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Abstract:  

This article presents a methodology to assess a set of density maps, as used in the Blind 

Assessment Phase of the 2015/2016 Map Challenge (EMDataBank Validation Challenges). The 

synthetic and experimental cryo-electron microscopy (cryo-EM) density maps obtained by 

different single particle analysis protocols and by different participants, submitted in the 

Challenge Phase for assessment, were analyzed with this methodology and the obtained results 

are presented and discussed here. The goal of using such a methodology was to blindly identify 

the density maps with globally similar structural information, meaning the maps with the 

structural information mostly “reproduced” by different protocols. To this end, the density 

maps are “coarsened” using Gaussian-based approximations, with the same input 

approximation parameters for all maps of the target biological complex. The approximated 

maps are then represented in a common reduced-dimension (here, 3D) space of their 

correlation-coefficient-based distances, in which close maps mean similar maps. The distance 

analysis allows identifying maps with the most “reproduced” structural information by different 

protocols. The obtained results are also discussed taking into account the detailed information 

about the protocols that has been released after the end of the Blind Assessment Phase.  

 

INTRODUCTION 

Single particle cryo-electron microscopy (cryo-EM) is a powerful structural biology technique 

that has proved to be useful in determining near-atomic-resolution structures of various 

macromolecular complexes (Bai et al., 2015; Banerjee et al., 2016; Bartesaghi et al., 2015; 

Hospenthal et al., 2016; Khatter et al., 2015; Liao et al., 2013; Yu et al., 2008; Zhang et al., 

2008). The near-atomic resolutions of the density maps obtained by cryo-EM should facilitate 

deriving of de novo structural models from the density maps (Baker et al., 2010; Wang et al., 
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2015). However, de novo modeling from density maps is not an easy task and the major 

question is how to assess the actual quality of the obtained cryo-EM maps.  

 

The standard method to assess the quality of cryo-EM density maps is Fourier Shell Correlation 

(FSC) (Harauz and van Heel, 1986). When a structure of the same or similar complex could 

have been obtained at atomic resolution by other experimental techniques such as X-ray 

crystallography or NMR, this structure is first aligned (via rigid-body or elastic alignment) with 

the cryo-EM density map and the density map simulated from this atomic-resolution structure is 

then compared with the cryo-EM density map over different spatial frequencies using the FSC 

(i.e., the normalized cross-correlation coefficient between the two density maps over 

corresponding shells in Fourier space). When no atomic-resolution structure is available, the 

FSC is used to compare two density maps computed independently from two subsets of the 

same set of images that yielded the resulting density map. The FSC (between 0 and 1) informs 

about consistency of the density maps that are being compared over spatial frequencies. When 

the FSC is computed between the density maps obtained from subsets of images, it informs 

about reproducibility of structural reconstruction over different image subsets. Yet, the inverse 

spatial frequency corresponding to a FSC threshold value is commonly reported as the 

resolution of the density map (as the frequency to which the structural information can be 

considered reliable). Regarding the FSC threshold, the value of 0.143 is used when the 

alignment of each half-subset of particles is conducted independently (currently, the standard 

procedure), whereas the value of 0.5 has traditionally been used when all particles were aligned 

together. 

 

When a density map is obtained with an image analysis protocol, the question is also whether 

some other image analysis protocol could result in a density map of better quality. Indeed, 
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different image processing strategies (different regarding image processing steps, algorithms, or 

parameters used) may result in more or less different density maps from the same set of images. 

For instance, the image analysis protocols usually involve removal of some particle images, in 

order to keep for the final reconstruction only images of the best quality and those that are the 

most consistent among each other regarding their content (structural information). However, 

different image analysis protocols use different criteria or combinations of them to decide 

which images should be kept or removed. Depending on how many and which images are kept 

for the final reconstruction, the quality of the reconstructed density map may be better or worse.  

 

Taking into account all of this, the question is what strategies one could use to assess quality of 

density maps reconstructed using different image analysis protocols and software. In this 

article, we present one such strategy. This strategy has been used in the 2015/2016 Map 

Challenge to blindly assess sets of density maps reconstructed by different researchers using 

different single particle analysis protocols and software (the maps were made available by the 

participants of the Challenge Phase for assessment by the participants of the Blind Assessment 

Phase). This strategy allows identifying maps with most “reproduced” structural information by 

different protocols and software. To this end, the density maps are “coarsened” using Gaussian-

based approximations, with the same input approximation parameters for all maps of the target 

biological complex. The approximated maps are then represented in a common reduced-

dimension (here, 3D) space of their correlation-coefficient-based distances. In this space, the 

closest maps correspond to the most similar maps and can be interpreted as containing the 

structural information that has been “reproduced” by the protocols/software. If several maps 

gather close to each other in this space, the structural information in these maps can be 

considered as “consensus”.   
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This article also presents the results of using this methodology to analyze 66 density maps 

submitted by 27 participants. A set of 7-13 density maps was available for each one of 7 target 

biological systems. Six sets of density maps were obtained from experimental images and one 

from simulated (in silico) images. The density maps from experimental images were obtained 

for β-Galactosidase (BetaGal) (Bartesaghi et al., 2014), Brome Mosaic Virus (BMV) (Wang et 

al., 2014), Apo-ferritin (Russo and Passmore, 2014), T20S proteasome (Campbell et al., 2015), 

80S ribosome (Wong et al., 2014), and TRPV1 channel (Liao et al., 2013). The density maps 

from simulated images were obtained for GroEL (Vulovic et al., 2013). The maps and 

associated metadata submitted to the Challenge are available at 

https://doi.org/10.5281/zenodo.1185426. 

 

This article also includes results of map distance analysis using original maps (maps without 

Gaussian-based approximations). These results are shown to be globally consistent with the 

results of using Gaussian-based map approximations, with a few exceptions that indicate that 

Gaussian-based map approximation facilitates the analysis. Indeed, the use of Gaussian 

functions for map coarsening facilitates the comparison of maps not only because it reduces the 

noise in the original maps but also because it “uniformizes” the density representation of 

different maps of the same target system (the Gaussian functions are used as the basis functions 

of the map approximation). 

 

The obtained results are discussed taking into account the detailed information on the protocols 

and software used to obtain the maps that has been released after the end of the Challenge. 
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METHODS 

This section describes the methodology to assess similarities and dissimilarities among a set of 

density maps of the same target biological macromolecular complex to identify maps with most 

reproduced structural information by different image analysis protocols and software for 

density map reconstruction from cryo-EM single particle images. 

 

This methodology is recommended to be used with “unfiltered” density maps. It is inspired by 

the one proposed in (Sanchez Sorzano et al., 2016). This previously published methodology has 

been proposed in a different context, which is to study continuous conformational changes of 

complexes (Sanchez Sorzano et al., 2016). Contrary to this previously published methodology 

that is based on flexible alignment among pairs of density maps (via elastic deformation of one 

map to fit the other map in the pair), the methodology proposed here analyzes similarities 

among rigid-body aligned maps approximated using 3D Gaussian functions. The Gaussian-

based map approximations, obtained using the method proposed in (Jonic and Sorzano, 2016a), 

can be seen as denoised (Jonic et al., 2016) or, generally, simplified or approximate (“coarse”) 

versions of the given density maps. Given a standard deviation of Gaussian functions and a 

target approximation error, the Gaussian-based map approximation method aims at determining 

the number of Gaussian functions, their positions, and weights such that the map approximation 

error is below the target approximation error. The standard deviation of Gaussian functions and 

the target approximation error are the main input parameters to the Gaussian-based map 

approximation method as they usually affect the maximum achievable accuracy of the map 

approximation and therefore require adjustments. The other input approximation parameters are 

the initial number of Gaussian functions, the speed of adding Gaussian functions, and the 

minimum distance between the Gaussian functions. These additional parameters can be kept to 

their default values that are small enough to avoid affecting the maximum achievable accuracy 
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of the map approximation (they only affect the speed of convergence of the algorithm (Jonic 

and Sorzano, 2016a)). More details about the Gaussian-based map approximation method are 

provided in (Jonic and Sorzano, 2016a) and in Supporting Material here. 

