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Abstract-- This article focuses on a 2D analytical model for a 

fast computation of magnetic losses due to eddy currents in the 

permanent magnets as well as iron losses in the ferromagnetic 

parts within coaxial magnetic gears. The magnetic field 

distribution is computed in yokes and permanent magnets by 

solving both Maxwell's equations, whereas for pole pieces the 

magnetic field is computed by coupling the previous analytical 

model with a reluctance network model. Both the eddy current 

losses and iron losses are determined from this hybrid analytical 

model. The iron loss model takes into account the temporal and 

spatial variations of flux density. The eddy current loss model 

takes into account the magnet splitting. Results of this 

magnetostatic eddy current loss model are then compared to the 

results obtained with a 2D magnetodynamic finite element model. 

A verification of validity limits is also proposed. The final function 

of this analytical model is to ensure integration into a set of models 

in the aim of a global mechatronic optimization of magnetic gears, 

for their insertion into a multi-megawatt wind turbines. A 

preliminary bi-objective, mass-efficiency optimization protocol is 

subsequently proposed along with an analysis of the computation 

time reduction via the presented models. 

Index Terms-- Fast computation, eddy current loss, permanent 

magnet, hybrid analytical model, permeance network, iron loss, 

magnetic gear, optimization. 

I.  NOMENCLATUREܣሺ௞ሻ: Magnetic vector potential of region kܤ௥ሺ௞ሻ / ܤ𝛼ሺ௞ሻ ∶ Radial / tangential flux density in region k [T]ܤ / ⫽ܤ⊥ ∶ Major / minor axis of the flux density locus [T]ܨ: Fundamental magnetic field frequency [Hz] ܨ௜: Iron loss frequency of the ring ݅ [Hz]ܨ௟௜௠: Skin depth frequency [Hz]ܩ௠: Gear ratioܬሺ௞ሻ: Eddy current density in region k [A/m²]݇: Index of the magnetic gear region ܭ௜: Magnet splitting of the ring ݅ defined in Fig. 4ܮ௭: Magnetic length of the magnetic gear [m]ܯሺ௞ሻ: Radial magnetization distribution of region k௣ܰ௢௦: Number of positions for the magnetic loss computation݌௜௡௧ ௘௫௧: Number of internal / external ring pole pairs௜ܲ௥௢௡ሺ௞ሻ݌ /  : Instantaneous iron loss density in region k [W/m3]

M. Desvaux, H. Ben Ahmed and B. Multon are with SATIE, ENS Rennes, 
University of Bretagne Loire, CNRS, 35170 Bruz, France (e-mail: 
melaine.desvaux@ens-rennes.fr, hamid.benahmed@ens-rennes.fr, 
bernard.multon@ens-rennes.fr).  

𝐸ܲௗௗ௬ሺ௞ሻ : Eddy current losses in region k [W] ௥ܲ  / 𝛼ܲ: Radial / tangential permeanceܳ: Number of ferromagnetic pole pieces ܴ𝑎𝑣ሺ௞ሻ: Average radius of region k [m]ܵ௉ெሺ௞ሻ: Permanent magnet area of region k [m²]௜ܷ,௝: Potential of the permeance network at point ݅, ௜௡௧ߜ݆ ,݅ ௘௫௧: Internal / external airgap [m]𝜉௜,௝: Major axis angle of the flux density at pointߜ /  ݆ [rad]𝜃ሺ௞ሻ: Angular position of the ring of region k [rad]𝜃̂௘௫௧ሺ௞ሻ: Displacement amplitude of the external ring for the 
average magnetic loss computation of region k [rad] 𝜃: Global angular position of the magnetic gear [rad] 𝜃௜,௝∗ : Global angular position maximizing flux density at the 
point ݅, ݆ [rad] 𝛺ሺ௞ሻ: Rotational speed of the ring of region k [rad/s]𝜎: Electrical conductivity of magnets [S] 𝜙௥,௜,௝  / 𝜙𝛼,௜,௝ ∶ Radial / tangential flux source at point ݅, ݆𝜏௜௡௧  / 𝜏௘௫௧: Pole pitch of the internal / external ring [m]𝛺௜/଴: Rotational speed of the ring ݅ [rad/s]

Fig. 1: Coaxial magnetic gear architecture in an exploded-view drawing with 
low pole numbers (i.e. ݌௜௡௧ ௘௫௧݌ ,2 = = 7, and ܳ = 9)

II. INTRODUCTION

Mechanical gearboxes, as currently used in drives, and
electromechanical conversion chains provide for a smaller
capital expenditure and lower mass than a direct
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drive conversion chain [1]. On the downside, mechanical 
gearboxes cause production interruptions and the need for 
repairs, thus increasing operating costs [2]. In this context, an 
attractive solution would consist of developing a conversion 
chain with a semi-fast generator and a magnetic gear [3]. The 
most popular topology of magnetic gears was proposed by 
Martin [4] and has been the topic of various studies conducted 
by Atallah [5][6] and others [7][8][9][10][11]. This magnetic 
gear structure, called coaxial (shown in Fig. 1), offers 
potentially high performance with a higher torque density and 
greater reliability than mechanical gearboxes [12]. The 
structure becomes even more attractive in high-torque 
applications, like a high-power wind turbine (on the order of 
several MN.m and several MW) [13]. 

The competitiveness of this magnetic gear must be evaluated 
with respect to wind turbine operations, with conversion chain 
efficiency and heat dissipation constituting the major criteria. 
Magnetic losses have already been computed using the finite 
element method [9][14], but computation time remains too high 
to integrate the magnetic loss computation into a set of models 
for a global mechatronic optimization of magnetic gears. 
Magnetic field hybrid analytical models proposed in [15] based 
on subdomain model [16][17] coupled with permeance network 
model [18] should allow to compute analytically the different 
magnetic losses (eddy current in magnets and iron losses). An 
optimization procedure adapted to the analytical computation 
of magnetic losses must also be proposed. 

