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We propose different experimental methods to measure the analog of the Debye length in a very
large Magneto-Optical Trap, which should characterize the spatial correlations in the atomic cloud.
An analytical, numerical and experimental study of the response of the atomic cloud to an external
modulation potential suggests that this Debye length, if it exists, is significantly larger than what

was expected.

PACS numbers:

I. INTRODUCTION

Magneto Optical Traps (MOTSs), first realized in
1987 [1], are still an ubiquitous device to manipulate
cold atoms. Early studies [2] have shown that when
the number of trapped atoms is increased beyond a
certain level, the peak density tends to saturate. This
unwanted limitation to obtain high spatial densities
of laser-cooled atomic samples has been attributed to
an effective repulsion between atoms due to multiple
scattering of photons. A basic model to describe atoms
in a large MOT has then emerged, where atoms, beyond
the friction and external trapping force, are subjected
to two kinds of effective interaction forces: an effective
Coulomb repulsion of [2], which is dominant, and an
effective attraction, sometimes called shadow effect,
first described in [3]. Even though the shortcomings
of this model are well known (such as a too large
optical depth, space dependent trapping parameters [4],
sub-doppler mechanisms [5, 6], light assisted collisions
[7] and radiative escape [8, 9] or hyperfine changing
collisions [10, 11]), its predictions on the size and the
shape of the atomic clouds are in reasonable agreement
with experiments on very large MOTs [12].

It is striking that the above “standard model” de-
scribes MOTs as a kind of analog of a non neutral
plasma, as well as an instance of an experimentally
controllable system with long range interactions. This
has prompted several studies [13-19], aimed at better
probing this analogy and its consequences. We note
that these long range forces stems from the resonant
dipole-dipole coupling between atoms [20-26], which if
interference can be neglected lead to radiation trapping
of light in cold atoms [27-29]. This dipole-dipole cou-
pling is also at the origin of modified radiation pressure
on the center of mass [30, 31] and of optical binding
with cold atoms [32] as weel as of super- an subradiance
[33-35]

Current technologies now allow for larger and larger
MOTs, for which long range interactions become even

more important. Hence it becomes feasible to test more
quantitatively this plasma analogy. In particular, spatial
correlations in plasmas are controlled by a characteristic
length, called the Debye length, which depends on
charge, density, temperature. A natural question thus
arises: is an experimental observation of a Debye length
possible in a large MOT?

In this paper, we propose and analyze two types of ex-
periments to probe spatial correlations in a MOT. We
first present a direct measurement by diffraction, and
highlight its inherent difficulties: we have not been able
to measure spatial correlations this way. We demon-
strate however that the cloud’s response to an external
modulation should provide an indirect measurement of
the Debye length. Our experimental results then show
that if the interactions are indeed adequately described
by a Coulomb-like interaction, the corresponding Debye
length is much larger than what could be expected based
on the observed size of the cloud without interaction.

In section II, we present our experimental set-up, re-
call the basic features of the ”standard model”, based
on [2], and discuss the relevant orders of magnitudes. In
section III, we explain different options to probe the in-
teractions and correlations inside the cloud: i) analysis
of the density profile IIT A ii) direct diffraction experi-
ments I1IB iii) response to an external modulation III C.
While method ii) proves to be not viable with current
techniques, comparison of analytical results, simulations
and experiments for methods i) and iii) suggest that the
Debye length in the cloud may be much larger than ex-
pected. The last section IV is devoted to a discussion of
these results.

II. EXPERIMENTAL SETUP AND STANDARD
THEORETICAL MODEL

A. Experimental setup

The experimental apparatus used in this work as been
described in detail elsewhere [12]. 8"Rb atoms are



loaded in a magneto-optical trap from a dilute room-
temperature vapour. The trapping force is obtained by
crossing six large laser beams (waist 2.4 cm) at the cen-
ter of the vacuum chamber, arranged in a two-by-two
counter-propagating configuration. These lasers are de-
tuned from the FF = 2 — F = 3 atomic transition
of the D2 line by typically 6 = —4I', where I' is the
atomic linewidth. The peak intensity in each beam is 5
mW /cm?. The trapping beams also contain a small pro-
portion (a few %) of “repumping” light, tuned close to the
F =1— F = 2 transition. A pair of coils with opposite
currents generate the quadrupole magnetic field neces-
sary for trapping. The magnetic field gradient along the
axis of the coils is 7.2 G/cm. Due to the large diameter
of the trapping beams, the maximal number of trapped
atoms is large, up to 10'!. As discussed in the following,
this results in a large effective repulsive interaction be-
tween atoms mediated by scattered photons. As a con-
sequence the cold atomic cloud is large with a FWHM
diameter typically between 12 and 16 mm, depending on
the value of §. The temperature of the cloud is of the
order 100-200 pK.