 

Given a set of density maps, one of them is used as a common reference to rigid-body align and 

resize the other maps so that they can be compared (the maps were resized to have the same 

number of voxels and the same voxel size as the reference map). For the majority of target 

complexes in this article, the reference map was one of the smallest-size maps. This means that 

the size of other maps was typically reduced to the size of the reference map. To speed up 

computations in two cases of very large maps, the density-map size was additionally reduced by 

a factor of 2 in each dimension (from 420
3
 to 210

3
 voxels for BMV and from 380

3
 to 190

3
 

voxels for 80S ribosome, Table 1).   

   

In the next step, all density maps of the same target complex are approximated with Gaussian 

functions, using the same input approximation parameters. This Gaussian-based map 

approximation is done within a mask created from the reference map using a selected density 

level threshold and morphological operators. This means that a great amount of background 

noise that may be present and different in different density maps is not incorporated in the 

Gaussian-based approximated map. The parameters used for the Gaussian-based approximation 

are summarized in Table 1.  All other parameters of the Gaussian-based approximation method 

were set to their default values (the initial number of Gaussian functions to 300, the speed of 

adding Gaussian functions to 30 %, and the minimum distance between the Gaussian functions 

to 0.001 voxel) (Jonic and Sorzano, 2016a).      
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Then, Pearson correlation coefficient (CC) is calculated among the approximated maps within 

the area determined by the mask that was used for the map approximation. For n given density 

maps, the n-by-n matrix of distances (dissimilarities) among the maps (1-CC) is then projected 

onto a low-dimensional space (1D, 2D, or 3D space is usually used for visualization) using non-

metric multidimensional scaling method (Cox and Cox, 2001) that creates a configuration of 

points whose Euclidean distances approximate a monotonic transformation of the original 

dissimilarities (the method approximates the ranks of the dissimilarities instead of the 

dissimilarity values, meaning that it creates a configuration of points with large interpoint 

distances corresponding to large dissimilarities and small interpoint distances corresponding to 

small dissimilarities). The maps are then visualized in this low-dimensional distance space. As 

in (Sanchez Sorzano et al., 2016), the non-metric multidimensional scaling was performed with 

the MATLAB mdscale method using the default values of its parameters, which results in a 

unique low-dimensional projection of the original (higher-dimensional) distance space. 

However, it should be noted that, with some other parameters (e.g., a random initial 

configuration of points or a different maximum number of iterations), a different projection of 

the same original distance space would be obtained for each run of the method.  

 

We here use 3D distance spaces to approximate the original distance spaces because a 3D 

approximation is generally more accurate than a 2D or 1D approximation (the errors of 2D and 

3D approximations for the data used in this article are compared in Table S9 in Supporting 

Material).  

 

Finally, the maps gathering closest to each other in a localized area of the low-dimensional 

distance space are identified as the maps with the most reproduced structural information by 

different image analysis protocols and software.  
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RESULTS 

This section presents the blind analysis results obtained using the methodology described in 

Methods section and 7 available sets of density maps deposited as “unfiltered” in the Challenge 

Phase of the 2015/2016 Map Challenge. For each of the 7 target biological systems, we provide 

a figure that shows a 3D space of distances among the corresponding Gaussian-based 

approximated maps (Figs. 1-7). The figures of corresponding 3D representations of distances 

among the original density maps (without Gaussian-based approximations) are provided in 

Supporting Material (Figs. S1, S3, S5, S7, S9, S11, S13). The mentioned figures show the 

distance spaces with automatically determined axes limits that allow to better visualize smaller 

distances among maps. The distance spaces (among the original maps and among their 

Gaussian-based approximations) visualized using the same axes limits for all 7 target systems 

are also provided and allow to better visualize larger distances among maps (Figs. S15 and S16 

in Supporting Material). The distances among original maps and the distances among their 

Gaussian-based approximations, before and after projecting the maps to 3D distance space, are 

also part of Supporting Material (Tables S10-S37). Supporting Material also includes 

Chimera visualization of the original density maps (Figs. S2, S4, S6, S8, S10, S12, S14), their 

Gaussian-based approximations (Figs. S17-S23), the contours of the masks used for the map 

approximation and for computing CC for the approximated and original maps (Fig. S24), as 

well as the number of 3D Gaussian functions and the density-map approximation error obtained 

using these Gaussian functions (Tables S1-S7) for the parameters provided in Table 1.  

 

It should be noted that the same target approximation error (10 %) was first tried for all 7 

biological systems but with no success to approximate the majority of the density maps of some 

systems up to this error, even when reducing the standard deviation of Gaussian functions. 
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Therefore, a smaller target approximation error (5 %) was used for these systems (Table 1), 

which allowed the density map approximations to at least up to around 10% in the majority of 

cases (Tables S1-S7). Even if the approximation error of some density maps is much higher 

than this “virtual” target approximation error of 10%, this does not prevent the method to 

distinguish similar from dissimilar maps. On the contrary, very different approximation errors 

among the maps of the same system would mean that the densities in these maps are really 

different and accentuating these differences using such “poor” Gaussian-based approximation 

makes the method distinguish more easily among different and similar maps. An example of 

this is the case of GroEL density maps whose approximation errors are higher for maps 158, 

168, and 169 than for other maps (~20-45% for maps 158, 168, 169 and ~10% for other maps, 

for the Gaussian standard deviation of 1.5 voxel and the target approximation error of 10%, 

Table S8) and the method detected these maps as being different from other maps (Fig. 4 and 

Fig. S15D). Though a smaller standard deviation of Gaussian functions (1 voxel) and a smaller 

target approximation error (5 %) reduce the approximation error of these 3 density maps (Table 

S8) and make that some density maps look more different or more similar than for larger values 

of the two parameters (e.g., maps 104 and 132 or maps 132 and 158, Fig. S25), these 

differences are not significant (the distance between maps 104 and 132 changes only by 0.01 

and between maps 158 and 132 by 0.02, Tables S23 and S39). In general, the maps whose 

distances are below 0.05 can be considered to be highly similar. On the contrary, the differences 

between the maps whose distances are above 0.1 can be considered to be more important.   

 

In one case (TRPV1 channel), the approximation errors of the density maps are much higher 

than 10 % and very different among each other (Table S7) and the method detects that the most 

different maps are 146, 156, 161, and 163 (Fig. 7, Fig. S16C, and Table S35). These 

differences and higher final approximation errors for these maps are probably due to a less well 
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resolved density and/or high level of noise in the original maps (note that the mask does not 

totally remove the noise outside the useful density and some noise is also present inside the 

useful part of the map) (Fig. S14, Fig. S23, and Fig. S24G). 

