satisfies:

(i) αi(K) < ∞ for i ∈ {0, s};

(ii) α0(K) , 0;

(iii)
∫ h−2

0 x(2i+d−3)/2K(x)dx = o(hs−2i) for i ∈ {1, . . . , s/2 − 1}, when h→ 0.

In Assumption 2, s must be even because Ds f (x) = 0 for all x ∈ Sd−1 when s ≥ 1 is odd; see Chapter 2 in [13].
Furthermore, note that von Mises kernel is of order 2.

Now, a direct application of the oracle inequality in Theorem 1 allows us to derive rates of convergence for the
MISE of f̂ȟ.
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Theorem 3. Consider a kernel K satisfying Assumptions 1 and 2. For B > 0, denote F̃2(s, B) the set of densities
bounded by B and belonging to F2(s). Then we have

sup
f∈F̃(s,B)

E(‖ f̂ȟ − f ‖2) ≤ C(s,K, d, B)n−2s/(2s+d−1),

with C(s,K, d, B) a constant depending on s, K, d and B.

Theorem 3 shows that the estimator f̂ȟ achieves the optimal rate of convergence for estimating a density on Sd−1

with an s order smoothness; matching lower bounds are proved in Chapter 6 of [13] and in [3]. Hence estimating
on the d-dimensional sphere appears to be analogous to inference in (d − 1)-dimensional space. Furthermore, our
statistical procedure is adaptive to the smoothness s. It means that it does not require the specification of s.

4. Numerical results

We investigate the numerical performances of our fully data-driven estimator f̂ȟ defined in Section 3.2. We com-
pare f̂ȟ with the widely used cross-validation estimator and with an “oracle” to be defined later on. We focus on the
unit sphere S2, i.e., the case d = 3.

We consider various densities. The first one is the von Mises–Fisher density

f1,vM =
κ

2π(eκ − e−κ)
eκx>µ,

with κ = 2 and µ = (1, 0, 0)>; see Figure 1. We recall that κ is the concentration parameter and µ the directional mean.
Note that the smaller the concentration parameter is, the closer to the uniform density the von Mises–Fisher density
is. We also estimate the mixture of two von Mises–Fisher densities, viz.

f2,vM =
4
5
×

κ

2π(eκ − e−κ)
eκx>µ +

1
5
×

κ′

2π(eκ′ − e−κ′ )
eκ
′x>µ′ ,

with κ′ = 0.7 and µ′ = (−1, 0, 0)>. Note that f1,vM is rotationally symmetric and f2,vM also since µ and µ′ are antipodal.
Finally, let us consider a non rotationally symmetric density

f3,vM =
4
5
×

κ

2π(eκ − e−κ)
eκx>µ +

1
5
×

κ′

2π(eκ′ − e−κ′ )
eκ
′x>µ′′ ,

with µ′′ = (0, 1/
√

2, 1/
√

2)>.
Now let us define what the “oracle” f̂horacle is. The bandwidth horacle is defined as

horacle = argmin h∈H ‖ f̂h − f ‖2.

This bandwidth can be viewed as the “ideal” one since it uses the specification of the density of interest f which is
here f1,vM , f2,vM or f3,vM . Hence, the performances of f̂horacle are used as a benchmark.

In the sequel we present detailed results for f1,vM , namely risk curves and graphic reconstructions and we compute
MISE for f1,vM , f2,vM or f3,vM . We use the von Mises kernel K(x) = e−x.

Before presenting the performances of the various procedures, we shall remind that theoretical results of Sec-
tion 3.1 have shown that setting λ = 1 in the SPCO algorithm is optimal. We would like to show how simulations
actually support this conclusion. Indeed, Figure 2 displays the empirical L2 risk of f̂ĥ to estimate f1,vM in function
of parameter λ for n = 100 and 100 Monte Carlo replications. Figure 2 (a) shows a “dimension jump” and that the
minimal risk is reached in a stable zone around λ = 1: negative values of λ lead to an overfitting estimator (ĥ is chosen
close to hmin as shown in Theorem 2) with poor performances whereas large values of λ make the risk increase again;
see a zoom on Figure 2 (b). Next, considering the MISE computations, we will see that λ = 1 yields quite good
results.
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Figure 1: The density f1,vM in spherical coordinates

In Lemma D of the Appendix, we develop the expression (2) to be minimized to implement our estimator f̂ȟ. We
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Figure 2: (a) Empirical L2-risk of f̂ȟ to estimate f1,vM in function of λ; (b) A zoom
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Figure 3: Risks curves in function of h for f1,vM , n = 500: (a) Roracle; (b) RS PCO; (c) CV2. Vertical red lines represent the bandwidth value h
minimizing each curve.

now recall the cross-validation criterion of [9]. Let

f̂h,i(x) =
c0(h)
n − 1

n∑
j,i

e−(1−x>X j)/h2
.

Then

CV2(h) = ‖ f̂h‖2 −
2
n

n∑
i=1

f̂h,i(x).

Note that CV2(h) + ‖ f ‖2 is an unbiased estimate of the MISE of f̂h. The cross-validation procedure to select the
bandwidth h consists in minimizing CV2 with respect to h. We call this selected value hCV2 .

In the rest of this section, SPCO will denote the estimation procedure related to f̂ȟ. In Figure 3, for n = 500 we
plot as a function of h: Roracle = ‖ f̂h − f1,vM‖

2 −‖ f1,vM‖
2 for the oracle, RS PCO = ‖ f̂h − f̂hmin‖

2 + penλ=1(h) for SPCO and
CV2(h) for cross-validation. We point out on each plot the value of h that minimizes each quantity. In Figure 4, we
plot in spherical coordinates, for n = 500, density reconstructions of f1,vM for the oracle, SPCO and cross-validation.
Eventually, in Tables 1, 2 and 3, we compute MISE of the oracle, SPCO and cross-validation to estimate f1,vM , f2,vM

and f3,vM for n ∈ {50, 100, 500} over 100 Monte Carlo runs.

Table 1: MISE over 100 Monte Carlo repetitions to estimate f1,vM .

n = 50 n = 100 n = 500
Oracle 0.0088 0.0064 0.0027
SPCO 0.0160 0.0091 0.0048
Cross-Validation 0.0191 0.0099 0.0053

Table 2: MISE over 100 Monte Carlo repetitions to estimate f2,vM .

n = 50 n = 100 n = 500
Oracle 0.0086 0.0051 0.0027
SPCO 0.0122 0.0083 0.0043
Cross-Validation 0.0139 0.0096 0.0047

When analyzing the results, SPCO performs nicely. In particular, inspection of Tables 1, 2 and 3 shows that SPCO
is close to the oracle and is always slightly better than cross-validation for all densities.
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Table 3: MISE over 100 Monte Carlo repetitions to estimate f3,vM .

n = 50 n = 100 n = 500
Oracle 0.0099 0.0075 0.0043
SPCO 0.0153 0.0107 0.0063
Cross-Validation 0.0185 0.0122 0.0066
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Figure 4: Reconstruction of f1,vM , n = 500: (a) f̂horacle , horacle = 0.33; (b)/SPCO f̂ĥ, ĥ = 0.25; (c) cross-validation f̂hCV2 , hCV2 = 0.25.