We now describe the various experimental techniques
implemented to probe spatial correlations inside the
atomic cloud. The results of these experiments and their
comparison with theoretical models are presented in sec-
tion III. The first technique simply relies on the analysis
of the cloud’s density profile. This is achieved by imag-
ing the trapping light scattered by the atoms, known as
“fluorescence” light, with a CCD camera. However, the
spatial distribution of fluorescence light usually does not
reflect that of the atomic density, because of multiple
scattering [12]. To minimize this effect, we acquire the
fluorescence image at a fixed detuning of -8I'. The time
sequence is as follows: the MOT is operating at a given
detuning ¢ (variable), then the detuning is jumped to -
8T for a duration of 10 us, during which the image is
recorded. During this short time, the atoms move only
by a few 10 pm, which is much smaller than all spatial
scales we look for.

The second technique is based on the direct diffraction
of a probe beam by the cloud. A weak beam of waist 2.2
mm (much smaller than the cloud’s diameter), detuned
by several T', is sent through the center of the cloud im-
mediately after the trapping beams are shut down. The
transmitted far field intensity distribution is recorder us-
ing a CCD camera placed in the focal plane of a lens.

The third technique relies on the measurement of the
cloud’s response to an external sinusoidal modulation. Its
principle is illustrated in Fig. 1. A sinusoidal potential is
generated by crossing two identical laser beams of waist
2.2 mm and detuning +20I" in the center of the cloud,
with an adjustable small angle 6 between them (Fig.1a).
The resulting modulation period is A. = A/#. The in-
tensity of these beams is chosen low enough such that
the associated radiation pressure force doesn’t affect the
functioning of the MOT (no difference in atom number
with and without the modulation beams). To measure
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FIG. 1: Principle of modulation experiment. a: A sinusoidal
modulation is applied by crossing two laser beams on the
cloud. b: The atoms are released from the MOT and the
diffraction grating due to the atomic density modulation is
probed. c: Images of the +1 diffracted orders versus modula-
tion wavelength Ac.

the response of the cloud (in the form of a density grat-
ing), we switch off the MOT laser beams and send the
probe beam described before through the modulated part
of the cloud. The short delay (10us) between probing and
MOT switching off ensures that the initial density modu-
lation is not blurred by the residual atomic motion. The
modulated atomic density acts for the probe as a trans-
mission diffraction grating (Fig.1b). The zeroth and first
diffracted orders are recorded by a CCD camera placed
in the focal plane of a lens. Fig.lc shows the evolution
of the separation 20 between the +1 and —1 orders as
Ae is decreased (the zeroth order is blocked by a filter to
avoid saturation of the CCD). In this figure, each image
is displayed with a different intensity threshold to com-
pensate for the decrease of diffraction efficiency with A
(see Fig.5).

B. Model

In the standard Doppler model, all forces on atoms
inside a MOT stem from the radiation pressure exerted
by the almost resonant photons. Over long enough time
scales, the scattering of many photons produces an av-
erage force on the atomic cloud, which may be decom-
posed as: velocity trapping (ie friction), spatial trapping,
attractive shadow effect, and repulsion due to multiple
scattering. The first two are single atom effects, the last



two are effective interactions between atoms. The fric-
tion force Fyop is due to Doppler cooling. Linearizing for
small velocities, it reads

ﬁdop ~ —myU, (1)
with
Io 8hK? . —6
T Lom (1442

where Iy, kras,0 = 0 /T are respectively the laser inten-
sity, wave number and scaled detuning, I is the satura-
tion intensity, and m the atomic mass. This expression
assumes a small saturation parameter. v is positive (ac-
tual friction) when the lasers are red detuned (¢ < 0).