 

Detailed analysis of similarities and dissimilarities among maps of 7 target systems  

 

β-Galactosidase (BetaGal):  

This data set contains 12 density maps (map indexes: 106, 113, 116, 134, 138, 139, 154, 157, 

159, 160, 164, and 167). Maps 138 and 139 can be considered to contain the same information 

as they were projected onto the same point in the Gaussian-map distance space (Fig. 1). This 

has been verified by overlapping the two maps in Chimera (Fig. S2A). The same is valid for 

maps 159 and 164 (Fig. S2B). As being very close to each other in the Gaussian-map distance 

space, maps 106, 134, and 154 can be considered to be very similar (Fig. S2C). Maps 138 and 

139 are close to maps 106, 134, and 154 (Fig. 1), which means that these two groups of maps 

are relatively similar. Their display in Chimera shows that that maps 138 and 139 are slightly 

smoother versions of maps 106, 134, 154 (Fig. S2D). Following the same reasoning based on 

the map distance space, map 113 can be considered to be more similar to maps 138 and 139 

than to maps 106, 134, 154 (Fig. 1) and their display in Chimera indicates that map 113 is a 

smoother version of maps 138 and 139 (Fig. S2D). Furthermore, based on the distance space 

and visualization in Chimera, maps 116, 157, 159, 160, 164, and 167 can be considered to be 

more different from 106, 134, 138, 139, and 154 than map 113 is (Fig. 1 and Fig. S2E). For 

instance, one can notice that maps 159 and 167 are locally much smoother than other maps 

(Fig. S2E). Based on these blind analysis results, the most reproduced structural information by 

different protocols and users is in maps 106, 134,138, 139, and 154. Similar results have been 

obtained in non-Gaussian-based distance space, except that map 113 is much closer to maps 
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138 and 139 in the non-Gaussian-based distance space than in the Gaussian-based distance 

space (Fig. S1, Fig. S15A). The distance between maps 113 and 138 (or 139) is 0.03 in the non-

Gaussian-based distance space (Tables S13), which means that they can be considered as 

almost identical based on the results in this distance space. However, the information in these 

maps is different (as already mentioned, map 113 is a relatively smooth version of maps 138 

and 139, Fig. S2D), which was better detected in the Gaussian-based distance space (the 

distance between maps 113 and 138 is larger (0.09) in the Gaussian-based distance space) (Fig. 

1, Tables S11).     

 

Brome Mosaic Virus (BMV):  

This data set contains 7 density maps (map indexes: 102, 110, 136, 137, 140, 142, and 152). 

Maps 137 and 142 can be considered to be almost the same as they were projected onto almost 

the same point in the Gaussian-map distance space (Fig. 2), which can be verified by 

overlapping these maps in Chimera (Fig. S4A). Maps 136 and 102 were projected in a close 

neighborhood of maps 137 and 142 as well as map 140 was projected close to map 102 (Fig. 2). 

This indicates that these five maps (102, 136, 137, 140, and 142) are similar and their slight 

differences can largely be explained by different local smoothing effects (Figs. S4C and S4D). 

Maps 110 and 152 have different density distributions than other maps (Fig. S4B) and were 

projected farther away (Fig. 2). Actually, the radius of the capsid seems to be larger in these 

two maps and one can observe the differences in the densities using the isosurface density 

levels for which similar capsid sizes are obtained in different maps (Fig. S4B). Based on these 

blind analysis results, the most reproduced structural information by different protocols and 

users is in maps 102, 136, 137, 140, and 142. These results are similar to those obtained in non-

Gaussian-based distance space (Fig. S3, Fig. S15B), except that map 102 was in non-Gaussian-

based distance space projected closer (found to be more similar) to map 110. A visual 
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inspection of the maps indicates that map 102 is actually quite different from map 110 (Fig. 

S4), which is indeed better described in the Gaussian-based distance space than in the non-

Gaussian-based distance space (the distance between maps 102 and 110 is 0.52 in the Gaussian-

based distance space while it is 0.20 in the non-Gaussian-based distance space, Tables S15 and 

S17, Fig. S15B). 

 

Apo-ferritin:  

This data set contains 8 density maps (map indexes: 112, 118, 121, 122, 124, 147, 155, and 

166). In the Gaussian-map distance space, maps 112, 118, and 166 were projected relatively 

close to each other while the other maps were projected farther away from these three maps 

(Fig. 3). This means that, in terms of Gaussian-based map approximations, maps 112, 118, and 

166 are similar among each other and different from the other maps. Indeed, maps 118 and 166 

look like smoothed versions of map 112 (Fig. S6A and S6B). Also, though map 121 looks 

similar to map 112, slight differences can be observed in the conformation of the complex in 

the two maps using Chimera by overlapping the two maps (Fig. S6C) and morph mapping. 

Furthermore, map 124 seems to contain a slightly different conformation than maps 118 and 

166, as observed by overlapping the maps (Fig. S6D) and by morph mapping in Chimera. 

Finally, the remaining maps (122, 147, and 155) are quite noisy and less well resolved (Fig. 

S6E). Based on these blind analysis results, the most reproduced structural information by 

different protocols and users is in maps 112, 118, 166. These results are similar to those 

obtained in non-Gaussian-based distance space. More precisely, the differences that exist 

between the configuration of points in the Gaussian and non-Gaussian-based distance spaces 

can be considered of little or no importance (on average, the interpoint distances differ between 

the two spaces by less than 0.05) (Fig. S5, Fig. S15C, Tables S19 and S21).  

 



Published in J Struct Biol 2018 (doi: 10.1016/j.jsb.2018.07.014, 

https://www.ncbi.nlm.nih.gov/pubmed/30036578) 

14 

 

GroEL in silico:  

This data set contains 9 density maps (map indexes: 104, 120, 132, 143, 153, 158, 165, 168, and 

169). Maps 104 and 143 were projected almost onto the same point in the Gaussian-map 

distance space (Fig. 4), which means that they are almost identical (Fig. S8A). Also, the 

projections of maps 132 and 153 in the Gaussian-map distance space are almost the same (Fig. 

4), meaning that these two maps are also almost the same (Fig. S8B). Interestingly enough, 

maps 132 and 153 were projected close to maps 104 and 143, meaning that they are similar and 

this can be checked with Chimera (Figs. S8A, S8B, and S8C). Maps 120 and 165 were also 

projected in a close neighborhood of maps 104, 132, 143, and 153 and the distances among 

these 6 maps are smaller than 0.05, which indicates a high similarity among them (Fig. 4, 

Table S23, Figs. S8A-S8E). They look like containing slightly different conformations (Figs. 

S8D and S8E), but this finding could not have been checked as the information on how the 

input data has been simulated and whether it contains conformational variability or not was 

unavailable here. The remaining maps (158, 168, and 169) are different among each other while 

being less well resolved or noisier than other maps, which explains the result that the 

projections of these maps are far away from each other and from the projections of other maps 

(Fig. 4, Fig. S8F, Table S23). Based on these blind analysis results, the most reproduced 

structural information by different protocols and users is in maps 104, 132, 143, and 153, 

followed by maps 120 and 165. These results are consistent with those obtained in non-

Gaussian-based distance space (Fig. S7, Fig. S15D, Table S25). 

 

T20S proteasome:  

This data set contains 9 density maps (map indexes: 103, 107, 108, 130, 131, 141, 144, 145, and 

162). In the Gaussian-map distance space, maps 144 and 145 were projected onto almost the 

same point and maps 107, 141, and 162 are closest to them (Fig. 5, Table S27), meaning that 
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maps 107, 141, and 162 are slightly different from maps 144 and 145. The differences among 

these maps are mostly due to different amounts of noise and possible slight differences in 

conformation in these maps (Figs. S10A and S10C). Maps 103, 130, 131, and 108 were 

projected farther away (found to be different) from other maps (Fig. 5, Table S27), which can 

be explained by the fact that maps 103, 130, 131, and 108 are noisier and locally slightly less 

well resolved than other maps (Figs. S10D and S10E). Finally, maps 130 and 131 are almost 

the same and were projected onto the same point (Fig. S10B). Based on these blind analysis 

results, the most reproduced structural information by different protocols and users is in maps 

107, 141, 144, 145, and 162. These results are similar to those obtained in non-Gaussian-based 

distance space (Fig. S9, Fig. S16A, Table S29). The most important difference between the 

two spaces is that map 103 (an outlier in the Gaussian-based distance space) was projected even 

farther from other maps in non-Gaussian-based distance space (e.g., when going from 

Gaussian-based distance space to non-Gaussian-based distance space, its distance from map 

107 increases from 0.14 to 0.20 and its distance from map 141 increases from 0.16 to 0.23). 