5. Proofs of theorems

In the sequel, Ξ denotes an absolute constant which may change from line to line. The following proofs of
theorems rely on technical propositions and lemmas which are gathered for sake of clarity in the Appendix. More
specifically, proofs of Theorems 1 and 2 use Lemma A, Propositions A and B, and proof of Theorem 3 uses Proposi-
tion C.
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Proof of Theorem 1. We set τ = λ − 1. Let ε ∈ (0, 1) and θ ∈ (0, 1) depending on ε to be specified later. Developing
the expression of penλ(h) given in (3), we have

penλ(h) = λc2
0(h)c2(h)/n − c2

0(hmin)c2(hmin)/n − c2
0(h)c2(h)/n + 2〈c0(h)Kh2 , c0(hmin)Kh2

min
〉/n

= τc2
0(h)c2(h)/n − c2

0(hmin)c2(hmin)/n + 2〈c0(h)Kh2 , c0(hmin)Kh2
min
〉/n.

Using Proposition B and the expression of penλ(h) given above, we obtain with probability greater than 1 −
Ξ |H| exp(−x), for any h ∈ H ,

(1 − θ)‖ f̂ĥ − f ‖2 + τc2
0(ĥ)c2(ĥ)/n ≤ (1 + θ)‖ f̂h − f ‖2 + τc2

0(h)c2(h)/n + C2/θ‖ fhmin − f ‖2

+ C(K){‖ f ‖∞x2/n + c0(hmin)x3/n2}/θ, (6)

with C2 an absolute constant and C(K) a constant only depending on K. We first consider the case τ ≥ 0. Using (A.5)
of Proposition A, with probability 1 − Ξ |H|e−x one has

τc2
0(h)c2(h)/n ≤ τ(1 + θ)‖ f − f̂h‖2 + τC′(K)‖ f ‖∞x2/(θ3n),

where C′(K) is a constant only depending on the kernel K. As τc2
0(ĥ)c2(ĥ)/n ≥ 0, thus (6) becomes

(1 − θ)‖ f̂ĥ − f ‖2 ≤ {1 + θ + τ(1 + θ)}‖ f̂h − f ‖2 + C2‖ fhmin − f ‖2/θ

+ C(K){‖ f ‖∞x2/n + c0(hmin)x3/n2}/θ + τC′(K)‖ f ‖∞x2/(θ3n).

With θ = ε/(ε + 2 + 2τ), we obtain

‖ f̂ĥ − f ‖2 ≤ (1 + τ + ε)‖ f̂h − f ‖2 +
C2(ε + 2 + 2τ)2

(2 + 2τ)ε
‖ fhmin − f ‖2 + C′′(K, ε, τ){‖ f ‖∞x2/n + c0(hmin)x3/n2},

with C′′(K, ε, τ) a constant depending only on K, ε, τ.
Let’s now study the case τ ∈ (−1, 0]. Using (A.5) of Proposition A with h = ĥ, we have with probability

1 − Ξ |H|e−x,
τc2

0(ĥ)c2(ĥ)/n ≥ τ(1 + θ)‖ f − f̂ĥ‖
2 + τC′(K)‖ f ‖∞x2/(θ3n).

Consequently, as τc2
0(h)c2(h)/n ≤ 0, (6) becomes

{1 − θ + τ(1 + θ)}‖ f̂ĥ − f ‖2 ≤ (1 + θ)‖ f̂h − f ‖2 + C2‖ fhmin − f ‖2/θ

+ C(K){‖ f ‖∞x2/n + c0(hmin)x3/n2}/θ − τC′(K)‖ f ‖∞x2/(θ3n).

With θ = ε(τ + 1)2/{2 + ε(1 − τ2)} < 1, we obtain with probability 1 − Ξ |H|e−x,

‖ f̂ĥ − f ‖2 ≤
(

1
1 + τ

+ ε

)
‖ f̂h − f ‖2 + C′′(ε, τ)‖ fhmin − f ‖2 + C′′′(K, ε, τ){‖ f ‖∞x2/n + c0(hmin)x3/n2},

with C′′(ε, τ) a constant depending on ε and τ and C′′′(K, ε, τ) a constant depending on K, ε and τ. This completes
the proof of Theorem 1.

Proof of Theorem 2. We still set τ = λ − 1. We set θ ∈ (0, 1) such that θ < −(1 + τ)/5. We consider inequality (6)
written with h = hmin. One obtains

(1 − θ)‖ f̂ĥ − f ‖2 + τc2
0(ĥ)c2(ĥ)/n ≤ (1 + θ)‖ f̂hmin − f ‖2 + τc2

0(hmin)c2(hmin)/n

+ C2‖ fhmin − f ‖2/θ + C(K){‖ f ‖∞x2/n + c0(hmin)x3/n2}/θ.

Now consider Eq. (A.4) with h = hmin, one gets

‖ f − f̂hmin‖ ≤ (1 + θ){‖ f − fhmin‖
2 + c2

0(hmin)c2(hmin)/n} + C′(K)‖ f ‖∞x2/(θ3n).
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Combining the two inequalities above, we have

(1 − θ)‖ f̂ĥ − f ‖2 + τc2
0(ĥ)c2(ĥ)/n ≤ {(1 + θ)2 + C2/θ}‖ f − fhmin‖

2 + {τ + (1 + θ)2}c2
0(hmin)c2(hmin)/n

+ C(K){‖ f ‖∞x2/n + c0(hmin)x3/n2}/θ + (1 + θ)C′(K)‖ f ‖∞x2/(θ3n).

Now let us define un = ‖ fhmin − f ‖2/{c2
0(hmin)c2(hmin)/n}. We have by Assumption (5) that un → 0 when n → ∞.

Then we get

(1 − θ)‖ f̂ĥ − f ‖2 + τc2
0(ĥ)c2(ĥ)/n ≤ [{(1 + θ)2 + C2/θ}un + τ + (1 + θ)2]c2

0(hmin)c2(hmin)/n

+ C(K, θ){‖ f ‖∞x2/n + x3c0(hmin)/n2}. (7)

Now we consider using Eq. (A.5) from Proposition A with h = ĥ and η = 1, we get

c0(ĥ)c2(ĥ)/n ≤ 2‖ f − f̂ĥ‖ + C′(K)‖ f ‖∞x2/n.

Then
‖ f − f̂ĥ‖ ≥ c0(ĥ)c2(ĥ)/(2n) −C′(K‖ f ‖∞x2/n

and hence (7) becomes

{(1 − θ)/2 + τ}c2
0(ĥ)c2(ĥ)/n ≤ [{(1 + θ)2 + C2/θ}un + τ + (1 + θ)2]c2

0(hmin)c2(hmin)/n

+ C′(K, θ){‖ f ‖∞x2/n + x3c0(hmin)/n2}.