The trapping force Fi;,p is created by the magnetic
field gradient. We will consider a linear approximation
to this force:

2

Firap ™ —mwzxé, — mwiyéy — mw?2é€,. (2)

The antihelmhotz configuration of the coils induces a non
isotropic trap, with wi =w? = %wg Nevertheless via
laser intensity compensations it is possible to obtain a
spherical cloud, hence we will use in our modelling w, =
Wy = Wy = Wy

The shadow effect, first studied in [3], results from the
absorptions of lasers by atoms with cross section oy, in the
cloud. The laser intensity decreases as the beam propa-
gates into the cloud in direction €, by a factor

b | rpan)

where b is the optical depth of the cloud. Assuming b <
1, one may linearize the above exponential and obtain in
direction z an effective force term:

R0 -2, =~ 2 (f -/ +°°) p(a . 2) d.
3)

This force is attractive, and its divergence is

S - o2
V- -Fs= —GIo?p(x, Y, ), (4)

where c is the speed of light.

The repulsive force [2] is due to multiple scattering of
photons. If the optical depth is small, very few photons
are scattered more than twice, and the effect of multiple
scattering can be approximated as an effective Coulomb
repulsion

= Or0OR 7
F.(r) =3lh———, 5
o(7) orc 13 (5)
where o is the atomic cross section for scattered pho-

tons. The divergence of the force is

OLOR
c

V- F. =6l

p(x,y, 2)

The scattered photons actually have complex spectral
and polarization properties, and og should rather be un-
derstood as an averaged quantity. In all experiments,
or > o, with the consequence that the repulsion dom-
inates over the attractive shadow effect. Since repulsion
and attraction both have a divergence proportional to
the local density, the shadow effect is often considered as
a mere renormalization of the repulsive force; note that
this involves a further approximation, because the forces
are not proportional, even though their divergences are.

Finally, the spontaneous emission of photons acts as a
random noise on the atoms, which induces at the macro-
scopic level a velocity diffusion. Putting everything to-
gether, one obtains a Vlasov-Fokker-Planck equation for
the atomic density in position and velocity f(7,¥,t)

. 1 -~ - kT
Df(F,T.1) = T - (wéfp - L@ 4 F o+ BT Vp) ,
m m
(6a)

and a Poisson equation for the force

V- (Fe + F,) = Cp with C = GIOM.

(6b)
This is a simplified version of the Fokker-Planck equa-
tion in [36]. In our experiments, the atomic dynamics
is typically overdamped: the velocity damping time is
much shorter than the position damping time. The ve-
locity distribution then quickly relaxes to an approximate
gaussian, and the density distribution is described by the
Smoluchowsky equation:

. - . 1 - - kT -
0up(rt) = 9+ (i + oo (Fot Flalp+ 2209 ).

(7)
while (6b) is not modified. Note finally that in this sim-

plified framework the total force ﬁc + 135 has the same
divergence as an effective Coulomb force

M=t 0

C. Analysis of the model

The above model describes a large MOT as a collection
of particles in a harmonic trap, and the dominant inter-
acting force is a Coulomb-like repulsion. This clearly
suggests an analogy with non neutral plasmas, where
trapped electrons interact through real Coulomb forces;
for a detailed review, see [37]. The analogy is not per-
fect: for instance the non potential part of the shadow
effect is neglected, the friction and diffusion in a MOT
are much stronger than in a non neutral plasma, and the
typical optical depth in an experiment is not very small.
Nevertheless, it is a basic model to analyze MOT physics,
and has been used recently to predict new plasma related
phenomena in MOTs (see for instance [16, 38]).



a. Temperature and repulsion dominated regimes
When the repulsion force is negligible, the trapping force
is balanced by the temperature. The cloud has then a
gaussian shape, with atomic density

N _2 . kgT 1/2
S S -7 o _ [ MBL
pr) = (2%13)3/26 7o with g (mw%) O

where N is the total number of trapped atoms. In the
following, {, will be called the ”gaussian length”. For typ-
ical MOT parameters, one has as an order of magnitude
lg ~ 200pm. Increasing N, the repulsion increases, and
the system enters the repulsion dominated regime, where
the trapping force is balanced by the repulsion. Theory
then predicts a spherical cloud with constant density p.,
and step-like boundaries smoothed over the same length
scale I, defined in Eq. (9) [37]; the typical size of the
cloud is denoted by L, and we have the expressions