The other interpoint distances differ between the two spaces by less than 0.05 on average, 

which can be considered of little or no importance.     

 

80S ribosome:  

This data set contains 13 density maps (map indexes: 111, 114, 119, 123, 125, 126, 127, 128, 

129, 148, 149, 150, and 151). In this case, the majority of maps were projected in the Gaussian-

map distance space close to each other (Fig. 6, Table S31). This suggests that they are similar, 

which can be verified with Chimera (Fig. S12A). The remaining maps (111, 119, and 129) were 

projected farther (Fig. 6, Table S31). This suggests that maps 111, 119, and 129 are different 

from other maps, which can be verified with Chimera (Fig. S12B). Indeed, the densities are 

locally less well resolved in these maps than in other maps, as shown using two different 
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density isosurface levels in Chimera (Figs. S12C and S12D). These results are consistent with 

those obtained in non-Gaussian-based distance space (Fig. S11, Fig. S16B, Table S33). Based 

on these blind analysis results, the same structural information was reproduced by different 

protocols and users in the majority of maps (more precisely, in maps 114, 123, 125, 126, 127, 

128, 148, 149, 150, and 151). 

 

TRPV1 channel:  

This data set contains 8 density maps (map indexes: 101, 115, 133, 135, 146, 156, 161, and 

163). In the Gaussian-map distance space, maps 133 and 135 were projected onto almost the 

same point (Fig. 7). This means that they are very similar, which was verified with Chimera 

(Fig. S14A). The remaining maps were projected more or less far from these two maps and 

closest to them are maps 101 and 115 (Fig. 7, Table S35). This means that maps 133 and 135 

are more or less different from the remaining maps and most similar to them are maps 101 and 

115, which can be verified with Chimera (Fig. S14). Indeed, Chimera indicates more noise and 

less well resolved densities in the remaining maps (Figs. S14A and S14B). Based on these 

blind analysis results, the most reproduced structural information by different protocols and 

users is in maps 101, 115, 133, and 135. These results are similar to those obtained in non-

Gaussian-based distance space (Fig. S13, Fig. S16C, Table S37). The most important 

difference between the two spaces is that maps 146 and 156 (two outliers in the Gaussian-based 

distance space, Table S35) were projected even farther from other maps in the non-Gaussian-

based distance space (Table S37). 

 

DISCUSSION AND CONCLUSION 

We presented a methodology that allows identifying similar (or dissimilar) density maps from a 

set of density maps of the same macromolecular complex. This methodology is based on 
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projecting Gaussian-based approximations of the density maps onto a low-dimensional space of 

their distances in which the closest density maps correspond to the most similar maps and the 

most distant maps correspond to the most dissimilar ones. We showed that the methodology 

based on calculating distances (correlation coefficients) among Gaussian-based approximated 

maps is more appropriate for the task of identifying similar and dissimilar density maps than the 

methodology based on distances among original maps. The Gaussian-based map 

representations were obtained with the method proposed in (Jonic and Sorzano, 2016a). Several 

different applications of this method have already been shown, including normal-mode-based 

deformation modeling for continuous conformational variability analysis and EM map 

denoising (Jin et al., 2014; Jonic and Sorzano, 2016b; Jonic et al., 2016; Sanchez Sorzano et al., 

2016). Though this method can be used to fully denoise the maps (Jonic et al., 2016), it should 

be noted that this method was here used with a different goal. Its goal was to represent the 

different maps using the same “building blocks” (Gaussian functions that are the basis functions 

in the function approximation framework used in this method) i.e. to “uniformize” the 

representation of different maps of the same target system in order to get more comparable 

maps. Therefore, the use of Gaussian functions facilitated the comparison of maps not only 

because it reduced noise in the maps but also because it “uniformized” the representation of the 

map density.   

  

We also presented the results obtained with this methodology in analyzing density maps of 7 

macromolecular complexes reconstructed from experimental and synthetic cryo-EM images by 

the participants of the 2015/2016 Map Challenge. This methodology was used in the Blind 

Assessment Phase of the Map Challenge to identify most reproduced structural information by 

different image analysis protocols and software and the obtained results are supported by the 

results of analyzing the density maps in Chimera. We identified the maps that are either 
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globally similar or globally dissimilar. A potential local analysis (focusing on regions of the 

maps that look different to illustrate the performance of the analysis on these regions) was out 

of scope of this article. Furthermore, though an atomic model is available for each of the seven 

data sets, this model was not used here because the idea was to devise a method that would be 

complementary to methods that use atomic models for map evaluation. Also, a further map 

interpretation to address the question whether the different maps would lead to different atomic 

models was out of scope of this work. 

 

In the Blind Assessment Phase, beside density maps, additional information was available 

(provided by the participants of the Challenge Phase), such as on the movie frames used to 

determine the orientation of images and the frames used for the final map reconstruction; 

whether the particle coordinates provided with images were used or new particle picking was 

performed; the initial number of particle images; the number of particles at the start of 

refinement and the number of particles included in the final density map; whether 2D and 3D 

classifications, local drift correction, and exposure weighting were performed; the resolution of 

the final map and the method used for its determination; whether other methods were used to 

validate the map and which ones; the voxel size; the temperature factor and other filtering 

applied on the final map; and whether the mask was submitted. Also, other additional 

information was provided by the Map Challenge organizers, such as the FSC curves calculated 

using the FSC server (http://pdbe.org/fsc) between the submitted half-maps (without using 

masks and, if a mask was provided by the participant, using this mask) and the inverse spatial 

frequencies at which these FSC curves crossed 0.5 and 0.143. From all this information, in the 

experiments presented here, we have only used the information on the voxel size. 

 

http://pdbe.org/fsc
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After the end of the Blind Assessment Phase, the organizers have provided more details about 

the image analysis protocols used in the Challenge Phase, such as details on movie frame 

alignment; CTF estimation and correction; particles selection; initial model (from a data base or 

from images); 2D and 3D classification protocols; local drift correction; exposure weighting; 

map refinement software; and map validation methods other than FSC-based. For this article, 

we have analyzed this additional information to see whether the maps identified as similar 

using the proposed methodology were obtained using similar image analysis protocols. This 

analysis has showed that, for the same target complex, different protocols often resulted in 

density maps that were identified, using our methodology, as globally containing similar 

structural information. Over different target complexes, the same researcher has usually used 

the same image analysis protocol within the same software package (or a combination of 

software packages) but with a few different parameters (e.g., the start and stop frames and the 

number of particles at different processing steps). Such basically identical protocols have 

resulted in density maps that were, depending on the target complex, identified as similar to or 

different from the maps from other protocols. 

 

The map differences identified by our methodology are sometimes difficult to interpret in terms 

of differences in image analysis protocols. A reason is that some information about how the 

density maps were reconstructed is still missing. For instance, the participants have not always 

made clear whether symmetries had been imposed or not during or at the end of refinement in 

the cases of symmetric complexes (6 out of 7 target complexes), whereas our methodology 

identifies non-symmetrized maps as different from symmetrized maps. Also, as some 

participants have pointed out in the provided information, the CTF amplitude correction is often 

an integral part of the refinement/reconstruction protocol (which is not always clearly indicated) 

and it commonly involves Wiener filtering. This means that the density maps deposited as 
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“unfiltered” (used by our methodology) may still be considered as filtered, with the amount of 

filtering that depends on the protocol used.  