However, we assumed that un = o(1). Thus for n large enough, {(1 + θ)2 + C2/θ}un ≤ θ. We are now going to
bound the remainder terms C′(K, θ){‖ f ‖∞x2/n + c0(hmin)x3/n2}. We have

C′(K, θ){‖ f ‖∞x2/n + c0(hmin)x3/n2}
n

c2
0(hmin)c2(hmin)

= C′′(K, θ, ‖ f ‖∞)
{ x2

c2
0(hmin)c2(hmin)

+
x3

nc0(hmin)c2(hmin)

}
≤ C′′(K, θ, ‖ f ‖∞)(x2hd−1

min + x3/n),

for n large enough using (A.1) and (A.2) from Lemma A. But hd−1
min ≤ (ln n)β/n and setting x = (n/ln n)1/3, we get

C′′(K, θ, ‖ f ‖∞)(x2hd−1
min + x3/n) ≤ C′′(K, θ, ‖ f ‖∞){(ln n)β−2/3/n1/3 + 1/ ln n} = o(1) ≤ θ,

for n large enough. Consequently there exists N such that for n ≥ N, with probability larger than 1 − Ξ |H|e−(n/ ln n)1/3
,

{(1 − θ)/2 + τ}c2
0(ĥ)c2(ĥ)/n ≤ {θ + τ + (1 + θ)2 + θ}c2

0(hmin)c2(hmin)/n ≤ (1 + τ + 5θ)c2
0(hmin)c2(hmin)/n.

Using (A.3) of Lemma A, we have, for n large enough,

0.9 h1−dR(K) ≤ c2
0(h)c2(h) ≤ 1.1 h1−dR(K).

Thus we finally get, for n large enough,

0.9{(1 − θ)/2 + τ}ĥ1−d ≤ 1.1(1 + τ + 5θ)h1−d
min ⇔ {(1 − θ)/2 + τ}ĥ1−d ≤ 1.23(1 + τ + 5θ)h1−d

min .

But (1 − θ)/2 + τ < 1 + τ < 0, and because we have chosen θ such that 1 + τ + 5θ < 0 (for instance θ = −(τ + 1)/10)),
one gets

ĥ ≤
{

1.23(1 + τ + 5θ)
(1 − θ)/2 + τ

}1/(d−1)

hmin.

With θ = −(τ + 1)/10, the inequality above becomes for n large enough

ĥ ≤ {1.23 (2.1 − 1/λ)}1/(d−1) hmin,

which completes the proof of Theorem 2.
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Proof of Theorem 3. Let f ∈ F̃2(s, B) and E the event corresponding to the intersection of events in Theorem 1 and
Proposition A. Let E{ denotes the complementary of E. For any A > 0, by taking x proportional to ln n, Pr(E) ≥ 1−n−A.
We have

E(‖ f̂ȟ − f ‖2) ≤ E(‖ f̂ȟ − f ‖21E) + E(‖ f̂ȟ − f ‖21E{ ).

Let us deal with the second term of the right-hand side. We have ‖ f̂h − f ‖2 ≤ 2(‖ f̂h‖2 + ‖ f ‖2). However,

‖ f̂h‖2 =
c2

0(h)
n2

∑
i, j

∫
Sd−1

Kh2 (x, Xi)Kh2 (x, X j)ωd(dx)

≤
c0(h)

n2 ‖K‖∞
∑
i, j

c0(h)
∫
Sd−1

Kh2 (x, X j)ωd(dx) ≤ c0(h)‖K‖∞ ≤ 2n,

since c0(h) ≤ 2n/‖K‖∞, using (A.1) and (1) for n large enough. Thus ‖ f̂h − f ‖2 ≤ 2n + 2‖ f ‖2, which gives the result
on E{. Now on E, for n ≥ n0 (n0 not depending on f ) Proposition A and Proposition C yield that

min
h∈H
‖ f̂h − f ‖2 ≤ (1 + η) min

h∈H
{‖ f − fh‖2 + c2

0(h)c2(h)/n} + Ξ Υ(ln n)2/(η3n)

≤ C min
h∈H

(h2s + h1−d/n) + Ξ Υ(ln n)2/(η3n).

Minimizing in h the right-hand side of the last inequality gives the result on E.
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Appendix

This Appendix gathers technical results needed to prove the theorems. We shall start with a lemma that collects
some standard properties about constants c0 and c2.

Lemma A. We have, as h→ 0,
c−1

0 (h) = R0(K)hd−1 + o(1), (A.1)

where R0(K) = 2(d−3)/2σd−2α0(K). We also have, as h→ 0,

c2(h) = R1(K)hd−1 + o(1), (A.2)

with R1(K) = 2(d−3)/2σd−2
∫ ∞

0 x(d−3)/2K2(x)dx. Eventually we have, when h→ 0,

c2
0(h)c2(h) = h1−dR(K) + o(1), (A.3)

with R(K) = R1(K)/R2
0(K).

The proof of Lemma A can be found in the proof of Proposition 4.1 of [1].
The following Propositions A and B are essential to prove Theorem 1 and 2. Let us start with Proposition A,

which is a counterpart of Proposition 4.1 of [17] for Sd−1.

Proposition A. Assume that the kernel K satisfies Assumption 1. Let Υ ≥ (1 + 2‖ f ‖∞)∨ 8π‖K‖∞R0(K)/R1(K). There
exists n0 such that, for n ≥ n0 (n0 not depending on f ), all x ≥ 1 and for all η ∈ (0, 1) with probability larger than
1 − Ξ |H|e−x, for all h ∈ H each of the following inequalities holds:

‖ f − f̂h‖ ≤ (1 + η){‖ f − fh‖2 + c2
0(h)c2(h)/n} + Ξ Υx2/(η3n) (A.4)

‖ f − fh‖2 + c2
0(h)c2(h)/n ≤ (1 + η)‖ f − f̂h‖2 + Ξ Υx2/(η3n). (A.5)
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Proof of Proposition A. To prove Proposition A, we need to verify Assumptions (11)–(16) of [17]. We recall that

fh = E( f̂h) = c0(h)
∫

y∈Sd−1
f (y)Kh2 (x, y)ωd(dy).

Let us check Assumption (11) of [17]. This one amounts to prove that, for some Γ and Υ,

Γ(1 + ‖ f ‖∞) ∨ sup
h∈H
‖ fh‖2 ≤ Υ.

We have

‖ fh‖2 ≤ ‖ f ‖∞

∫
x

{∫
y

c0(h)Kh2 (x, y)ωd(dy)
}

︸                            ︷︷                            ︸
=1

{∫
y

f (y)c0(h)Kh2 (x, y)ωd(dy)
}
ωd(dx)

≤ ‖ f ‖∞

∫
y

f (y)
∫

x
c0(h)Kh2 (x, y)ωd(dx)ωd(dy) ≤ ‖ f ‖∞.