_ 3mw§ _ Smwgc

pe="5 , L~ p SNY3(10)

B GIQO'L(O'R — O'L)

The cross over between temperature and repulsion dom-
inated regimes is for [; ~ L. Experimentally, sizes of
order L ~ 1cm can be reached (see section IT A), which
should be well into the repulsion dominated regime. Note
that the repulsion dominated regime is not as straight-
forward to analyze when the trap anisotropy and shadow
effect are taken into account, see [39].

b. Plasma coupling parameter and Debye length To
quantify the relative effect of kinetic energy and Coulomb
repulsion, it is customary for plasmas to define the
“plasma coupling parameter” I',, which is the ratio of the
typical potential energy created by a neighboring charge
by the typical kinetic energy. For a MOT in the repulsion
dominated regime, denoting a = (3p./47)~'/% a measure
of the typical interparticle distance, we have the expres-
sion

2

r, - C/(4ra) _a? (1)
kT 12
where we have used (10), and we recall that I, =
(kpT/mw3)'/? is the ”gaussian length”. Using typical
experimental values [, = 200pm, and an atomic density
p = 10" ecm ™3, this yields r, ~ 10~%. A plasma experi-
ences a phase transition from liquid phase to solid phase
at Iy, o~ 175, and is considered in a gas-like phase as
soon as I', < 1. The typical value for a MOT experi-
ment is hence very small, well into the gas phase, and
the expected correlations are weak. In this regime, and
assuming the MOT shape is dominated by repulsion, so
that the density in the central region is approximately
constant, Debye-Hiickel theory then yields for the pair

correlation function [40]

r kpT\'"/?
g(z)(r) = exp <ape’°/)‘D) , with A\p = ( B > .
r p.C

(12)

This expression assumes isotropy: this is why the corre-
lation depends only on one distance 7. ¢(® vanishes for
small r, which is a manifestation of the strong repulsion,
and tends to 1 for > Ap, g(® ~ 1: correlations disap-
pear in this limit. The excluded volume effect kicks in
at very small scales, of order al'y; at larger scales, the
above expression can be replaced by:

I
g(2) (ry~1- %67”)‘5’ . (13)

Inserting the expression for p. (10), one obtains the ex-
pression A\p =g/ V/3, and the rough order of magnitude
Ap ~ 100pum. Using this and the estimated I',, in (13),
we see that the correlations are indeed very small over
length scales of order Ap.

D. Experimental probes of the ” Coulomb” model

Following [2], describing the optical forces induced by
multiple scattering as an effective Coulomb repulsion is a
standard procedure since the early 90s. In particular, it
satisfactorily explains the important observation that the
atomic density in a MOT has an upper limit (preventing
for instance the initially sought Bose-Einstein condensa-
tion). However other mechanisms can lead to a upper
density, such as light assisted collisions or other short
range interactions [7, 9, 41]. Besides the bounded den-
sity, are experiments are consistent with a Coulomb type
repulsion:

e The size scaling L ~ N~'/3 was observed with rea-
sonable precision in experiments [12, 42-44]; how-
ever, this is not a unique signature of a Coulomb re-
pulsion as other repulsive forces (e.g. short ranged
inetractions) can lead to a saturation of the spatial
density.

e A Coulomb explosion in a viscous medium has been
observed by measuring the expansion speed of a
cold atomic cloud in optical molasses: [13, 45].
The result shows a good agreement with what is
predicted for a similar Coulomb gas.

e Self-sustained oscillations of a MOT have been re-
ported in [14]. The model used to explain the ex-
perimental observations assume a cloud with a size
increasing with the atom number. This is again
consistent witht a Coulomb type repulsion but re-
mains a indirect test of these forces.

All these experiments rely on identifying macroscopic ef-
fects of the repulsive force, and microscopic effects such
as the building of correlations in the cloud have not been
directly observed. This is our goal in the following.



III. LOOKING FOR CORRELATIONS IN
EXPERIMENTS

In order to measure directly or indirectly the interac-
tion induced correlations in the atomic cloud, we have
performed three types of experiments, which rely on: i)
an analysis of the density profile, ii) a direct measurement
of correlations by diffraction iii) an analysis of the cloud’s
response to an externally modulated perturbation. This
section gathers our results.