 

With the provided density maps, a full and fair comparison of different protocols over different 

target complexes is unfortunately impossible. The main reason for this is that the same image 

analysis protocol was not systematically used with all density maps. Regarding the software 

packages, only Relion was used with each target complex. More precisely, different researches 

have used Relion at different steps of their protocols and sometimes in combination with other 

software packages. When Relion was used for refinement, the resulting density maps of the 

same target complex are similar among each other, even when different frame alignment and 

particle sorting methods were used, which can be explained by the fact that the initial models 

used in all these cases were low-pass-filtered published maps. According to our methodology, 

depending on the target complex, the density maps resulting from other protocols are more or 

less similar to (or different from) the Relion-based maps. However, other software packages 

and other protocols were less often used, among which those refining de novo initial models 

(calculated by the participant from selected particle images). Therefore, it is difficult to make 

fair statistics and comparisons of different protocols using the provided data.            

 

However, our methodology describes well similarities and differences among density maps of 

the same target complex obtained using different software packages and protocols, as showed 

by analyzing these maps in Chimera. This methodology could also be used to analyze density 

maps of the same complex obtained from different sets of images using the same image 

analysis protocol. Averaging of density maps identified, using this methodology, as most 

similar among each other could be expected to yield a density map with a better signal-to-noise 

ratio than the one of individual density maps.  The methodology proposed here could also be 
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used to obtain a “consensus” density map using several different image analysis protocols, 

within the same software package or different packages. The “consensus” map could be the 

average of maps identified as most similar among each other or one of these maps, whichever 

of these two options results in the highest signal-to-noise-ratio density map.  

 

SUPPORTING MATERIAL 

The Supporting Material contains a brief description of the method for Gaussian-based density 

map approximation, 25 supplementary figures (Figs. S1-S25), and 39 supplementary tables 

(Tables S1-S39). 
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FIGURE LEGENDS 

Figure 1: Projection of Gaussian-based approximations of β-Galactosidase maps onto a 3D space of 

their distances. In the distance space, each map is represented by a point and the map index.  

 

Figure 2: Projection of Gaussian-based approximations of Brome Mosaic Virus maps onto a 

3D space of their distances. In the distance space, each map is represented by a point and the 

map index.  

 

Figure 3: Projection of Gaussian-based approximations of Apo-ferritin maps onto a 3D space 

of their distances. In the distance space, each map is represented by a point and the map index.  

 

Figure 4: Projection of Gaussian-based approximations of GroEL in silico maps onto a 3D 

space of their distances. In the distance space, each map is represented by a point and the map 

index. 

 

Figure 5: Projection of Gaussian-based approximations of T20S proteasome maps onto a 3D 

space of their distances. In the distance space, each map is represented by a point and the map 

index.  

 

Figure 6: Projection of Gaussian-based approximations of 80S ribosome maps onto a 3D space 

of their distances. In the distance space, each map is represented by a point and the map index.  

 

Figure 7: Projection of Gaussian-based approximations of TRPV1 channel maps onto a 3D 

space of their distances. In the distance space, each map is represented by a point and the map 

index. 

















 Reference 

map to 

align and 

resample 

maps  

Size of 

reference 

map 

[voxel] 

Size of 

each map 

after final 

resampling 

[voxel] 

Voxel size 

after final 

resampling  

[Å] 

Reference-

map 

density 

threshold 

to create 

mask 

Standard 

deviation 

of 

Gaussian 

functions 

[voxel] 

Target 

approximation 

error [%] 

β-

Galactosidase 

106 196
3
 196

3
 1.275 0.0161 0.6 5 

Brome 

Mosaic Virus 

102 420
3
 210

3
 1.98 0.00682 0.75 10 

Apo-ferritin 122 132
3
 132

3
 1.346 0.0313 1.5 10 

GroEL  

in silico 

104 200
3
 200

3
 1.42 0.0132 1.5 10 

T20S 

proteasome 

107 240
3
 240

3
 1.315 0.00675 0.6 10 

80S ribosome 114 380
3
 190

3
 2.68 0.0684 1.0 5 

TRPV1 

channel 

101 256
3
 256

3
 1.2 0.00959 1.0 5 

 

Table 1: Parameters used to compute Gaussian-based approximations of cryo-EM density maps of 

7 target biological systems. 
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BACKGROUND ON THE METHOD FOR GAUSSIAN-BASED MAP APPROXIMATION 

A function               can be approximated using Gaussian radial basis functions (RBFs) by 

          
 
             , where       is the RBF kernel that is a Gaussian function with the 

standard deviation   and the amplitude of 1,   is the number of Gaussian functions,    is the vector of 

the center coordinates of the ith Gaussian function,        is the Euclidean distance between the 

vectors   and   , and      is the weight (contribution) of the ith Gaussian function. Given an EM 

density map              , a Gaussian-function standard deviation  , and a target approximation 

error  , our approach determines the number of Gaussian functions  , their positions   , and weights 

   such that the approximation error    satisfies    
 

 
 

               

  
   

     Here,    is the 

effective range of values in the EM map,    is the voxel location at which the given EM map is 

compared with its approximation, and   is the total number of evaluated voxels (the evaluation can be 

done in a region of interest defined by a mask). To avoid getting trapped into local minima of the error 

  , new Gaussian functions are added progressively in regions with large errors, from a given initial 

number of Gaussian functions (referred to as the initial seeds parameter) using a given speed of adding 

mailto:Slavica.Jonic@upmc.fr


the Gaussian functions (referred to as the grow seeds parameter), and weights and positions of the 

current number of Gaussian functions are determined by a gradient descent minimization of    while 

respecting a given minimum distance between the Gaussian functions dmin (the Gaussian functions will 

not be placed closer than the distance dmin). It should be noted that Gaussian function positions    do 

not necessarily coincide with voxel positions    because the Gaussian function positions vary 

continuously within the EM density map. Also, it should be noted that   can be expressed in 

angstroms, but we usually express it in voxels.  

Different coarse-grain EM map representations can be obtained with this approach by varying   and  . 

Smaller values of   and   result in larger numbers of Gaussian functions and vice versa. Their values 

(usual range:           voxel and        ) should be chosen to suit the target application of 

the method, as explained in (Jonic and Sorzano, 2016a; Jonic and Sorzano, 2016b). Small enough 

values of the minimum distance between Gaussian functions dmin, the initial seeds parameter, and the 

grow seeds parameter will only affect the speed of convergence of the algorithm but not the maximum 

achievable accuracy of the density map approximation (Jonic and Sorzano, 2016a). These parameters 

are usually kept to their default values, which are 0.001 voxel, 300, and 30 %, for dmin, the initial seeds 

parameter, and the grow seeds parameter, respectively (Jonic and Sorzano, 2016a). 

 

SUPPLEMENTARY FIGURE LEGENDS: 

 

Figure S1: Projection of β-Galactosidase maps with no Gaussian-based approximation onto a 3D 

space of distances among maps. In the distance space, each map is represented by a point and the map 

index. See also Figure 1 in the main text and Figure S2.  

 

Figure S2: Density maps of β-Galactosidase with no Gaussian-based approximation displayed in 

Chimera using comparable isosurface density thresholds. The maps are indicated by their indexes. In 

panels, G stands for grey, Y for yellow, C for cyan, B for blue, M for magenta, T for tan, and P for 

pink. See also Figure 1 in the main text and Figure S1. 