Therefore, Assumption (11) in [17] holds with Γ = 1 and Υ ≥ 1 + ‖ f ‖∞.
Let us check Assumption (12) of [17]. We have to prove that∫

c2
0(h)K2

h2 (x, x)ωd(dx) ≤ Υn
∫ ∫

c2
0(h)K2

h2 (x, y)ωd(dx) f (y)ωd(dy).

Given that ∫ ∫
c2

0(h)K2
h2 (x, y)ωd(dx) f (y)ωd(dy) = c2

0(h)c2(h)
∫

f (y)ωd(dy) = c2
0(h)c2(h),

and ∫
c2

0(h)K2
h2 (x, x)ωd(dx) = 4πc2

0(h)K2(0),

Assumption (12) amounts to check that

4πc2
0(h)K2(0) ≤ Υnc2

0(h)c2(h) ⇔ Υ ≥ 4πK2(0)/{nc2(h)}.

But using (A.2), we have
c2(h) = R1(K)hd−1 + o(1),

when h → 0 uniformly in h. Thus there exist n1, n1 independent of f such that, for n ≥ n1, c2(h) ≥ R1(K)hd−1/2.
Now using that hd−1 ≥ ‖K‖∞/{R0(K)n} and K(0) ≤ ‖K‖∞, it is sufficient to have Υ ≥ 8π‖K‖∞R0(K)/R1(K) to ensure
Assumption (12) in [17].

Assumption (13) in [17] consists to prove that

‖ fh − fh′‖∞ ≤ Υ ∨
√

Υn‖ fh − fh′‖2.

For any h ∈ H and any x ∈ Sd−1, we have ‖ fh‖∞ ≤ ‖ f ‖∞. Therefore, Assumption (13) in [17] holds for Υ ≥ 2‖ f ‖∞.
Assumptions (14) and (15) of [17] consist in proving respectively that

E
{

c2
0(h)

∫
Kh2 (X, z)Kh2 (z,Y)ωd(dz)

}2

≤ Υc2
0(h)c2(h)

and

sup
x∈Sd−1

E
{

c2
0(h)

∫
Kh2 (X, z)Kh2 (z, x)ωd(dz)

}2

≤ Υn.

We have

c2
0(h)

∫
Kh2 (x, z)Kh2 (z, y)ωd(dz) ≤ c2

0(h)c2(h) ∧ c0(h)‖K‖∞.
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Indeed if y = z, then
∫

Kh2 (x, z)Kh2 (z, y)ωd(dz) =
∫

K2
h2 (x, z)ωd(dz) = c2(h). Otherwise,

c2
0(h)

∫
Kh2 (x, z)Kh2 (z, y)ωd(dz) ≤ c0(h)‖K‖∞ c0(h)

∫
Kh2 (x, z)ωd(dz)︸                        ︷︷                        ︸

=1

= c0(h)‖K‖∞.

Furthermore, (A.1) entails that there exists n2 independent of f such that, for n ≥ n2, c−1
0 (h) ≥ R0(K)hd−1/2 and

consequently c0(h) ≤ 2n/‖K‖∞, using (1). Thus, for n ≥ n2,

c2
0(h)

∫
Kh2 (x, z)Kh2 (z, y)ωd(dz) ≤ c2

0(h)c2(h) ∧ 2n. (A.6)

We have

E
{

c2
0(h)

∫
z

Kh2 (X, z)Kh2 (z, x)ωd(dz)
}

= c2
0(h)

∫
z

{∫
y

Kh2 (y, z) f (y)ωd(dy)
}

Kh2 (z, x)ωd(dz)

≤ ‖ f ‖∞c0(h)
∫

z
c0(h)

∫
y

Kh2 (y, z)ωd(dy)Kh2 (z, x)ωd(dz)

≤ ‖ f ‖∞. (A.7)

Therefore, for n ≥ n2,

sup
x∈Sd−1

E
[
c2

0(h)
∫

Kh2 (X, z)Kh2 (z, x)ωd(dz)
]2

≤ sup
(x,y)

{
c2

0(h)
∫

Kh2 (x, z)Kh2 (z, y)ωd(dz)
}

× sup
x

E
{

c2
0(h)

∫
Kh2 (X, z)Kh2 (z, x)ωd(dz)

}
≤ {c2

0(h)c2(h) ∧ 2n}‖ f ‖∞,

using (A.6) and (A.7). Moreover, we have

E
{

c2
0(h)

∫
Kh2 (X, z)Kh2 (z,Y)ωd(dz)

}2

≤ sup
x

E
{

c2
0(h)

∫
Kh2 (X, z)Kh2 (z, x)ωd(dz)

}2

≤ {c2
0(h)c2(h) ∧ 2n}‖ f ‖∞

using (A.6) and (A.7). Hence Assumption (14) and (15) in [17] hold for Υ ≥ 2‖ f ‖∞.
Let t ∈ Bc0(h)Kh2 is the set of functions t such that t(x) =

∫
a(z)c0(h)Kh2 (z, x)ωd(dz) for some a ∈ L2(Sd−1) with

‖a‖ ≤ 1. Now let a ∈ L2(Sd−1) be such that ‖a‖ = 1 and t(y) =
∫

a(x)c0(h)Kh2 (x, y)ωd(dx) for all y ∈ Sd−1. To verify
Assumption (16) in [17] we have to prove that

sup
t∈Bc0(h)K

h2

∫
t(x) f (x)ωd(dx) ≤ Υ ∨

√
Υc2

0(h)c2(h).

Using the Cauchy–Schwarz inequality, one gets

t(y) ≤

√∫
Sd−1

a2(x)ωd(dx)

√
c2

0(h)
∫
Sd−1

K2
h2 (x, y)ωd(dx) ≤

√
c2

0(h)c2(h).

Thus for any t ∈ Bc0(h)Kh2 ∫
t2(x) f (x)ωd(dx) ≤ ‖t‖∞〈|t|, f 〉 ≤

√
c2

0(h)c2(h) ‖ f ‖ × ‖t‖,
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but using the Cauchy–Schwarz inequality and Fubini, one gets

‖t‖ =

∫
x

{∫
y

a(y)c0(h)Kh2 (x, y)ωd(dy)
}2

ωd(dx)

≤

∫
x

{∫
y

a2(y)c0(h)Kh2 (x, y)ωd(dy)
}{∫

y
c0(h)Kh2 (x, y)ωd(dy)

}
ωd(dx)

=

∫
x

∫
y

a2(y)c0(h)Kh2 (x, y)ωd(dy)ωd(dx)

=

∫
y

a2(y)
{∫

x
c0(h)Kh2 (x, y)ωd(dx)

}
ωd(dy) = 1.