A. Analysis of the density profile

From the theoretical analysis presented in the previ-
ous section, we know that our basic model (7) relates
the Debye length Ap, which controls the correlations, to
the “gaussian length” [;, which controls the tails of the
density profile: A\p = l,/v/3. Fitting the experimental
density profile may then provide information on the De-
bye length. We recall that this is an indirect method and
only serves a a guide for an more reliable estimation of
the Debye length.

The experimental data obtained by fluorescence [12])
is two dimensional, since the density is integrated over
one direction (called z below); selecting the central part
y € [—¢, €], where € is about 10% of cloud’s width, we
obtain the observed density along the x direction:

pm(x)=/ dz [ dy p(z,y,2),

— 0o —€

Figure 2 shows, for two values of the detuning §, this
partially integrated experimental density profile p,.

We compare these profiles with Coulomb Molecular
Dynamics (MD) simulations. We use N = 16384 par-
ticles in an harmonic trap interacting through Coulom-
bian interactions (without shadow effect) with friction
and diffusion, as presented in (7) and (17). We use a
second order Leap-Frog scheme (see e.g. [46]); the inter-
action force is implemented in parallel on a GPU. We use
a time step of At = 107°. We choose the parameters L
and Ap to match the experimental density. Knowing the
simulation parameters allows us to deduce the gaussian
length [,. Figure 2 shows that the fits are reasonably
good, and allow to extract a value for the Debye length
Ap and the cloud’s size in the zero temperature limit L.
These results suggest a value for the Debye length in the
1 — 2mm range, much larger than what was expected on
the basis of the experiments in the temperature domi-
nated regime, see section II. However, this method is
very model dependent: one could imagine other physical
mechanisms or interaction forces producing similar den-
sity profiles. To overcome this difficulty, we need methods
able to probe more directly the interaction and correla-
tions inside the cloud. This is the goal of Sections 111 B
and ITI C.
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FIG. 2: Density p,(z) obtained by fluorescence for —§/I" =
4,6 compared with MD simulation of a trapped Coulomb gas,
using N = 16384 particles. The inset shows the extrapolated
Debye length Ap and the cloud radius L. (The density plots
for —§/I" = 5,8 are not shown here).

B. Direct probing of correlations by diffraction

An alternative method to probe spatial correlations of
particles and thus access the Debye length is by directly
probing two-body correlations via a diffraction experi-
ment: an additional detuned laser beam is sent through
the cloud, and the diffracted intensity I is recorded. For
an incident plane wave, I is proportional to the structure

factor [40]
2
Y e > (14)

where the bracket stands for the ensemble average and
k= Einc — Eend is the difference between the irlcident
wavevector kijne = ki€, and the diffracted one keng =
k;(cos ¢y, sin Oy, sin ¢y, sin Oy, cos Oy, ); this assumes elastic
scattering, see figure 3.

We then have

k= |k| = 2k; sin(0;/2). (15)

In an isotropic homogeneous infinite medium the struc-
ture factor can be computed explicitly using (13) [40]:

k2

S(k) = No(k) + 157

(16)

with kp = 1/Ap. The Dirac function corresponds to
the unscattered radiation. For weak plasma parame-
ter I, — 0, particles are uncorrelated and Poisson dis-
tributed; there is no characteristic correlation length,
Ap — oo and the structure factor is constant

S = No(k) + 1.
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FIG. 3: Sket_gh of an incident beam I;inc diffracted on an atom
in direction kena corresponding to angles 0 and ¢r. We define
and show the vector k = kinc — kena.

In the actual experiment, the structure factor (16) is
modified at small k either by the finite size of the cloud,
or by the finite waist of the probe beam, whichever is
smaller: the resulting central peak then simply reflects
the Fourier transform of the density profile or of the beam
profile. Figure 4 shows an example of S(k) for an MD
simulation of a trapped Coulomb cloud, with a gaussian
probe beam smaller than the cloud:

e The main peak S(k = 0) = N corresponds to the
unscattered radiation.

e For small k ~ 1/L, there is a large smooth peak,
corresponding to the Fourier transform of the probe
beam’s profile.

e For large k, the structure factor tends to 1.

e For intermediate k ~ 1/Ap, there is a small dip
which is the manifestation of the Debye length. It
is deeper when the temperature is smaller, since
correlations are stronger. It disappears for large
temperature (the red curve in Fig. 4 formally cor-
responds to an infinite temperature).