 

Figure S3: Projection of Brome Mosaic Virus maps with no Gaussian-based approximation onto a 3D 

space of distances among maps. In the distance space, each map is represented by a point and the map 

index. See also Figure 2 in the main text and Figure S4. 

 

Figure S4: Density maps of Brome Mosaic Virus with no Gaussian-based approximation displayed in 

Chimera using comparable isosurface density thresholds. The maps are indicated by their indexes. In 

panels A and D, G stands for grey, Y for yellow, C for cyan, M for magenta, and B for blue. See also 

Figure 2 in the main text and Figure S3. 



 

Figure S5: Projection of Apo-ferritin maps with no Gaussian-based approximation onto a 3D space of 

distances among maps. In the distance space, each map is represented by a point and the map index. 

See also Figure 3 in the main text and Figure S6. 

 

Figure S6: Density maps of Apo-ferritin with no Gaussian-based approximation displayed in Chimera 

using comparable isosurface density thresholds. The maps are indicated by their indexes. In panels B-

D, G stands for grey (panels B-C) or green (panel D), C for cyan, Y for yellow, and M for magenta. 

See also Figure 3 in the main text and Figure S5. 

 

Figure S7: Projection of GroEL maps with no Gaussian-based approximation onto a 3D space of 

distances among maps. In the distance space, each map is represented by a point and the map index. 

See also Figure 4 in the main text and Figure S8. 

 

Figure S8: Density maps of GroEL with no Gaussian-based approximation displayed in Chimera 

using comparable isosurface density thresholds. The maps are indicated by their indexes. In panels A-

F, C stands for cyan, B for blue, Y for yellow, G for grey (panels B-C and E) or green (panel F), M for 

magenta, P for pink, and T for tan. See also Figure 4 in the main text and Figure S7. 

 

Figure S9: Projection of T20S proteasome maps with no Gaussian-based approximation onto a 3D 

space of distances among maps. In the distance space, each map is represented by a point and the map 

index. See also Figure 5 in the main text and Figure S10. 

 

Figure S10: Density maps of T20S proteasome with no Gaussian-based approximation displayed in 

Chimera using comparable isosurface density thresholds. The maps are indicated by their indexes. In 

panels A-E, G stands for grey (panel A left and panels C-D) or green (panel A right and panel E), Y 

for yellow, M for magenta, P for pink, C for cyan, B for blue, and T for tan. See also Figure 5 in the 

main text and Figure S9. 

 

Figure S11: Projection of 80S ribosome maps with no Gaussian-based approximation onto a 3D space 

of distances among maps. In the distance space, each map is represented by a point and the map index. 

See also Figure 6 in the main text and Figure S12. 

 

Figure S12: Density maps of 80S ribosome with no Gaussian-based approximation displayed in 

Chimera, using comparable isosurface density thresholds in panels A-C and a different isosurface 

density threshold in panel D. The maps are indicated by their indexes. In panels A-B, Y stands for 



yellow, M for magenta, C for cyan, T for tan, B for blue, and G for green. See also Figure 6 in the 

main text and Figure S11. 

 

Figure S13: Projection of TRPV1 channel maps with no Gaussian-based approximation onto a 3D 

space of distances among maps. In the distance space, each map is represented by a point and the map 

index. See also Figure 7 in the main text and Figure S14. 

 

Figure S14: Density maps of TRPV1 channel with no Gaussian-based approximation displayed in 

Chimera using comparable isosurface density thresholds. The maps are indicated by their indexes. In 

panel A, G stands for grey, Y for yellow, C for cyan, B for blue, M for magenta, P for pink, and R for 

red. See also Figure 7 in the main text and Figure S13. 

 

Figure S15: Projection of β-Galactosidase (A), Brome Mosaic Virus (B), Apo-ferritin (C), and GroEL 

(D) density maps with (left) and without (right) Gaussian-based approximation onto a 3D space of 

distances among maps shown using the same axes limits for all 7 target systems. In the distance space, 

each map is represented by a point and the map index. 

 

Figure S16: Projection of T20S proteasome (A), 80S ribosome (B), and TRPV1 channel (C) density 

maps with (left) and without (right) Gaussian-based approximation onto a 3D space of distances 

among maps shown using the same axes limits for all 7 target systems. In the distance space, each map 

is represented by a point and the map index. 

 

Figure S17: Density maps of β-Galactosidase (gray, transparent) superposed onto their respective 

Gaussian-based approximations (yellow, solid). The map indexes are provided near the maps. 

 

Figure S18: Density maps of Brome Mosaic Virus (gray, solid) superposed onto their respective 

Gaussian-based approximations (yellow, solid). The map indexes are provided near the maps. 

 

Figure S19: Density maps of Apo-ferritin (gray, transparent) superposed onto their respective 

Gaussian-based approximations (yellow, solid). The map indexes are provided near the maps. 

 

Figure S20: Density maps of GroEL (gray, transparent) superposed onto their respective Gaussian-

based approximations (yellow, solid). The map indexes are provided near the maps. 

 

Figure S21: Density maps of T20S proteasome (gray, transparent) superposed onto their respective 

Gaussian-based approximations (yellow, solid). The map indexes are provided near the maps. 

 



Figure S22: Density maps of 80S ribosome (gray, transparent) superposed onto their respective 

Gaussian-based approximations (yellow, solid). The map indexes are provided near the maps. 

 

Figure S23: Density maps of TRPV1 channel (gray, transparent) superposed onto their respective 

Gaussian-based approximations (yellow, solid). The map indexes are provided near the maps. 

 

Figure S24: Masked β-Galactosidase (A), Brome Mosaic Virus (B), Apo-ferritin (C), GroEL (D), 

T20S proteasome (E), 80S ribosome (F), and TRPV1 channel (G) density maps visualized using 

isosurfaces corresponding to very low density values to show the contours of the masks. The same 

mask was used for all maps of the same target system. In this figure, only one masked map is shown 

for each of the 7 target systems and its index (selected arbitrarily) is shown below the map.  

 

Figure S25: Projection of GroEL density maps with Gaussian-based approximation onto a 3D space 

of distances among maps (shown using the same axes limits for all 7 target systems) for the following 

two sets of values of the Gaussian-function standard deviation and the target approximation error, 

respectively: 1) 1.5 voxel and 10 % (A); and 2) 1 voxel and 5 % (B). In the distance space, each map 

is represented by a point and the map index. Panel A in this figure is the same as panel D in Figure 

S15. See also Table S8. 
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β-Galactosidase  

density map 

Number of 3D Gaussian functions Approximation error 

[%] 

106 56252 13.5 

113 86139   9.3 

116 28203 44.4 

134 60610 16.6 

138 83932   9.8 

139 83716   9.8 

154 69551 12.3 

157 50187 16.1 

159 80876 11.8 

160 51015 15.5 

164 77262 12.3 

167 85703 10.1 
 

Table S1: Number of 3D Gaussian functions and density-map approximation error obtained using these 

Gaussian functions for β-Galactosidase density maps. The parameters used for the approximation are 

provided in Table 1. 
 

 

Brome Mosaic Virus  

density map 

Number of 3D Gaussian functions Approximation error 

[%] 

102 11093 16.6 

110  4977 17.9 

136 13558 10.0 

137 12949 12.1 

140   9389 17.4 

142 13106 13.0 

152   3480 16.3 
 

Table S2: Number of 3D Gaussian functions and density-map approximation error obtained using these 

Gaussian functions for Brome Mosaic Virus density maps. The parameters used for the approximation are 

provided in Table 1. 