The major contribution of this article lies in the development 
of a fast computation of magnetic losses that incorporates both 
eddy current losses in permanent magnets and iron losses in 
laminated yokes and pole pieces based on a hybrid analytical 
model [15]. The magnetic loss computation model is based on 
the solution to Laplace's and Poisson's equations [16][17] for 
permanent magnets and yokes and moreover depends on the 
evolution of the magnetic field. For laminated pole pieces, a 
previous analytical model is coupled with a bi-directional 
permeance network model [18] in order to determine the 
magnetic field distribution. A classical loss computation 
method (used with a conventional electrical machine) is then 
performed to derive eddy current losses in permanent magnets 
[19] with a magnet splitting consideration and for iron losses by 
means of a spatial and temporal evaluation of the flux density 
in post-processing [20]. The analytical results obtained from 
these models will be compared with results from a finite 
element model in magnetostatics and magnetodynamics by 
considering both precision and computation time. Lastly, a bi-
objective mass efficiency optimization protocol, including 
magnetic loss models, is proposed for a 6-MW and 12.5-rpm 
magnetic gear.  

III. PRINCIPLE OF THE MAGNETIC GEAR

The coaxial magnetic gear [5] shown in Fig. 1 is composed 
of three magnetic parts: an internal ring with ݌௜௡௧  pole pairs of
permanent magnets and a ferromagnetic yoke; an external ring 
with ݌௘௫௧  pole pairs of permanent magnets and a ferromagnetic
yoke; and a ring with Q ferromagnetic poles between the two 
permanent magnet rings (an example is provided in Fig. 1 with 

low pole numbers, to improve readability: ௘௫௧݌ ,௜௡௧ = 2݌  = 7,
and ܳ = 9). To achieve power transmission, the pole numbers 
of the three rings must respect Eq. (1). ݌௜௡௧ + ௘௫௧݌ =  ܳ (1)

Depending on the fixed ring, the gear ratio ܩ௠ is given by
(2), where 𝛺௜௡௧/଴, 𝛺௘௫௧/଴ and 𝛺ொ/଴ are the rotational speeds of
the internal ring, external ring and pole piece ring, respectively. 
The fundamental magnetic field frequency ܨ is then given by 
(3). To compute the magnetic field distribution in the magnetic 
gear, the fixed ring is not needed; the analytical magnetostatic 
model presented in the next section is thus available regardless 
of the fixed ring. 

{
𝛺௜௡௧/଴ = Ͳ → ௠ܩ = 𝛺௘௫௧/଴𝛺ொ/଴ = ௘௫௧𝛺ொ/଴݌ܳ = Ͳ → ௠ܩ = 𝛺௜௡௧/଴𝛺௘௫௧/଴ = ௜௡௧𝛺௘௫௧/଴݌௘௫௧݌− = Ͳ → ௠ܩ = 𝛺௜௡௧/଴𝛺ொ/଴ = ௜௡௧ܳ݌

(2)

{
𝛺௜௡௧/଴ = Ͳ → ܨ = ௘௫௧݌| . 𝛺௘௫௧/଴|ʹ𝜋 = |ܳ. 𝛺ொ/଴|ʹ𝜋𝛺ொ/଴ = Ͳ → ܨ = ௜௡௧݌| . 𝛺௜௡௧/଴|ʹ𝜋 = ௘௫௧݌| . 𝛺௘௫௧/଴|ʹ𝜋𝛺௘௫௧/଴ = Ͳ → ܨ = ௜௡௧݌| . 𝛺௜௡௧/଴|ʹ𝜋 = |ܳ. 𝛺ொ/଴|ʹ𝜋

(3)

IV. HYBRID ANALYTICAL MAGNETOSTATIC MODEL

A. Magnetic field resolution elsewhere than pole pieces 

Fig. 2: Magnetic gear parameterization of the various regions 

To evaluate the magnetic losses in permanent magnets and 
yokes of the magnetic gear, it is first necessary to determine the 
magnetic field distribution across the various regions of the 
system, as presented in Fig. 2. For this computation, a 2D 
magnetostatic model, developed by [16] without any magnetic 
field computation in the yokes and by [17] with such a 
computation in the yokes, has been applied along with: the 
radial magnetization of magnets, a constant remanence of the 
magnets, and a constant relative permeability for all materials. 
This analytical model requires solving Poisson's and Laplace's 
equations (4) in the k region of the system (i.e. yoke region, 
permanent magnet region, air gap region, and each air space 

X

VI

I

II
III, q

IV

V

External ring yoke
External ring permanent magnets

External airgap

Ferromagnetic 
pole pieces ring

Internal airgap

Internal ring 
permanent magnets

Internal ring 
yoke.

X

VI

III, q-1

2



between pole pieces), where ܣሺ௞ሻ and ܯሺ௞ሻ are the magnetic
vector potential and radial magnetization distribution, 
respectively; ݎ and ߙ are the cylindrical coordinates. 𝜕²ܣሺ௞ሻ𝜕²ݎ + ͳݎ ݎ��ሺ௞ሻܣ�� + ²ߙ��ሺ௞ሻܣ²�� = {−ͳݎ Ͳߙ��ሺ௞ሻܯ�� (4)

From boundary conditions defined [17], it is possible to 
obtain the magnetic potential vector ܣሺ௞ሻ, radial flux ܤ௥ሺ௞ሻ and
tangential flux ܤ𝛼ሺ௞ሻ in the different magnetic gear regions. With
this analytical model, the magnetic field distribution is 
computed for just a single global position of the magnetic gear. 
To derive the magnetic losses, it then becomes necessary to 
compute the magnetic field distribution many times over for 
various global positions, representing one magnetic cycle of the 
system. As regards iron losses in the pole pieces, since the 
analytical model precludes any magnetic field computation in 
these regions, coupling with a bi-directional reluctance network 
model is required to determine the flux density distribution. 

B. Magnetic field resolution in a pole piece resulting from 

coupling with a permeance network model 

Fig. 3: Pole piece parameterization for the ܰ*ܰ permeance network model 

To compute iron losses in laminated pole pieces like in [20],
for just one laminated pole piece, it is possible to determine the 
flux density distribution resulting from coupling between the 
analytical model based on Maxwell's equation [17] and the 
permeance network model, as shown in Fig. 3 with a low 
permeance number. To compute the flux density distribution in 
a laminated pole piece, a constant radial and tangential mesh 
has been adopted, and the permeance values are computed like 
in [21]. The radial and angular discretizations are then set equal 
in order to obtain an ܰ ∗ ܰ permeance network. 