Unfortunately, it is difficult to disentangle the small dip,
signature of the Debye length, from the tails of the central
peak, related to the finite cloud’s size: we have not been
able to reach a sufficient signal to noise ratio. This is
coherent with the results of Sect. III A, which indicate
that the size of the cloud L is not much larger than the
Debye length Ap.

C. Response to an external modulation
1. Principle of the experiment and set-up

Since a direct measure of correlations inside the cloud
is currently not accessible, we have studied indirectly the
effect of these correlations, by analyzing the response to
an external force. As we will see in III C 2, this response
is related to the interactions inside the cloud.
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FIG. 4: MD simulations with N = 16384 particles of the
structure factor S(k), averaged over all k such that |k| = k.
The horizontal axis is adimensionalized by the mean inter-
particle distance a, which is in the simulation a/L = 0.039.
The parameters for the blue curve are: Ap/L ~ 4.9 1072,
', ~ 0.215 (this value for the plasma parameter is much
higher than expected in the atomic coud; smaller, more re-
alistic, values are difficult to reach numerically while keep-
ing a small Ap/L). The waist of the gaussian probe beam is
w =~ 0.76 L. The red curve correspond to randomly distributed
particles with the same average density: the two-body corre-
lation obviously vanishes in this case, and accordingly, the
characteristic dip is absent.

2.  Theoretical analysis: Bragg and Raman-Nath regimes

The static modulation potential in the direction €,
with amplitude A, reads:

Goxt = Asin(kex). (17)

Writing the new density profile as a perturbation around
the constant density p., p(7) = p. + dp(7), we can com-
pute dp at linear order from (7) (this neglects the effect
of the cloud’s boundary):

A
op(z,y,z) = —=pB(ke) sin(kex) (18)
kT
where
k‘2
B(k,) = —¢
k2 + k3%,

is the response function. Hence the modulated profile has
a clear amplitude dependence on the modulation number
k. and it is characteristic of Coulomb interactions (an-
other force would have given a different result). When
the modulation wavelength is increased beyond the De-
bye length (L > A, > Ap), the response decreases, which
means that large scale inhomogeneities are more difficult
to create: this is an effect of repulsive long range in-
teractions. Therefore, measuring this response function



should provide information on the interactions inside the
cloud.

The density modulation of the cloud is measured by
diffraction: the diffracted amplitude at wavenumber Ee is
related to the response function B(k.). However, this re-
lationship is not straightforward. In particular, we shall
see now that there are two distinct diffraction regimes,
Bragg at small wavelength, and Raman-Nath at large
wavelength.

The diffraction profile is proportional to the structure
factor, which is for the modulated cloud:

S(k) = S°(k) + %5;3(1%’),50(/2) +6p(k)? 4 O (correlation) ,

(19)
where S is the structure factor of the cloud without
external modulation; we will neglect the correlations be-
cause they are very small as we have seen in section II1 B.
The Fourier transform of the modulated cloud §5(k) can
be related to the Fourier transform of the unperturbed
cloud p°(k), taking into account the shift in % induced
by the sin(kexz) function k, — ki + k.. The diffracted
peaks correspond to maxima of the structure factor
and are situated around the wavenumber |E| ~ \l;g| To
compute their amplitude and shape one can expand
in (19) around k = k., and ¢, = 0 or 7 (these two
angles correspond experimentally to the two diffrac-
tion peaks observed, see Fig. 3 for definition of k and ¢y).

We probe a wavenumber region k. € [~ 103, ~

10°)m~1, with k; = QW% m~!, so that k./k; < 1. This

justifies the following expansion

} I ke \°
"“ee’“_’“eew‘%ﬁkeXO((zki)) (20)
~k, #0.

In the perturbed density profile, it yields at the diffracted
peak k ~ k.