Furthermore, ∫
t2(x) f (x)ωd(dx) ≤ ‖ f ‖

√
c2

0(h)c2(h) ≤
√
‖ f ‖∞

√
c2

0(h)c2(h) ≤
√

Υc2
0(h)c2(h),

and hence Assumption (16) in [17] is verified.
Finally, Assumptions (11)–(16) from [17] hold in the spherical setting, for n ≥ n0 = max(n1, n2) and if Γ = 1 and

Υ ≥ (1 + 2‖ f ‖∞) ∨ 8π‖K‖∞R0(K)/R1(K).

This enables us to use Proposition 4.1 of [17] which gives Proposition A.

The next proposition gives a general result on the estimator f̂ĥ.

Proposition B. Assume that the kernel K satisfies Assumption 1 and ‖ f ‖∞ < ∞. Let x ≥ 1 and θ ∈ (0, 1). With
probability larger than 1 −C1|H|e−x, with C1 an absolute constant, for any h ∈ H ,

(1 − θ)‖ f̂ĥ − f ‖2 ≤ (1 + θ)‖ f̂h − f ‖2 + {penλ(h) − 2〈c0(h)Kh2 , c0(hmin)Kh2
min
〉/n}

− {penλ(ĥ) − 2〈c0(ĥ)Kĥ2 , c0(hmin)Kh2
min
〉/n}

+ C2‖ fhmin − f ‖2/θ + C(K){‖ f ‖∞x2/n + x3c0(hmin)/n2}/θ,

where C1 and C2 are absolute constants and C(K) only depends on K.

In order to avoid any confusion, we recall that Kh2 = Kh2 (·, ·) and

〈c0(h)Kh2 , c0(hmin)Kh2
min
〉 =

∫
Sd−1

c0(h)Kh2 (x, y)c0(hmin)Kh2
min

(x, y)ωd(dy).

Once again, we would like to draw the attention to the fact that the quantity∫
Sd−1

c0(h)Kh2 (x, y)c0(hmin)Kh2
min

(x, y)ωd(dy)

does not depend on x. Indeed, we have, using Remark 1∫
Sd−1

Kh2 (x, y)Kh2
min

(x, y)ωd(dy) =

∫
Sd−1

K
(

1 − x>y
h2

)
K

1 − x>y
h2

min

ωd(dy)

= σd−2

∫ 1

−1
K

(
1 − t
h2

)
K

1 − t
h2

min

 (1 − t2)(d−3)/2dt.

Proof of Proposition B. The proof follows the proof of Theorem 9 in [14] adapted to Sd−1. Let θ′ ∈ (0, 1) be fixed and
chosen later. Using the definition of ĥ, we can write, for any h ∈ H

‖ f̂ĥ − f ‖2 + penλ(ĥ) = ‖ f̂ĥ − f̂hmin‖
2 + penλ(ĥ) + ‖ f̂hmin − f ‖2 + 2〈 f̂ĥ − f̂hmin , f̂hmin − f 〉

≤ ‖ f̂h − f̂hmin‖
2 + penλ(h) + ‖ f̂hmin − f ‖2 + 2〈 f̂ĥ − f̂hmin , f̂hmin − f 〉

≤ ‖ f̂h − f ‖2 + 2‖ f − f̂hmin‖
2 + 2〈 f̂h − f , f − f̂hmin〉

+ penλ(h) + 2〈 f̂ĥ − f̂hmin , f̂hmin − f 〉.
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Consequently,

‖ f̂ĥ − f ‖2 ≤ ‖ f̂h − f ‖2 + {penλ(h) − 2〈 f̂h − f , f̂hmin − f 〉} − {penλ(ĥ) − 2〈 f̂ĥ − f , f̂hmin − f 〉}. (A.8)

Then for a given h, we study the term 2〈 f̂h − f , f̂hmin − f 〉. Let us introduce the degenerate U-statistic

U(h, hmin) =
∑
i, j

〈
c0(h)Kh2 (., Xi) − fh, c0(hmin)Khmin (., X j) − fhmin

〉
and the centered variable V(h, h′) = 〈 f̂h − fh, fh′ − f 〉. We first center the terms

〈 f̂h − f , f̂hmin − f 〉 = 〈 f̂h − fh, f̂hmin − fhmin〉 + V(h, hmin) + V(hmin, h) + 〈 fh − f , fhmin − f 〉.

Now

〈 f̂h − fh, f̂hmin − fhmin〉 =
1
n2

n∑
i, j=1

〈c0(h)Kh2 (., Xi) − fh, c0(hmin)Khmin (., X j) − fhmin〉

=
1
n2

n∑
i=1

〈c0(h)Kh2 (., Xi) − fh, c0(hmin)Khmin (., Xi) − fhmin〉 + U(h, hmin)/n2.

Then

〈 f̂h − fh, f̂hmin − fhmin〉 = 〈c0(h)K2
h , c0(hmin)Kh2

min
〉/n − 〈 f̂h, fhmin〉/n − 〈 fh, f̂hmin〉/n + 〈 fh, fhmin〉/n + U(h, hmin)/n2.

Finally, we obtain

〈 f̂h − f , f̂hmin − f 〉 = 〈c0(h)K2
h , c0(hmin)Kh2

min
〉/n + U(h, hmin)/n2 (A.9)

− 〈 f̂h, fhmin〉/n − 〈 fh, f̂hmin〉/n + 〈 fh, fhmin〉/n (A.10)
+ V(h, hmin) + V(hmin, h) + 〈 fh − f , fhmin − f 〉. (A.11)

We first control the last term of (A.9) involving a U-statistic. This is done in the next lemma.

Lemma B. With probability greater than 1 − 5.54|H|e−x, for any h inH ,∣∣∣U(h, hmin)/n2
∣∣∣ ≤ θ′c2

0(h)c2(h)/n + Ξ ‖ f ‖∞x2/(θ′n) + Ξ c0(hmin)‖K‖∞x3/(θ′n2).

Proof of Lemma B. We have

U(h, hmin) =
∑
i, j

〈c0(h)K2
h (., Xi) − fh, c0(hmin)Kh2

min
(., X j) − fhmin〉

=

n∑
i=2

∑
j<i

Gh,hmin (Xi, X j) + Ghmin,h(Xi, X j),

where
Gh,h′ (s, t) = 〈c0(h)Kh2 (., s) − fh, c0(h′)Kh′2 (., t) − fh′〉.