The coupling between both analytical models is performed 
on the pole piece boundaries, where the flux sources 𝜙௥,௜,௝ and𝜙𝛼,௜,௝ of the reluctance network model are determined by (5),
and where ܣሺ௞ሻ correspond to the potential vector determined in
regions II, III and IV from the model described in section IV-
A. To identify the flux in the radial and tangential permeances 
of the network, Eq. (6) must be solved at the various nodes (the 
potentials ௜ܷ,௝ are the unknowns of this problem). If a node is
adjacent to the pole piece boundary, then different terms in (6)
must be substituted by the flux sources in (5), as displayed in 
(7) for specific values of ݅ and ݆. 

{𝜙௥,௜,௝ = ቀܣሺ௞ሻሺݎ௜ , ௜+ଵሻߙ − ௜ݎሺ௞ሻሺܣ , ௜ሻቁߙ 𝜙𝛼,௜,௝ܮ = ቀܣሺ௞ሻሺݎ௜+ଵ, ௜ሻߙ − ௜ݎሺ௞ሻሺܣ , ௜ሻቁߙ ܮ (5)

( ௜ܷ,௝ − ௜ܷ−ଵ,௝)ʹ. 𝛼ܲ + ( ௜ܷ,௝ − ௜ܷ,௝−ଵ)ʹ. ௥ܲ +( ௜ܷ,௝ − ௜ܷ+ଵ,௝)ʹ. 𝛼ܲ + ( ௜ܷ,௝ − ௜ܷ,௝+ଵ)ʹ. ௥ܲ = Ͳ (6)

{
( ௜ܷ,௝ − ௜ܷ−ଵ,௝)ʹ. 𝛼ܲ = 𝜙𝛼,௜,௝  ⃪ ݅ = ͳ( ௜ܷ,௝ − ௜ܷ+ଵ,௝)ʹ. 𝛼ܲ = 𝜙𝛼,௜,௝   ⃪ ݅ = ܰ( ௜ܷ,௝ − ௜ܷ,௝−ଵ)ʹ. ௥ܲ = 𝜙௥,௜,௝  ⃪ ݆ = ͳ( ௜ܷ,௝ − ௜ܷ,௝+ଵ)ʹ. ௥ܲ = 𝜙௥,௜,௝  ⃪ ݆ = ܰ (7)

It then becomes possible to derive a matrix system (8) from 
these equations, where: [ܷ] is the potential matrix (containing 
the problem unknowns), [ܲ] the permeance matrix, and [𝜙] the 
flux matrix (containing the flux found from Maxwell's 
equation). The potential matrix [ܷ] can thus be determined 
from an inversion of matrix [ܲ]. This numerical operation 
yields the radial flux ܤ௥,௜,௝ and tangential flux ܤ𝛼,௜,௝ using (9).
To compute the iron losses in pole pieces, the pole piece 
permeance network will include 20*20 nodes. This 
configuration permits to have a low computation time for the 
permeance network resolution, compared to the global iron loss 
computation time (lower than 5% of the global computation 
time), without impacting the precision of the iron loss 
computation (i.e. this difference is less than 1% with an iron 
loss computation in pole pieces including 50*50 nodes). [ܲ]ே∗ே,ே∗ே ∗ [ܷ]ே∗ே,ଵ = [𝜙]ே∗ே,ଵ (8)

{
௥,௜,௝ܤ = ͳݎ௜ ߚܰ ܮ ቆ( ௜ܷ,௝ − ௜ܷ,௝−ଵ)ʹ. ௥ܲ +( ௜ܷ,௝+ଵ − ௜ܷ,௝)ʹ. ௥ܲ ቇ

𝛼,௜,௝ܤ = ͳܴெሺ𝐼𝐼𝐼ሻ − ܴ௠ሺ𝐼𝐼𝐼ሻܰ ܮ ቆ( ௜ܷ,௝ − ௜ܷ−ଵ,௝)ʹ. 𝛼ܲ +( ௜ܷ+ଵ,௝ − ௜ܷ,௝)ʹ. 𝛼ܲ ቇ (9)

V.  EDDY CURRENT LOSSES IN PERMANENT MAGNETS

A. Eddy current determination from the analytical model 

To rigorously compute the eddy current losses in permanent 
magnets, it is necessary to solve the scattering equation  in both 
regions of permanent magnets (10), where 𝜃ሺ௞ሻ is the angular
position of the permanent magnet rings (݇ = ݇ or ܫ = ܸ). In this 
article, it is considered that the magnetic reaction of the eddy 
current on the magnetic field distribution is negligible in 
comparison with magnetostatic induction [19]. This 
consideration is equivalent to considering a skin depth greater 
than the magnet thickness. The eddy current loss computation 
can thus be decoupled from the magnetic field computation. 
The magnetic field distribution is then computed in 
magnetostatics [17], as described in the previous section, while 
the eddy current ܬሺ௞ሻ is computed by (11) for the two permanent
magnet rings, whose eddy current source term ܬ଴ሺ௞ሻ leads to
imposing a total axial current in the magnet equal to zero (12). 
The eddy current losses in a single magnet are determined in 
both permanent magnet regions using (13), with ݇ =  .ܸ and ܫ

݅ = ͳ

௜ܷ,௝

݆ = ͳ

௥ܲܲ 𝛼 𝜙𝛼,௜,௝

𝜙௥,i,௝

𝛼݆ܲ = ܰ

݅ = ܰ

௥ܲ
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𝛥ܣሺ௞ሻ + ͳݎ ߙ��ሺ௞ሻܯ�� =µሺ௞ሻ. 𝜎. 𝛺ሺ௞ሻ ቆ𝜕ܣሺ௞ሻ𝜕𝜃ሺ௞ሻ + ߙ��ሺ௞ሻܣ�� ቇ (10)