 

Apo-ferritin  

density map 

Number of 3D Gaussian functions Approximation error 

[%] 

112 3348   9.9 

118 4230   9.8 

121 4019 10.0 

122 7206 13.3 

124 4943   9.7 

147 5628   9.9 

155 3621 21.0 

166 5076   9.9 

 
Table S3: Number of 3D Gaussian functions and density-map approximation error obtained using these 

Gaussian functions for Apo-ferritin density maps. The parameters used for the approximation are provided in 

Table 1. 

 

 
 
 
 



 

GroEL in silico  

density map 

Number of 3D Gaussian functions Approximation error 

[%] 

104 7023 10.0 

120 7425 10.3 

132 7292 11.6 

143 6315   9.9 

153 6508 10.0 

158 4832 22.7 

165 6298   9.8 

168 3378 30.0 

169 2452 44.7 

 
Table S4: Number of 3D Gaussian functions and density-map approximation error obtained using these 

Gaussian functions for GroEL in silico density maps. The parameters used for the approximation are 

provided in Table 1. 

 

T20S proteasome  

density map 

Number of 3D Gaussian functions Approximation error 

[%] 

103 32503 62.5 

107 66985 23.8 

108 50578 37.2 

130 77555 21.3 

131 77763 21.5 

141 88315 18.1 

144 87594 14.8 

145 86520 14.9 

162 72821 21.6 

 
Table S5: Number of 3D Gaussian functions and density-map approximation error obtained using these 

Gaussian functions for T20S proteasome density maps. The parameters used for the approximation are 

provided in Table 1. 

 

80S ribosome  

density map 

Number of 3D Gaussian functions Approximation error 

[%] 

111 11092   9.3 

114 16137   8.3 

119  7628 13.3 

123 16057  7.7 

125 16883  6.8 

126 16184  7.3 

127 17210  6.3 

128 17751  6.0 

129 19981  5.0 

148 18744  5.3 

149 17012  6.8 

150 16566  7.2 

151 16083  7.7 

 
Table S6: Number of 3D Gaussian functions and density-map approximation error obtained using these 

Gaussian functions for 80S ribosome density maps. The parameters used for the approximation are provided 

in Table 1. 

 



TRPV1 channel  

density map 

Number of 3D Gaussian functions Approximation error 

[%] 

101 24209    34.1 

115 16031    61.3 

133 26915    27.0 

135 26204    28.7 

146  6109   303.4 

156 12755    77.2 

161 10600    96.7 

163 13141   661.8 

 
Table S7: Number of 3D Gaussian functions and density-map approximation error obtained using these 

Gaussian functions for TRPV1 channel density maps. The parameters used for the approximation are 

provided in Table 1. 

 

GroEL 

density 

map 

Gaussian standard deviation: 1.5 voxel 

Target approximation error: 10 % 

Gaussian standard deviation: 1 voxel 

Target approximation error: 5 % 

Number of Gaussian 

functions 

Approximation 

error [%] 

Number of Gaussian 

functions 

Approximation 

error [%] 

104 7023 10.0 31855   8.5 

120 7425 10.3 31586   8.9 

132 7292 11.6 35758   8.4 

143 6315   9.9 37124   7.6 

153 6508 10.0 37666   7.7 

158 4832 22.7 32025 10.7 

165 6298   9.8 44398   6.8 

168 3378 30.0 24585 13.4 

169 2452 44.7 11028 30.9 

 
Table S8: Number of 3D Gaussian functions and density-map approximation error obtained using these 

Gaussian functions for GroEL density maps for the following two sets of values of the Gaussian-function 

standard deviation and the target approximation error: 1) 1.5 voxel and 10 % (the parameters used to get the 

results shown in Table S4); and 2) 1 voxel and 5 % (the Gaussian-function standard deviation and the target 

approximation error, respectively).  

 
 Gaussian-based EM map 

approximation 

Non-Gaussian-based EM map 

approximation 

Approximation 

error for mdscale 

in 3D 

Approximation 

error for mdscale 

in 2D 

Approximation 

error for mdscale 

in 3D 

Approximation 

error for mdscale 

in 2D 

BetaGal 0.034 0.042 0.039 0.462 

BMV 0.034 0.079 0.028 0.028 

Ferritin 0.008 0.010 0.012 0.011 

GroEL 0.009 0.026 0.013 0.020 

Proteasome 0.009 0.013 0.036 0.037 

Ribosome 0.022 0.027 0.013 0.017 

TRPVI 0.013 0.044 0.012 0.034 

 

Table S9: Approximation error for mdscale in 3D and in 2D with and without Gaussian-based EM density 

map approximation. The mdscale approximation error is determined by the root-mean-square error of the 

distances among maps in 3D or 2D with respect to these distances in the original space of higher dimension.  



 106 113 116 134 138 139 154 157 159 160 164 167 

106 0 0.24 0.34 0.09 0.12 0.12 0.09 0.12 0.41 0.13 0.41 0.41 

113  0 0.35 0.25 0.10 0.10 0.23 0.24 0.21 0.22 0.21 0.21 

116   0 0.35 0.31 0.31 0.34 0.34 0.46 0.33 0.46 0.42 

134    0 0.12 0.12 0.11 0.14 0.39 0.13 0.39 0.38 

138     0 0.04 0.11 0.14 0.26 0.13 0.26 0.25 

139      0 0.11 0.14 0.26 0.12 0.26 0.26 

154       0 0.14 0.38 0.14 0.38 0.39 

157        0 0.40 0.08 0.40 0.35 

159         0 0.40 0.08 0.15 

160          0 0.37 0.32 

164           0 0.15 

167            0 

 

Table S10: Distances among Gaussian-based approximations of β-Galactosidase maps before 

projecting the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown.  

 

 106 113 116 134 138 139 154 157 159 160 164 167 

106 0 0.22 0.27 0.05 0.13 0.13 0.05 0.13 0.37 0.15 0.37 0.37 

113  0 0.31 0.21 0.09 0.09 0.19 0.21 0.17 0.17 0.17 0.17 

116   0 0.32 0.26 0.26 0.25 0.25 0.46 0.26 0.46 0.42 

134    0 0.13 0.13 0.09 0.15 0.35 0.16 0.35 0.35 

138     0 0.00 0.10 0.16 0.26 0.13 0.26 0.26 

139      0 0.09 0.16 0.26 0.13 0.26 0.26 

154       0 0.16 0.35 0.16 0.35 0.35 

157        0 0.37 0.05 0.37 0.31 

159         0 0.32 0.00 0.15 

160          0 0.32 0.26 

164           0 0.15 

167            0 

 

Table S11: Distances among Gaussian-based approximations of β-Galactosidase maps after projecting 

the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown.  

 

 106 113 116 134 138 139 154 157 159 160 164 167 

106 0 0.23 0.46 0.11 0.10 0.10 0.08 0.13 0.39 0.13 0.39 0.41 

113  0 0.47 0.26 0.06 0.07 0.23 0.23 0.15 0.21 0.15 0.17 

116   0 0.48 0.43 0.43 0.46 0.45 0.55 0.44 0.55 0.51 

134    0 0.13 0.13 0.13 0.18 0.39 0.17 0.39 0.40 

138     0 0.01 0.10 0.13 0.21 0.11 0.21 0.23 

139      0 0.09 0.13 0.21 0.11 0.21 0.24 

154       0 0.15 0.37 0.15 0.37 0.40 

157        0 0.38 0.07 0.38 0.32 

159         0 0.34 0.00 0.09 

160          0 0.34 0.28 

164           0 0.09 

167            0 

 

Table S12: Distances among original β-Galactosidase maps before projecting the maps to 3D space. 

Map index is in bold. Only the asymmetric part of the table is shown. 