We apply Theorem 3.4 of [10]

Pr{|U(h, hmin)| ≥ Ξ (C
√

x + Dx + Bx3/2 + Ax2)} ≤ 5.54e−x,

with A, B,C and D defined subsequently. First, we have

‖ fhmin‖∞ = ‖E( f̂hmin )‖∞ = ‖c0(hmin)
∫
Sd−1

Kh2
min

(x, y) f (y)ωd(dy)‖∞

≤ c0(hmin)‖K‖∞

∫
Sd−1

f (y)ωd(dy) ≤ c0(hmin)‖K‖∞.
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We have
A = ‖Gh,hmin + Ghmin,h‖∞ ≤ ‖Gh,hmin‖∞ + ‖Ghmin,h‖∞ = 2‖Gh,hmin‖∞,

because Ghmin,h = Gh,hmin . We have

‖Gh,hmin‖∞ = sup
s,t

∣∣∣∣∣∫
Sd−1
{c0(h)Kh2 (u, s) − fh(u)} {c0(hmin)Kh2

min
(u, t) − fhmin (u)}ωd(du)

∣∣∣∣∣
≤ sup

u,t
|c0(hmin)Kh2

min
(u, t) − fhmin (u)| sup

s

∫
|c0(h)Kh2 (u, s) − fh(u)|ωd(du)

≤
{
c0(hmin)‖K‖∞ + ‖ fhmin‖∞

} {
sup

s
c0(h)

∫
Kh2 (u, s)ωd(du)

+ c0(h)
∫ ∫

Kh2 (u, y) f (y)ωd(dy)ωd(du)
}

≤ 2c0(hmin)‖K‖∞

{
1 +

∫
f (y)c0(h)

∫
Kh2 (u, y)ωd(du)ωd(dy)

}
≤ 4c0(hmin)‖K‖∞.

Consequently we have that A ≤ 8c0(hmin)‖K‖∞ and Ax2/n2 ≤ 8x2c0(hmin)‖K‖∞/n2. We define

B2 = (n − 1) sup
t

E[{Gh,hmin (t, X2) + Ghmin,h(t, X2)}2].

For any t, we have

E[G2
h,hmin

(t, X2)] = E
[[ ∫

{c0(h)Kh2 (u, t) − fh(u)}[c0(hmin)Kh2
min

(u, X2) − E{c0(hmin)Kh2
min

(u, X2)}]ωd(du)
]2]

≤ E
[ ∫
{c0(h)Kh2 (u, t) − fh(u)}2ωd(du)

∫
[c0(hmin)Kh2

min
(u, X2) − E{c0(hmin)Kh2

min
(u, X2)}]2ωd(du)

]
≤ 2

{ ∫
c2

0(h)K2
h2 (u, t)ωd(du) +

∫
f 2
h (u)ωd(du)

}
×∫

E
[
c0(hmin)Kh2

min
(u, X2) − E{c0(hmin)Kh2

min
(u, X2)}

]2
ωd(du)

≤ 2
[ ∫

c2
0(h)K2

h2 (u, t)ωd(du) +

∫
u

{
c0(h)

∫
y

Kh2 (u, y) f (y)ωd(dy)
}2

ωd(du)
]

×

∫
E{c2

0(hmin)K2
hmin

(u, X2)}ωd(du)

≤ 4c2
0(h)c2(h)c2

0(hmin)c2(hmin).

Therefore
B2 ≤ 8(n − 1)c2

0(h)c2(h)c2
0(hmin)c2(hmin)

and
B2x3/n4 ≤ 8c2

0(h)c2(h)c2
0(hmin)c2(hmin)x3/n3.

Now using
√

ab ≤ θa/2 + θ−1b/2, we obtain

Bx3/2/n2 ≤ θ′c2
0(h)c2(h)/(3n) + 6c2

0(hmin)c2(hmin)x3/θ′n2.
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Now we have

C2 =

n∑
i=2

i−1∑
j=1

E[{Gh,hmin )(Xi, X j) + Ghmin,h(Xi, X j)}2]

≤ Ξ n2E{G2
h,hmin

(X1, X2)}

= Ξ n2E

[∫ {c0(h)Kh2 (u, X1) − fh(u)}{c0(hmin)Kh2
min

(u, X2) − fhmin (u)}ωd(du)
]2

= Ξ n2E
[[ ∫

c0(h)Kh2 (u, X1)c0(hmin)Kh2
min

(u, X2)ωd(du)

−

∫
c0(h)Kh2 (u, X1)

{∫
c0(hmin)Kh2

min
(u, y) f (y)ωd(dy)

}
ωd(du)

−

∫
c0(hmin)Kh2

min
(u, X2)

{∫
c0(h)Kh2 (u, y) f (y)ωd(dy)

}
ωd(du)

+

∫
u

{∫
y

c0(hmin)Kh2
min

(u, y) f (y)ωd(dy)
} (∫

y
c0(h)Kh2 (u, y) f (y)ωd(dy)

)
ωd(du)

]2]
.

≤ Ξ n2(A1 + A2 + A3 + A4).

We have, for A2,

E
[∫

c0(h)Kh2 (u, X1)
{∫

c0(hmin)Kh2
min

(u, y) f (y)ωd(dy)
}
ωd(du)

]2

≤ ‖ f ‖2∞E
[∫

c0(h)Kh2 (u, X1)
{∫

c0(hmin)Kh2
min

(u, y)ωd(dy)
}
ωd(du)

]2

= ‖ f ‖2∞E
[∫

c0(h)Kh2 (u, X1)ωd(du)
]2

≤ ‖ f ‖2∞

∫ {∫
c0(h)Kh2 (u, y)ωd(du)

}2

f (y)ωd(dy) = ‖ f ‖2∞.

With similar computations, we obtain the same bound for A3. As for A4, we get

E
[∫

u

{∫
c0(hmin)Kh2

min
(u, y) f (y)ωd(dy)

}{∫
c0(h)Kh2 (u, y) f (y)ωd(dy)

}
ωd(du)

]2

≤ E
[∫
‖ f ‖∞

{∫
c0(hmin)Kh2

min
(u, y)ωd(dy)

}{∫
c0(h)Kh2 (u, y) f (y)ωd(dy)

}
ωd(du)

]2

≤ ‖ f ‖2∞E
[∫ ∫

c0(h)Kh2 (u, y) f (y)ωd(dy)ωd(du)
]2

≤ ‖ f ‖2∞

{∫
f (y)

∫
c0(h)Kh2 (u, y)ωd(du)ωd(dy)

}2

= ‖ f ‖2∞.

Hence

C2 ≤ Ξ n2E

{∫ c0(h)Kh2 (u, X1)c0(hmin)Khmin (u, X2)ωd(du)
}2 + Ξ ‖ f ‖2∞ × n2.
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It remains to bound A1. We have, using the Cauchy–Schwarz inequality,

E

{∫ c0(h)Kh2 (u, X1)c0(hmin)Khmin (u, X2)ωd(du)
}2

=

∫
y

∫
x

{∫
u

c0(h)Kh2 (u, x)c0(hmin)Kh2
min

(u, y)ωd(du)
}2

f (x)ωd(dx) f (y)ωd(dy)

≤ ‖ f ‖∞

∫
y

∫
x

{ ∫
u

c2
0(h)K2

h2 (u, x)c0(hmin)Kh2
min

(u, y)ωd(du)×∫
u

c0(hmin)Kh2
min

(u, y)ωd(du)
}
ωd(dx) f (y)ωd(dy)

≤ ‖ f ‖∞

∫
y

∫
x

∫
u

c2
0(h)K2

h2 (u, x)c0(hmin)Kh2
min

(u, y)ωd(du)ωd(dx) f (y)ωd(dy)

≤ ‖ f ‖∞c2
0(h)c2(h).