,ݎ)ሺ௞ሻܬ ,ߙ 𝜃ሺ௞ሻ) = 𝜎. 𝛺ሺ௞ሻ ቆ𝜕ܣሺ௞ሻ𝜕𝜃ሺ௞ሻ + ߙ��ሺ௞ሻܣ�� ቇ + ଴ሺ௞ሻܬ (11)

଴ሺ௞ሻܬ = − ͳܵ௉ெሺ௞ሻ∫ 𝜎.𝛺ሺ௞ሻ ቆ𝜕ܣሺ௞ሻ𝜕𝜃ሺ௞ሻ + ߙ��ሺ௞ሻܣ�� ቇ݀ߙ݀ ݎ𝑎
ௌ𝑃𝑀ሺ𝑘ሻ (12)

𝐸ܲௗௗ௬ሺ௞ሻ = ௭ʹ𝜋ܮ ∫ ͳ𝜎 ଶ𝜋
𝜃=଴ ∫ ቀ(ܬሺ௞ሻ)ଶ݀ߙ݀ ݎቁௌ𝑃𝑀ሺ𝑘ሻ

݀𝜃 (13)

Fig. 4: Magnet splitting representation (in this example: ܭ௜௡௧ ௘௫௧ܭ ,3 = = 2)

B. Magnets splitting consideration 

The eddy current losses in magnets can be reduced if the 
magnets are split into ܭ௜௡௧  parts for the internal ring and ܭ௘௫௧
parts for the external ring [22]. ௜௡௧ܭ  and ܭ௘௫௧  correspond to the
ratio of the pole pitch to the permanent magnet width for the 
internal and external rings, respectively, as defined in Fig. 4 
with ܭ௜௡௧ = ͵ and ܭ௘௫௧ = ʹ and with 𝜏௜௡௧ and 𝜏௘௫௧ as defined
in (14). The configuration used to analyze the evolution of eddy 
current losses comprises a fixed pole-piece ring, which implies 
that the high-speed rotor corresponds to the internal ring while 
the low-speed rotor corresponds to the external ring. Integrating 
splitting into the analytical model solely entails dividing the 
angular integration terminals as a function of splitting (shown 
in (15) for the internal ring). Fig. 5 presents the loss percentage 
of transmitted power vs. the splitting of the magnets with a 
rotational speed of 350 rpm for the high-speed rotor and 100 

rpm for the low-speed rotor, given the magnetic gear presented 
in Table I. 

{
𝜏௜௡௧ = ʹ𝜋ܴ𝑎𝑣ሺ𝐼ሻʹ. ௜௡௧𝜏௘௫௧݌ = ʹ𝜋ܴ𝑎𝑣ሺ𝑉ሻʹ. ௘௫௧݌ (14)

ߙ ∈ [𝜃ሺ𝐼ሻ, 𝜃ሺ𝐼ሻ + 𝜏௜௡௧ܭ௜௡௧] (15)

Fig. 5 indicates that the eddy current losses in permanent 
magnets decrease significantly with splitting for the external 
ring and more slowly for the internal ring, according to the 
example presented in Table I. The splitting of the magnets is 
therefore a key parameter in obtaining a high-efficiency 
magnetic gear. 

C.  Validation of the magnetostatic model using a 

magnetodynamic finite element model 

In order to validate the eddy current loss model in permanent 
magnets presented in the previous section, the results obtained 
with this magnetostatic analytical model are compared with 
other results from a 2D transient finite element model, with a 
magnetodynamic model being proposed for the example 
described in Table I. The studied configuration corresponds to 
a fixed pole-piece ring. It is commonly accepted that the skin 
effect begins to have an impact on the magnetic field 
distribution (i.e. on losses) when the rotational speed produces 
an equality between skin thickness and half the pole pitch [19].
From this point forward, results obtained with the analytical 
model presented in the previous section will differ from those 
obtained using ANSYS, a 2D magnetodynamic finite element 
model. 

For the magnetic gear defined in Table I, without any 
splitting of magnets, this phenomenon is first observed for the 
high-speed rotor when the fundamental magnetic field 
frequency ܨ = ͷͷ ݖܪ (which corresponds to a rotational speed 
of 1,680 rpm for the high-speed rotor and 480 rpm for the low-
speed rotor). A comparison between results obtained with the 
magnetostatic analytical model and those with the 2D 
magnetodynamic finite element model can be drawn for various 
fundamental magnetic field frequencies (3) ܨ with 𝛺ொ/଴ = Ͳ,
as indicated in Fig. 6. 

𝜏௜௡௧ܭ௜௡௧
𝜏௜௡௧

𝜏௘௫௧ 𝜏௘௫௧ܭ௘௫௧

Fig. 5: Eddy current loss percentages of the transmitted power vs. splitting of 
the magnets with a rotational speed of 350 rpm for the high speed rotor and 100 
rpm for the low speed rotor for the magnetic gear presented in Table I.

TABLE I:
DATA FOR THE EXAMPLE IN SECTIONS V AND VI

Symbol Quantity Value݌௜௡௧ Number of internal ring pole pairs ௘௫௧ Number of external ring݌2 pole pairs 7
Q Number of ferromagnetic pole pieces 9
D External diameter 250 mmܮ௭ Magnetic length 100 mm𝜏௜௡௧ Pole pitch of the internal ring 140 mm𝜏௘௫௧ Pole pitch of the external ring 50 mmδint Internal air gap 1 mmδext External air gap 1 mm
Br Remanence of the magnets 1.27 Tµ଴ Absolute permeability 4π10-7µሺ𝐼ሻ = µሺ𝑉ሻ Relative permeability of the magnets 1µሺ𝑋ሻ = µሺ𝑉𝐼ሻ Relative permeability of the yokes 1,000𝜎 Conductivity of the magnets 0.9 MS݇ℎ Hysteresis coefficient 364݇௘ Eddy current coefficient 0.167݇௘௫ Excess loss coefficient ߛ1.84 Steinmetz coefficient 2
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This comparison reveals a good correlation between the two 
models for frequencies ܨ of less than approx. 50 Hz. In contrast, 
for frequencies of 50 Hz or more, the hypothesis of a negligible 
magnetic reaction of the eddy current on the magnetic field 
distribution no longer appears to be valid. This outcome was to 
be anticipated since the equality between skin thickness and the 
half-pole pitch is achieved for a fundamental magnetic field 
frequency ܨ = ͷͷ ݖܪ. It is thus possible to define a validity 
criterion for the magnetostatic analytical model of eddy current 
losses in permanent magnets. Such a criterion would be 
satisfied whenever frequencies are below the limit frequency ܨ௟௜௠ (16) obtained with a skin thickness equal to the smaller
half-pole pitch of the two permanent magnet rings as a function 
of splitting. Due to the necessity to have a high efficiency, the 
splitting of the magnets will be significant, and the 
magnetostatic model will always remain valid. 