A ~ A0 A 50 o (K2
plE) = (k) — g Gk (k) = (52 ).
(21)

Since p(k = 0) = N and the Fourier transform of the
profile decreases very quickly to 0 with increasing k (the
more regular p(r) is, the faster its Fourier transform goes
to 0) the dominant term in (21) is the last one, provided
NA/(kgT) > 1 (this is typically the case in experiments)
and k. 2 1/L. Hence the diffracted peak maximum in-
tensity is given by

1 A
~l4 = ———
She) =1+ & <2kBT

) Bk )P (22)

Thus the diffraction response depends on the longitudi-
nal density profile and not only on the response function
B(ke). The density dependence crossovers at k,L ~ 1,

7

which defines a critical modulation wavelength A&C) (or
wavenumber kéc))

N =om [ RN o k=B )

It separates on one side the Raman-Nath regime k,L <
1, where the diffracted peak intensity depends only on
the response function, and on the other side the Bragg
regime k.L > 1, where p°(k.) is not constant and de-
creases quickly to zero. Thus in this latter regime there
is an additional dependence related to the Fourier trans-
form of the density profile, that we call “density effect”.
Note that in the context of ultrasonic light diffraction this
criterion (23) separating Bragg and Raman-Nath regimes
is also known [47]. For a cloud of radius L = 6 mm and a
laser A; ~ A\p, = 780 nm, the crossover is expected around
A 2 120 pm.

It must also be noted that the experimentally mea-
sured quantity is not the peak amplitude S(k.), but
rather the diffracted power R(k.): this brings an extra
dependence on k.. To simply show this, one can ex-
pand the structure factor around the peak and, assuming
for instance a Gaussian shape around the maximum, de-
duce a linear dependence on the modulation wavelength
Ae = 27/k. (the precise form of the shape around the
maximum does not modify this linear dependence). To
summarize, we expect to measure

A(PNT/A))Z, Ao < A

2

R(ke) oc B(ke) {)\e, A9 <« A\ < L.

(24)
In this expression, both the density dependence and re-
sponse function B(k.) are a priori unknown. In order to
obtain a well defined theoretical prediction, we assume
for the cloud’s profile a symmetrized Fermi function [48],
ie a step smoothed over a length scale [. In the direction
perpendicular to the probing beam, the cloud is effec-
tively limited by the waist of the probing laser w; we
assume a gaussian laser profile. This yields a simplified

density profile
27”3_

Its associated structure factor can be evaluated analyti-
cally thanks to [48]. Putting together all the results of
this section, we obtain the theoretical predictions shown

i sinh (%)
“T cosh (%) + cosh (%)

p(rlaz)

on Fig.5.
a. Comparison In Figure 5 we plot the result of an
experiment for a detuning § = —3I". We compare these

results with the theoretical diffraction response of the
profile (25). The parameters L,w, N are chosen to be
the same as in the experiment. Indeed, the waist w and
atom number N are well controlled and the size of the
cloud L can be extracted from a density profile. The
smoothing length [ appearing in (25) is chosen in the
range suggested by the density profiles, see Fig. 2, and



does not have much influence on the results. The only
adjusted parameter here is the vertical amplitude of the
theoretical response (in arbitrary units), that we set so
it coincides with the experimental curves. The three the-
oretical curves correspond to three values for the Debye
length Ap: this modifies the response function B.

The conclusions of this comparison are

e The Bragg/Raman-Nath crossover predicted
in (23) is observed in the experiment, at the
predicted location.

e In the Bragg regime the theoretical response is
smaller than what is observed. In this region, the
response is sensitive to the details of the density
profile, and our simple assumption (25) may not
be good enough.

e The theoretical analysis predict oscillations in the
Bragg regime. While these oscillations are not
clearly resolved in the experiments, some hints are
visible on figure 5 (vertical dashed lines around
Ae = 70pm). In the next paragraph, we analyze
in more details the theoretical and experimental
diffraction profiles, to confirm that the experimen-
tal observations are indeed a remnant of the theo-
retically predicted oscillations.

e In the Raman-Nath regime close to the crossover,
the slopes of experiment and theory are both about
1. For larger modulation wavelength, we expect
the long-range effects to take place. We indeed see
clearly on the theoretical curve with Ap = 100 pm
a decreasing response. For Ap = 300 ym this de-
crease occurs for larger A, and is thus barely visible.
For comparison, we plot (blue dashed line) the limit
Ap — 00, corresponding to a non interacting case.