Finally,
C ≤ Ξ n‖ f ‖1/2∞ c0(h)

√
c2(h) + Ξ ‖ f ‖∞n.

Hence, given that x ≥ 1, we get

C
√

x/n2 ≤ Ξ ‖ f ‖1/2∞ c0(h)
√

c2(h)
√

x/n + Ξ ‖ f ‖∞
√

x/n

≤ θ′c2
0(h)c2(h)/(3n) + Ξ ‖ f ‖∞x/(θ′n) + Ξ ‖ f ‖∞

√
x/n

≤ θ′c2
0(h)c2(h)/(3n) + Ξ ‖ f ‖∞x/(θ′n).

Now let us consider

S =

a = (ai)2≤i≤n, b = (bi)1≤i≤n−1 :
n∑

i=2

E{a2
i (Xi)} ≤ 1,

n−1∑
i=1

E{b2
i (Xi)} ≤ 1

 .
We have

D = sup
(a,b)∈S

 n∑
i=2

i−1∑
j=1

E{(Gh,hmin (Xi, X j) + Ghmin,h(Xi, X j))ai(Xi)b j(X j)}

 .
We have, for (a, b) ∈ S,

n∑
i=2

i−1∑
j=1

E{Gh,hmin (Xi, X j)ai(Xi)b j(X j)}

≤

n∑
i=2

i−1∑
j=1

E
{ ∫
|c0(h)Kh2 (u, Xi) − fh(u)||ai(Xi)||c0(hmin)K(u, X j) − fhmin (u)||b j(X j)|ωd(du)

}

≤

n∑
i=2

n−1∑
j=1

∫
E {|c0(h)Kh2 (u, Xi) − fh(u)||ai(Xi)|}E{|c0(hmin)Kh2

min
(u, X j) − fhmin (u)||b j(X j)|}ωd(du),
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and for any u, using the Cauchy–Schwarz inequality, we get

n∑
i=2

E {|c0(h)Kh2 (u, Xi) − fh(u)||ai(Xi)|} ≤
√

n

√√ n∑
i=2

E{|c0(h)Kh2 (u, Xi) − fh(u)|2}E{a2
i (Xi)}

≤
√

n

√√ n∑
i=2

E{c2
0(h)K2

h2 (u, Xi)}E{a2
i (Xi)}

≤
√

n

√√
‖ f ‖∞c2

0(h)c2(h)
n∑

i=2

E{a2
i (Xi)}

≤

√
c2

0(h)c2(h)
√

n‖ f ‖∞.

Now since ∫
fhmin (u)ωd(du) = 1,

and ∫
E{c0(hmin)Kh2

min
(u, X j)}ωd(du) = 1,

we have

n−1∑
j=1

∫
E{|c0(hmin)Kh2

min
(u, X j) − fhmin (u)|ωd(du)|b j(X j)|} ≤ 2

n−1∑
j=1

E{|b j(X j)|} ≤ 2
√

n

√√√n−1∑
j=1

E{|b2
j (X j)|} ≤ 2

√
n.

Finally,
n∑

i=2

i−1∑
j=1

E{Gh,hmin (Xi, X j)ai(Xi)b j(X j)} ≤ 2n
√
‖ f ‖∞

√
c2

0(h)c2(h),

and

Dx/n2 ≤ 4
√
‖ f ‖∞

√
c2

0(h)c2(h)/nx ≤ θ′c2
0(h)c2(h)/(3n) + 12‖ f ‖∞x2/(θ′n).

In summary, we have proved

Ax2/n2 ≤ 8x2c0(hmin)‖K‖∞/n2, Bx3/2/n2 ≤ θ′c2
0(h)c2(h)/(3n) + 6c2

0(hmin)c2(hmin)x3/n2θ′

C
√

x/n2 ≤ θ′c2
0(h)c2(h)/(3n) + Ξ ‖ f ‖∞x/(θ′n), Dx/n2 ≤ θ′c2

0(h)c2(h)/(3n) + 12‖ f ‖∞x2/(θ′n).

But
c2

0(hmin)c2(hmin) = c0(hmin)
∫

Kh2
min

(x, y)c0(hmin)Kh2
min

(x, y)ωd(dy) ≤ c0(hmin)‖K‖∞.

Thus finally, with probability larger than 1 − 5.54|H|e−x, we have, for any h ∈ H ,

|U(h, hmin)/n2| ≤ θ′c2
0(h)c2(h)/n + Ξ ‖ f ‖∞x2/(θ′n) + Ξ c0(hmin)‖K‖∞x3/(θ′n2).

This ends the proof of Lemma B.

Back to (A.9), we have the following control.

Lemma C. With probability greater that 1 − 9.54|H|e−x, for any h ∈ H ,∣∣∣∣〈 f̂h − f , f̂hmin − f 〉 − 〈c0(h)Kh2 , c0(hmin)Kh2
min
〉/n

∣∣∣∣ ≤ θ′‖ fh − f ‖2 + θ′c2
0(h)c2(h)/n

+ {θ′/2 + 1/(2θ′)}‖ fhmin − f ‖2 + Cx2‖ f ‖∞/(θ′n) + C(K)c0(hmin)x3/n2, (A.12)

where C is an absolute constante and C(K) a constant only depending on K.
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Proof of Lemma C. We have first to control (A.10) and (A.11), namely

〈 f̂h, fhmin〉/n − 〈 f̂h, fhmin〉/n + 〈 fh, fhmin〉/n

and
V(h, hmin) + V(hmin, h) + 〈 fh − f , fhmin − f 〉.

Let h and h′ be fixed. We have

〈 f̂h, fh′〉 =
1
n

n∑
i=1

∫
c0(h)Kh2 (x, Xi) fh′ (x)ωd(dx).

Therefore,

|〈 f̂h, fh′〉| ≤ ‖ fh′‖∞ =

∥∥∥∥∥∫ c0(h)Kh′2 (u, y) f (y)ωd(dy)
∥∥∥∥∥
∞

≤ ‖ f ‖∞,

and
|〈 fh, fhmin〉| ≤ ‖ fh‖∞

∫
fhmin (u)ωd(du) ≤ ‖ f ‖∞,

which gives the control of (A.10), viz.

|〈 f̂h, fhmin〉/n − 〈 f̂h, fhmin〉/n + 〈 fh, fhmin〉/n| ≤ 3‖ f ‖∞/n.