{
௟௜௠ ܨ = minሺܨ ௟௜௠ ௜௡௧ , ௟௜௠ ௜௡௧ ܨ௟௜௠ ௘௫௧ሻ ܨ = Ͷµሺ𝐼ሻ. 𝜎. 𝜋 ௜௡௧𝜏௜௡௧ܭ) )ଶܨ ௟௜௠ ௘௫௧ = Ͷµሺ𝑉ሻ. 𝜎. 𝜋 ௘௫௧𝜏௘௫௧ܭ) )ଶ

(16)

VI. IRON LOSSES IN FERROMAGNETIC PARTS

Fig. 7: Designation of the three distinct points studied in Section VI, 
representing the magnetic field evolution of the three regions 

A. Flux density evolution 

Both temporal and spatial variations of the flux density 
generate iron losses in the different ferromagnetic regions. To 
determine whether a ferromagnetic region is subjected to 
significant iron losses, it is suggested to draw the flux density 
evolution in a 2D ܤ௥ 𝛼ܤ ,  plane. The locus of the various
ferromagnetic parts must then be analyzed in order to better 
understand the iron loss evolution, as presented in [15]. Fig. 7 
designates three distinct points chosen to analyze the magnetic 

field evolution of these three regions. 

{
௜௡௧ܨ = ௜௡௧݌ . 𝛺௜௡௧/଴ʹ𝜋 . ௜௡௧ܳ݌ = ௘௫௧݌ . 𝛺௘௫௧/଴ʹ𝜋 . ொܨ௜௡௧ܳ݌ = ௜௡௧݌ . 𝛺௜௡௧/଴ʹ𝜋 = ௘௫௧݌ . 𝛺௘௫௧/଴ʹ𝜋ܨ௘௫௧ = ௜௡௧݌ . 𝛺௜௡௧/଴ʹ𝜋 . ௘௫௧݌ܳ = ௘௫௧݌ . 𝛺௘௫௧/଴ʹ𝜋 . ௘௫௧݌ܳ

(17)

ொܨ < ௘௫௧ܨ < ௜௡௧ܨ (18)

(a) 

(b) 

(c) 
Fig. 8: Evolution in the radial and tangential components of flux density when 
the magnetic gear is in rotation and when the fixed ring is the pole piece ring 
for the points displayed in Fig. 7 on the: a) internal yoke, b) external yoke, and 
c) pole piece 

As shown in Fig. 8 for the internal yoke, external yoke and pole 
pieces, the locus generation frequencies differ (Fig. 8a 

Fig. 6: Comparison of results obtained with the magnetostatic analytical model 
and the 2D magnetodynamic finite element model,
for the example presented in Table I

.

.

. Point of the external yoke

Point of the internal yoke

Point of the middle of a pole piece
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corresponds to the point of the internal yoke, Fig. 8b to the point 
of the external yoke and Fig. 8c to the point of the pole piece). 
The locus generation frequency for the various ferromagnetic 
parts thus depends on both rotational speed and pole 
configuration, as described in Eqs. (17) and (18). According to 
Fig. 9, the locus for the various points indicated in Fig. 7 may 
be derived from the curve plotted in Fig. 8 (Fig. 9a references 
the point of the internal yoke, Fig. 9b the point of the external 
yoke, and Fig. 9c the point of the middle of a pole piece). The 
spatial variations of flux density displayed in Fig. 9 confirm the 
need to include spatial variation in the iron loss computation 
method [15]. 

 (a)   (b) 

(c) 
Fig. 9: Spatial variations in flux density for the points displayed in Fig. 7 on 
the: a) internal yoke, b) external yoke, and c) pole piece (presented in Fig. 8) 

As seen in Fig. 9, the largest locus is obtained in the pole 
piece since pole pieces are subjected to a rotating magnetic 
field, imposed by permanent magnet rings. Fig. 9 also reveals 
that the locus obtained in the external yoke is higher than that 
in the internal yoke since the magnetic field distribution is 
apparently being imposed by the internal ring. Even though 
frequency is greater for the locus in the internal yoke (18), iron 
losses in pole pieces will still be higher than those in yokes. 

B. Iron loss computation 

Fig. 10: Locus parameterization for the iron loss evaluation 

Both ܤ⫽, the major axis of the flux density locus, and ܤ⊥, the
minor axis of the flux density locus (as defined in Fig. 10), must 

be determined in order to evaluate the iron losses in both yokes 
and pole pieces [20]. It is therefore necessary to compute the 
magnetic field distribution using the global analytical model 
presented above (i.e. Maxwell's equation coupled with the 
permeance network model) for one magnetic cycle. The next 
step consists of evaluating the norm of the flux ‖ݎ)ܤ௝ , ,௜ߙ 𝜃)‖ everywhere in the ferromagnetic parts for the
different magnetic cycle positions. For the various points 
௝ݎ) , are identified ⊥ܤ and ⫽ܤ ,௜) of the ferromagnetic partsߙ
using Eq. (19), where 𝜑௜,௝ሺ𝜃ሻ is defined in Fig. 10 and Eq. (20),
the major axis angle of the flux density 𝜉௜,௝ is determined from
(21), and 𝜃௜,௝∗  correspond to the global angular position
maximizing flux density at the point (ݎ௝ , (௜ߙ ௝ݎ)⫽ܤ}.[23][15]  , ,௜ߙ 𝜃) = ௝ݎሺܤ‖ , ௜ߙ , 𝜃ሻ‖. cos(𝜑௜,௝ሺ𝜃ሻ)ݎ)⊥ܤ௝ , ௜ߙ , 𝜃) = ௝ݎሺܤ‖ , ௜ߙ , 𝜃ሻ‖. sin(𝜑௜,௝ሺ𝜃ሻ) (19)