The experimental data show no decrease for large
wavelength: hence they are close to the "no in-
teraction” case. More precisely, these data match
the Coulomb predictions only if the Debye length
is larger than ~ 400 ym. Unfortunately, probing
larger A, is difficult and would be hampered by
strong finite size effects.

b. Oscillations in the Bragg regime In the Bragg
regime, the shape of the diffracted beams observed in
the experiment shows some variations, as seen on Fig-
ure 6(b): for A, = 75.7um, the diffracted beam is split
in two. Can we explain this observation? One has to
remember that the response depends on the longitudinal
profile (21); thus around a peak k = k.4 dk, the response
is

2
S(k) o S° <W> )

2k;

If this small angle happens to correspond to a ”hole”
in the Fourier profile (as in Figure 4 for ka < 1), then
the diffracted beam can be split in two parts. We il-
lustrate this with our theoretical model with parameters

T T T T T

Raman-Nath

O()\}'Sl

10°F

Experiments 6/I" = —4
® Experiments 0/T' = —3
Theory with Ap = 100 pm
Theory with Ap = 300 pm
---- Theory with no interactions

JEERNY|
T 1

\ ‘ L
100 )\ 300 1000
Ae (pm)

FIG. 5: Comparison of the total diffracted power R(X.) in
the experiment (crosses) and theory (lines). The detuning is
§/T = =3, N ~ 10", L = 7.4l mm, w = 2.2mm. We com-
pare the theoretical model with the same parameters L,w,
and changing the Debye length A\p = 100,300 pm. The steep-
ness [ of the step function in (25) is chosen to be I = 1mm (the
theoretical curve only weakly depends on ). We also show
the theoretical limit case with no interactions B(A.) = 1.
The vertical dotted line indicates the theoretical position of
the theoretical Bragg/Raman-Nath cross-over A =136 pm.
The corresponding experimental value A{“ P = 142 um is
obtained at the intersection of the fitted experimental data
(for153/4F = —4) in the Bragg o« A\3-3®* and Raman-Nath region
X A%

provided by the experiments (there is no fit). We can
see in Figure 5, (dashed lines) that a split beam is also
expected around A\, = 76.5 um. We show the correspond-
ing beam shape in figure 7(b). In Figure 6(a) we show
an experimental image for A\, = 64.2 um (see the left
vertical dashed line of Figure 5) where no splitting is ex-
pected. There is indeed no particular asymmetry and
the beam is circular, in agreement with the theoretical
prediction Fig. 7(a), not split. This analysis provides a
satisfactory explanation of the experimental observation,
and suggests that the Bragg regime is well understood.

(a)Ae = 64.2 um

FIG. 6: Experimental diffracted beams for A = 64.2 and
75.68 pm.
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FIG. 7: Theoretical diffracted beams for A\e = 64.2 and
75.68 pm.

IV. CONCLUSION

We have proposed in this paper to use the response to
an external modulation as an indirect way to measure the
correlations inside the atomic cloud, and more generally
to probe the effective interactions induced by the multiple
photon scattering in large MOTs.

The modulation experiments and comparison with
simulations did not show any evidence for a Debye length

within the explored range, which could indicate a larger
than expected value for Ap of at least 400 um for a de-
tuning § = —4. This seems consistent with direct nu-
merical fits of the cloud’s density profile, which suggest
a Debye length as large as 1 mm. Accordingly, an exten-
sion of the modulation experiment to larger wavelengths
could be envisioned. These values should be compared to
the rough a priori estimate Ap ~ 100 pm, based on the
Coulomb model for the interaction between atoms and
the observed size of the cloud. A clear theoretical expla-
nation for the discrepancy between the a priori estimate
for Ap and the bounds provided by the experiments is
lacking. It is possible that the Coulomb model for the
effective interactions between atoms reaches its limits in
such large MOTs: the Coulomb approximation relies on
a small optical depth, whereas it is around 1 in experi-
ments; or the spatial dependencies of the scattering sec-
tions may have to be considered. In either case, a refined
model taking these effects into account would be consid-
erably more complicated. It might also be that another
mechanism controlling the maximum density, and hence
the size of the cloud, is at play beyond multiple diffusion.
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