It remains to bound the three terms of (A.11). We get

V(h, h′) = 〈 f̂h − fh, fh′ − f 〉 =
1
n

n∑
i=1

[
gh,h′ (Xi) − E{gh,h′ (Xi)}

]
with gh,h′ (x) = 〈c0(h)Kh2 (·, x), fh′ − f 〉. We have ‖gh,h′‖∞ ≤ ‖ fh′ − f ‖∞ ≤ 2‖ f ‖∞.

Furthermore using the Cauchy–Schwarz inequality, we obtain

E{g2
h,h′ (X1)} =

∫
y

[∫
x

c0(h)Kh2 (x, y){ fh′ (x) − fh(x)}ωd(dx)
]2

f (y)ωd(dy)

≤ ‖ f ‖∞

∫
y

[∫
x

c0(h)Kh2 (x, y){ fh′ (x) − fh(x)}ωd(dx)
]2

ωd(dy)

≤ ‖ f ‖∞c0(h)
∫

y

[∫
x

Kh2 (x, y){ fh′ (x) − fh(x)}2ωd(dx)
]

×

{
c0(h)

∫
x

Kh2 (x, y)ωd(dx)
}
ωd(dy)

≤ ‖ f ‖∞c0(h)
∫

y

∫
x

Kh2 (x, y){ fh′ (x) − fh(x)}2ωd(dx)ωd(dy)

≤ ‖ f ‖∞‖ fh′ − fh‖2.

Consequently, with probability larger than 1 − 2e−x, Bernstein’s inequality [20] leads to

|V(h, h′)| ≤
√

2x‖ f ‖∞‖ fh′ − f ‖2/n + 2x‖ f ‖∞/(3n) ≤ θ′‖ fh′ − f ‖2/2 + C‖ f ‖∞x/(θ′n).

The bound on V(h, h′) obtained above is first applied with h′ = hmin; then we invert the roles of h and hmin. Besides,
we have

|〈 fh − f , fhmin − f 〉| ≤ θ′‖ fh − f ‖2/2 + ‖ fhmin − f ‖2/(2θ′).
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Finally using Lemma B, we get with probability larger than 1 − 9.54|H|e−x,

|〈 f̂h − f , f̂hmin − f 〉 − 〈c0(h)Kh2 , c0(hmin)Kh2
min
〉/n|

≤ θ′c2
0(h)c2(h)/n + Ξ ‖ f ‖∞x2/(θ′n) + Ξ c0(hmin)‖K‖∞x3/θ′n2)

+ 3‖ f ‖∞/n + {θ′/2 + 1/(2θ′)}‖ fhmin − f ‖2 + 2‖ f ‖∞x/(θ′n) + θ′‖ fh − f ‖2

≤ θ′‖ fh − f ‖2 + θ′c2
0(h)c2(h)/n + {θ′/2 + 1/(2θ′)}‖ fhmin − f ‖2 + Cx2‖ f ‖∞/(θ′n) + C(K)c0(hmin)x3/n2,

which completes the proof of Lemma C.

Now Proposition A gives with probability larger than 1 − Ξ |H|e−x, for any h ∈ H ,

‖ f − fh‖2 + c2
0(h)c2(h)/n ≤ 2‖ f − f̂h‖2 + C2(K)‖ f ‖∞x2/n,

where C2(K) depends only on K. Hence by applying Lemma C with h first and then ĥ we obtain with probability
larger than 1 − Ξ |H|e−x, for any h ∈ H ,

|〈 f̂h − f , f̂hmin − f 〉 − 〈c0(h)Kh2 , c0(hmin)Kh2
min
〉/n − 〈 f̂ĥ − f , f̂hmin − f 〉 + 〈c0(ĥ)Kĥ2 , c0(hmin)Kh2

min
〉/n|

≤ 2θ′‖ f̂h − f ‖2 + 2θ′‖ f̂ĥ − f ‖2 + (θ′ + 1/θ′)‖ fhmin − f ‖2 + C̃(K){‖ f ‖∞x2/n + x3c0(hmin)/n2}/θ′,
(A.13)

where C̃(K) is a constant only depending on K. Now back to (A.8) and using (A.13), we have

‖ f̂ĥ − f ‖2 ≤ ‖ f̂h − f ‖2 + penλ(h)

− 2{〈 f̂h − f , f̂hmin − f 〉 − 〈c0(h)Kh2 , c0(hmin)Kh2
min
〉/n} − 2〈c0(h)Kh2 , c0(hmin)Kh2

min
〉/n

− penλ(ĥ) + 2{〈 f̂ĥ − f , f̂hmin − f 〉 − 〈c0(h)Kĥ2 , c0(hmin)Kh2
min
〉/n}

+ 2〈c0(ĥ)Kĥ2 , c0(hmin)Kh2
min
〉/n

≤ ‖ f̂h − f ‖2 + penλ(h)

− 2〈c0(h)Kh2 , c0(hmin)Kh2
min
〉/n − penλ(ĥ) + 2〈c0(ĥ)Kĥ2 , c0(hmin)Kh2

min
〉/n

+ 4θ′‖ f̂h − f ‖2 + 4θ′‖ f̂ĥ − f ‖2 + 2(θ′ + 1/θ′)‖ fhmin − f ‖2

+ C̃(K){‖ f ‖∞x2/n + x3c0(hmin)/n2}/θ′.

Choosing θ′ = θ/4 yields the result. This completes the proof of Proposition B.

The next proposition gives a bound for the bias term (see [12]) that is used to obtain rates of convergence. Define
for f : Sd−1 → R and s even,

Ds f =

s/2∑
i=1

2i
(2i)!

γ2i,s/2−iD2i f ,

where γ0 = 1 and

γi =
∑

α1+···+αd−1=i

(−1)α1

(2α1 + 1)!
· · ·

(−1)αd−1

(2αd−1 + 1)!
.

Proposition C. Assume that f ∈ F2(s). Let K be a class s kernel, where s ≥ 2 is even. Then

lim
h→0
‖h−s|E( f̂h) − f | − |α−1

0 (K)αs(K)Ds f |‖ = 0.

For d = 3 and for von Mises kernel, SPCO algorithm turns to be simple to compute. Straightforward computations
yield the next lemma, which specifies the various quantities involved in the procedure.
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Lemma D. For S2 and K(x) = e−x, we have

‖ f̂h − f̂hmin‖
2 =

4πc2
0(h)

n2 e−2/h2
h2

∑
i, j

sinh(|Xi + X j|/h2)
|Xi + X j|

+
4πc2

0(hmin)
n2 e−2/h2

min h2
min

∑
i, j

sinh(|Xi + X j|/h2
min)

|Xi + X j|

−
8π
n2 c2

0(h)c2
0(hmin)e−1/h2

e−1/h2
min

∑
i, j

sinh(|Xi/h2 + X j/h2
min|)

|Xi/h2 + X j/h2
min|

,

with c0(h)−1 = 4πe−1/h2
h2 sinh(1/h2) and c2(h) = 2πe−2/h2

h2 sinh(2/h2).
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