𝜑௜,௝ሺ𝜃ሻ = 𝑎ܿݎ𝑡𝑎݊ ቆܤ௥ሺݎ௝ , ௜ߙ + 𝜃ሻܤ𝛼ሺݎ௝ , ௜ߙ + 𝜃ሻቇ − 𝜉௜,௝ (20)

𝜉௜,௝ = 𝑎ܿݎ𝑡𝑎݊ ቆܤ௥ሺ𝜃௜,௝∗ ሻܤ𝛼ሺ𝜃௜,௝∗ ሻቇ (21)

The instantaneous iron loss density ௜ܲ௥௢௡  can then be
evaluated from Eq. (22), where ݇ ℎ, ݇௘ and ݇ ௘௫ are the hysteresis
coefficient, eddy current coefficient and excess loss coefficient, 
respectively, and ߛ the Steinmetz coefficient [24]. In Eq. (22), ܨ corresponds to: ܨ௜௡௧ for the internal yoke iron loss
computation, ܨொ for the pole piece iron loss computation, andܨ௘௫௧  for the external yoke iron loss computation (in accordance
with (17)).

௜ܲ௥௢௡ሺ௞ሻ ௝ݎ) , (௜ߙ = ݇ℎ. .ܨ ቆ(Δܤ⊥ʹ )𝛾 + (Δܤ⫽ʹ )𝛾ቇ
+݇௘ ͳܶ ∫  ் 

௧=଴ 𝑡݀⊥ܤ݀)) )ଶ + ቆ݀ܤ⫽݀𝑡 ቇଶ)݀𝑡 

+݇௘௫ ͳܶ ∫  ் 
௧=଴ 𝑡݀⊥ܤ݀)) )ଶ + ቆ݀ܤ⫽݀𝑡 ቇଶ)ଷ/ସ ݀𝑡

(22)

Fig. 11: Comparison between results obtained with the magnetostatic analytical 
model of the magnetic field distribution and those with a 2D magnetostatic 
finite element model for the magnetic gear presented in Table I 

Axes ܤ௥ 

Axes ܤ𝛼 
Axes ܤ⊥ Axes ܤ⫽ 𝜑ሺ𝑡ሻ𝜉 ሺ𝑡ሻ ⊥ܤሺ𝑡ሻ ⫽ܤ

 ሺ𝑡ሻܤ 
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Fig. 11 shows the evolution in the various iron losses as a 
function of the internal ring speed (when the pole piece ring is 
fixed), with a laminated steel of grade M1000-65 (linear 
properties have been assumed) and with the iron loss coefficient 
proposed in [25], for the magnetic gear described in Table I. 
Fig. 11 also provides a comparison between results obtained 
with the magnetostatic hybrid analytical model of the magnetic 
field distribution and those with a 2D magnetostatic finite 
element model. The iron loss computation in pole pieces from 
the hybrid analytical model gives a result quite different from 
that found with the finite element model because the magnetic 
field can only handle two directions (radial and tangential) for 
the various nodes. These results validate the hybrid analytical 
model for the magnetic field distribution and allow concluding 
that iron losses in the internal yoke are negligible.  

VII. COMPUTATION TIME ANALYSIS

The studies conducted in this section have been based on an 
example with a high pole number, as described in Table II, 
which corresponds to a magnetic gear optimized for wind 
turbine applications (3.9 MW and 15 rpm) [3], with the same 
values of  ݇ℎ, ݇௘, ݇௘௫, ߛ, 𝜎 and ܤ௥  than the magnetic gear
presented in Table I. 

A.  Periodicity of the various magnetic losses 

As shown in Fig. 8, it is impossible to compute iron losses 
in the various parts using the same periodicity. The loss 
computations can thus be performed separately for these 
ferromagnetic parts, according to an external ring displacement 
amplitude for the entire range of magnetic loss computations 
given in (23). 

To compute the average eddy current losses in permanent 
magnets, it is theoretically necessary to run the computation on 
one magnetic cycle of the magnetic field, corresponding to: 𝜃̂௘௫௧ሺ𝐼ሻ = 𝜃̂௘௫௧ሺ𝑉ሻ = ͳͺͲ/ܥ௙ = ͳͺͲ°, where 𝜃̂௘௫௧ሺ௞ሻ denotes the
external ring displacement amplitude (the various regions have 
been defined in Fig. 2), and ܥ௙ the cogging torque factor.
However, as shown in Fig. 12 at the rated speed, the 
instantaneous eddy current losses for both permanent magnet 
rings have an evolution with sub-periodicities lower than the 
magnetic cycle periodicity. 

Due to these sub-periodicities, the computation of average 
eddy current losses requires a large number of intermediate 
positions ௣ܰ௢௦ provided the computation is performed for one
magnetic cycle of the magnetic field. To minimize the number 
of intermediate positions ௣ܰ௢௦ (and hence the computation
time) of these loss computations while maintaining adequate 
computational precision, the external ring displacement has 
been set equal to: 𝜃̂௘௫௧ሺ𝐼ሻ = 𝜃̂௘௫௧ሺ𝑉ሻ = 𝜋/݌௜௡௧  (23) (see Fig. 12).

{
𝜃௘௫௧ሺ𝑋ሻ = ʹ𝜋݌௘௫௧ . ௜௡௧ܳ݌  , 𝜃̂௘௫௧ሺ𝐼𝐼𝐼ሻ = ʹ𝜋݌௘௫௧  , 𝜃̂௘௫௧ሺ𝑉𝐼ሻ = ʹ𝜋ܳ

𝜃̂௘௫௧ሺ𝐼ሻ = 𝜃̂௘௫௧ሺ𝑉ሻ = 𝜋݌௜௡௧ (23) 

B.  Consideration of a limited harmonic number 

Due to the high pole number of the studied example, which 
increases the matrix system dimension of the analytical model, 
along with the need to compute magnetic losses using a step-
by-step process, the computation time for the loss evaluation in 
the magnetic gears is quite high. For the magnetic gear 
presented in Table II, the loss computation time equals 96 h 
with the finite element method yet without computing iron 
losses in the internal yoke (as reflected in Fig. 11), using an 
Intel Xeon E5-1630 v3, 8 threads, 3.70 GHz. In contrast, with 
the hybrid analytical model proposed in this paper, the magnetic 
loss computation time drops to 48 h. For both these methods, 
the number of positions taken into account was ௣ܰ௢௦ = ͳͷͲ.

To reduce computation time, [17] proposed a harmonics 
selection method that enables building the matrix system of the 
analytical model based on Maxwell's equations with only 
harmonics which generate magnetic fields. The most attractive 
harmonics selection methods take into account: the impaired 
harmonics of permanent magnet rings, the fundamental 
components of internal and external rings modulated by pole 
piece ring harmonics (e.g. harmonics with a periodicity of ሺ͵. ܳ − .௜௡௧ሻ݌ ʹ𝜋), and the impaired harmonics of both internal
and external rings modulated by the pole piece ring 
fundamental (e.g. harmonics with a periodicity of ሺܳ −͵. .௜௡௧ሻ݌ ʹ𝜋).

TABLE II: 
DATA FOR THE EXAMPLE IN SECTIONS VII 

Symbol Quantity Value ݌௜௡௧ Number of internal ring pole pairs 20 ݌௘௫௧ Number of external ring pole pairs 131 
Q Number of ferromagnetic pole pieces 151 
D External diameter 4 m ܮ௭ Magnetic length 2.1 m ௟ܰ Rated speed of the low-speed rotor 15 rpm ܨ Rated magnetic field frequency 33 Hz 𝜏௜௡௧ Pole pitch of the internal ring 275 mm 𝜏௘௫௧ Pole pitch of the external ring 44 mm δint Internal air gap 5 mm δext External air gap 5 mm 

Fig. 12: Evolution in eddy current losses in a single magnet with internal and 
external permanent magnet rings vs. the external ring position for the example 
presented in Table II at the rated speed 
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To reduce computation time even further, [17] also suggested 
considering a small number of harmonics. In fact, with the 
values offered in [17] (i.e.  ொܰ = ͷ and ܰ/݌௘௫௧ = ͵), the
computation time is once again lowered, with an error of less 
than 2% for both the iron loss computation and eddy current 
losses in permanent magnets of the internal ring computation. 
For the computation of eddy current losses in permanent 
magnets of the external ring, a higher number of harmonics 
must be considered ( ொܰ = ͷ = ௘௫௧݌/ܰ = ͹ are suggested
herein). These values offer the possibility of cutting 
computation time by a factor of 100 (i.e. 30 min vs. 48 h). 

C.  Analysis of the step-by-step process 

A compromise between computation time and precision must 
be found by modifying ௣ܰ௢௦, i.e. the number of positions taken
into account for the various magnetic loss computations. To 
evaluate the level of precision, the magnetic loss value 
references  ௥ܲ௘௙ሺ௞ሻ  have been computed without any harmonics
selection and with: ௣ܰ௢௦ = ͳͷͲ, and ொܰ = ௘௫௧݌/ܰ = ͳͲ. It is
then possible to analyze the computation time and precision of 
all magnetic loss evaluations, as indicated in Fig. 13, with the 
corresponding error defined in (24). 

ሺ௞ሻݎ݋ݎݎܧ = | ௥ܲ௘௙ሺ௞ሻ − 𝐸ܲௗௗ௬/௜௥௢௡ሺ௞ሻ ቀ𝜃௘௫௧ሺ௞ሻ̂ , ௣ܰ௢௦ቁ 
௥ܲ௘௙ሺ௞ሻ | (24) 

Fig. 13 reveals that precision increases as a function of 
computation time. It is observed that the error remains below 
10% with ௣ܰ௢௦ = ͶͲ for the eddy current loss computation in
the external and internal rings, with ௣ܰ௢௦ = ͳͲ for the iron loss
computation in the external yoke, and with ௣ܰ௢௦ = ͷͲ for the
iron loss computation in pole pieces. These values will thus be 
assumed for the following sections of the present study, thus 
providing the possibility to further lower computation time by 
a factor of 30 (1 min vs. 30 min). 

VIII. OPTIMIZATION EXAMPLE

A.  Objective functions 

To illustrate the benefit of this hybrid analytical model, 
which serves to compute magnetic losses, a preliminary bi-
objective, mass-efficiency optimization protocol is proposed 
for a 6-MW and 12.5-rpm magnetic gear in a wind turbine 
application. This optimization routine has been introduced for 
various gear ratios. The objective functions (25) are twofold: to 
minimize the magnetic losses (objective function ܥଵ), and to
minimize the mass of the active magnetic gear parts (objective 
function ܥଶ). The mass of the active parts takes into account the
masses of: yokes ܯ௬௢௞௘௦, permanent magnets ܯ௉ெ, and pole
pieces ܯ௣௢௟௘ ௣௜௘௖௘௦.

ଵܥ} = 𝐸ܲௗௗ௬ሺ𝐼ሻ + ܳ. 𝐼ܲ௥௢௡ሺ𝐼𝐼𝐼,ଵሻ + 𝐸ܲௗௗ௬ሺ𝑉ሻ + 𝐼ܲ௥௢௡ሺ𝑉𝐼ሻܥଶ = ௬௢௞௘௦ܯ ௉ெܯ+ ௣௢௟௘ ௣௜௘௖௘௦ܯ+ (25) 

B.  Variables 

This optimization step is composed of six variables, namely: 
yoke thicknesses, permanent magnet thicknesses, pole piece 
thickness, and internal ring pole pairs ݌௜௡௧ . For a gear ratio
value ܩ௠, the external ring pole pairs ݌௘௫௧  is given in (26) so as
to minimize the cogging torque [6], with the number of 
ferromagnetic pole pieces ܳ determined by (1). ݌௘௫௧ = ௜௡௧݌ . |௠ܩ| + ͳ (26) 

C.  Constrained dimensions 

Due to the 6-MW and 12.5-rpm wind turbine dimensions as 
well as a number of technological constraints, the different 
dimensions have been listed in Table III along with the 
oversizing proposed in [26]. The material properties are the 
same as those in Table I for the laminated steel grade M1000-
65 and NdFeB permanent magnets. 

TABLE III: 
FIXED DIMENSIONS OF THE OPTIMIZATION 

Symbol Quantity Value 

௥ܲ𝑎௧௘ௗ Wind turbine rated power 6 MW ௥ܰ𝑎௧௘ௗ  Wind turbine rated speed 12.5 rpm ௥ܶ𝑎௧௘ௗ Wind turbine rated torque 4.6 MNm 
TG Maximum gear torque 5.1 MNm 
D External diameter 5.5 m ݈௉ெ ௠௜௡ Minimal splitting magnets width 10 mm δint Internal air gap 5 mm δext External air gap 5 mm 

(a) 

(b) 
Fig. 13: Magnetic loss evaluation for various numbers of positions taken into 
account ( ௣ܰ௢௦) for the magnetic gear described in Table II: a) precision,  
and b) computation time 
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D.  Optimization constraints 

Due to the linear magnetic behavior of the materials in the 
analytical model, a maximum induction value is tolerated in the 
ferromagnetic parts, as indicated in (27). On the other hand, a 
multibody mechanical analytical model of pole piece rings 
serves to evaluate the radial displacement  𝒰௥ሺ𝐼𝐼𝐼,௤ሻ and normal
stress  𝜎௡ሺ𝐼𝐼𝐼,௤ሻ of the various ݍ pole piece support bars (ͳ < ݍ <ܳሻ. These bars are made of a non-magnetic material and 
constitute a cage, thus making it possible to ensure the 
mechanical maintenance of pole pieces [27]. The yield of this 
material is: 𝜎௬ = ͶͲͲ ܲܯ𝑎. It can then be imposed that the
radial displacement must be less than 10% of the internal airgap 
(28) and the normal stress in the bars must be less than the yield 
stress 𝜎௬ with a safety coefficient (29) [3]-[28].‖ܤሺ௞ሻሺݎ, ,ߙ 𝑡ሻ‖ < ௠𝑎௫ܤ  = ͳ.ͷ ܶ (27) 

 𝒰 ௥ሺ𝐼𝐼𝐼,௤ሻሺݎ, ,ߙ 𝑡ሻ < Ͳ.ͳ ∗ ௜௡௧ߜ (28) 

𝜎௡ሺ𝐼𝐼𝐼,௤ሻሺݎ, ,ߙ 𝑡ሻ < ʹ/͵ ∗  𝜎ݕ (29) 

E.  Optimization procedure and results 

For a couple of parameters, this classical optimization 
procedure evaluates both objectives along with the various 
constraints. To complete this optimization step, a Particle 
Swarm Optimization (PSO) algorithm has been employed, as 
described in [29]. Optimization is performed in approximately 
24 h for the different gear ratios with 100 particles and in 50 
iterations (with an Intel Xeon E5-1630 v3, 8 threads, 3.70 
GHz). 

Fig. 14 shows the Pareto front of the bi-objective PSO 
optimization with the objective function in (25) for different 
gear ratios. This result demonstrates that magnetic losses 
increase with gear ratio and may reach unacceptable values for 
a high-power energy conversion application (i.e. an efficiency 
below 90%). It then becomes very important to integrate a 
magnetic loss evaluation based on analytical models within a 
magnetic gear optimization procedure. In contrast, minimizing 

losses by decreasing the gear ratio is of no interest since this 
would not reduce the input torque of the generator nor therefore 
its mass and cost. A compromise must be found, and this will 
take the form of a gear ratio optimization by considering the 
magnetic gear and the generator together.  

IX. CONCLUSION

This article has focused on a fast analytical model for 
magnetic loss computations in coaxial magnetic gear structures. 
The model derived takes into account the splitting of magnets 
(for eddy current losses) and spatial variations of the flux 
density (for losses in laminated ferromagnetic parts). The 
proposed 2D linear magnetostatic model is based on a hybrid 
analytical model that also serves to compute other magnetic 
gear parameters like torque, and radial and tangential loads 
[30]. 

The model for eddy current losses in permanent magnets 
proposed in this article has assumed a negligible magnetic 
reaction of the eddy current on the magnetic field distribution 
of permanent magnets. The results on a simplified eddy current 
loss model have been compared to results obtained with a 
magnetodynamic finite element model in an intermediate step 
(Fig. 6). This comparison has highlighted the validity limit of 
the magnetostatic analytical model (see Eq. 16). The iron loss 
model takes into account both the temporal and spatial 
variations of flux density. Fig. 9 has exposed the benefit of 
considering spatial variations. 

A computation time analysis was also carried out, revealing 
the possibility of computing magnetic losses in approximately 
1 min with an error of less than 10% for a 3.9-MW, 15-rpm 
magnetic gear [3] (with an Intel Xeon E5-1630 v3, 8 threads, 
3.70 GHz). 

The final function of this analytical model must be integrated 
into a set of models for the global mechatronic optimization of 
magnetic gears. A preliminary bi-objective mass-efficiency 
optimization protocol with various constraints was then 
proposed to illustrate the feasibility of such a mechatronic 
optimization due to the low computation time generated by this 
hybrid analytical model (Fig. 14). Results have also illustrated 
the need to take losses into account for magnetic gear 
optimization given their strong impact on magnetic gear 
dimensions. 

In subsequent work, a mechanical analytical model of the 
structural parts of the magnetic gear must be proposed in order 
to complete global mechatronic optimization. The 3D effects of 
the magnetic loss computations must still be evaluated. 
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