 

 

 



 106 113 116 134 138 139 154 157 159 160 164 167 

106 0 0.18 0.42 0.15 0.15 0.15 0.02 0.17 0.34 0.18 0.34 0.36 

113  0 0.43 0.21 0.03 0.03 0.18 0.19 0.17 0.18 0.17 0.19 

116   0 0.55 0.43 0.43 0.41 0.42 0.54 0.42 0.54 0.54 

134    0 0.18 0.18 0.16 0.18 0.33 0.18 0.33 0.33 

138     0 0.00 0.15 0.17 0.19 0.16 0.19 0.21 

139      0 0.15 0.17 0.19 0.16 0.19 0.21 

154       0 0.19 0.33 0.19 0.33 0.37 

157        0 0.34 0.02 0.34 0.29 

159         0 0.32 0.00 0.15 

160          0 0.32 0.27 

164           0 0.15 

167            0 

 

Table S13: Distances among original β-Galactosidase maps after projecting the maps to 3D space. 

Map index is in bold. Only the asymmetric part of the table is shown. 

 

 102 110 136 137 140 142 152 

102 0 0.49 0.23 0.17 0.16 0.16 0.54 

110  0 0.55 0.47 0.48 0.49 0.41 

136   0 0.12 0.25 0.14 0.61 

137    0 0.19 0.09 0.55 

140     0 0.18 0.52 

142      0 0.57 

152       0 

 

Table S14: Distances among Gaussian-based approximations of Brome Mosaic Virus maps before 

projecting the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown.  

 

 102 110 136 137 140 142 152 

102 0 0.52 0.19 0.12 0.08 0.11 0.56 

110  0 0.56 0.51 0.51 0.52 0.43 

136   0 0.08 0.27 0.08 0.61 

137    0 0.19 0.02 0.56 

140     0 0.19 0.52 

142      0 0.58 

152       0 

 

Table S15: Distances among Gaussian-based approximations of Brome Mosaic Virus maps after 

projecting the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 102 110 136 137 140 142 152 

102 0 0.19 0.10 0.05 0.02 0.03 0.42 

110  0 0.35 0.26 0.20 0.24 0.47 

136   0 0.03 0.08 0.03 0.49 

137    0 0.03 0.01 0.42 

140     0 0.01 0.42 

142      0 0.43 

152       0 

 

Table S16: Distances among original Brome Mosaic Virus maps before projecting the maps to 3D 

space. Map index is in bold. Only the asymmetric part of the table is shown.  

 



 102 110 136 137 140 142 152 

102 0 0.20 0.15 0.10 0.04 0.07 0.43 

110  0 0.35 0.29 0.22 0.26 0.48 

136   0 0.07 0.13 0.09 0.49 

137    0 0.07 0.03 0.43 

140     0 0.04 0.43 

142      0 0.44 

152       0 

 

Table S17: Distances among original Brome Mosaic Virus maps after projecting the maps to 3D 

space. Map index is in bold. Only the asymmetric part of the table is shown.  

 

 112 118 121 122 124 147 155 166 

112 0 0.06 0.05 0.05 0.05 0.15 0.08 0.08 

118  0 0.05 0.07 0.06 0.10 0.12 0.04 

121   0 0.06 0.07 0.12 0.10 0.06 

122    0 0.10 0.17 0.08 0.09 

124     0 0.08 0.15 0.06 

147      0 0.23 0.09 

155       0 0.16 

166        0 

 

Table S18: Distances among Gaussian-based approximations of Apo-ferritin maps before projecting 

the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown.  

 

 112 118 121 122 124 147 155 166 

112 0 0.07 0.04 0.06 0.07 0.15 0.09 0.09 

118  0 0.04 0.07 0.07 0.10 0.14 0.03 

121   0 0.07 0.08 0.13 0.10 0.07 

122    0 0.10 0.17 0.09 0.09 

124     0 0.09 0.16 0.07 

147      0 0.23 0.09 

155       0 0.16 

166        0 

 

Table S19: Distances among Gaussian-based approximations of Apo-ferritin maps after projecting the 

maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 112 118 121 122 124 147 155 166 

112 0 0.03 0.01 0.08 0.06 0.12 0.10 0.04 

118  0 0.02 0.09 0.02 0.06 0.15 0.00 

121   0 0.08 0.05 0.10 0.11 0.03 

122    0 0.11 0.18 0.17 0.10 

124     0 0.05 0.17 0.02 

147      0 0.23 0.06 

155       0 0.16 

166        0 

 

Table S20: Distances among original Apo-ferritin maps before projecting the maps to 3D space. Map 

index is in bold. Only the asymmetric part of the table is shown. 

 

 

 



 112 118 121 122 124 147 155 166 

112 0 0.05 0.02 0.09 0.07 0.13 0.12 0.05 

118  0 0.04 0.10 0.03 0.08 0.16 0.01 

121   0 0.10 0.06 0.12 0.12 0.04 

122    0 0.12 0.18 0.17 0.11 

124     0 0.06 0.17 0.02 

147      0 0.23 0.08 

155       0 0.17 

166        0 

 

Table S21: Distances among original Apo-ferritin maps after projecting the maps to 3D space. Map 

index is in bold. Only the asymmetric part of the table is shown. 

 

 104 120 132 143 153 158 165 168 169 

104 0 0.03 0.03 0.01 0.02 0.13 0.02 0.15 0.24 

120  0 0.02 0.04 0.04 0.14 0.05 0.18 0.26 

132   0 0.03 0.05 0.11 0.05 0.14 0.22 

143    0 0.02 0.12 0.02 0.15 0.24 

153     0 0.15 0.02 0.18 0.27 

158      0 0.13 0.17 0.23 

165       0 0.16 0.25 

168        0 0.16 

169         0 

 

Table S22: Distances among Gaussian-based approximations of GroEL maps before projecting the 

maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 104 120 132 143 153 158 165 168 169 

104 0 0.02 0.02 0.00 0.02 0.14 0.02 0.15 0.24 

120  0 0.02 0.02 0.02 0.14 0.04 0.17 0.25 

132   0 0.02 0.04 0.12 0.04 0.15 0.23 

143    0 0.02 0.14 0.02 0.15 0.24 

153     0 0.15 0.02 0.17 0.27 

158      0 0.14 0.16 0.23 

165       0 0.15 0.25 

168        0 0.15 

169         0 

 

Table S23: Distances among Gaussian-based approximations of GroEL maps after projecting the 

maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 104 120 132 143 153 158 165 168 169 

104 0 0.03 0.02 0.00 0.01 0.09 0.01 0.19 0.33 

120  0 0.01 0.03 0.03 0.10 0.04 0.23 0.37 

132   0 0.02 0.03 0.07 0.03 0.19 0.32 

143    0 0.01 0.09 0.00 0.18 0.33 

153     0 0.11 0.01 0.22 0.36 

158      0 0.09 0.18 0.26 

165       0 0.19 0.33 

168        0 0.16 

169         0 

Table S24: Distances among original GroEL maps before projecting the maps to 3D space. Map index 

is in bold. Only the asymmetric part of the table is shown. 



 104 120 132 143 153 158 165 168 169 

104 0 0.03 0.03 0.02 0.03 0.11 0.03 0.20 0.35 

120  0 0.03 0.04 0.04 0.11 0.05 0.23 0.37 

132   0 0.03 0.04 0.09 0.04 0.21 0.34 

143    0 0.02 0.11 0.01 0.20 0.35 

153     0 0.12 0.02 0.22 0.37 

158      0 0.11 0.18 0.27 

165       0 0.21 0.35 

168        0 0.18 

169         0 

 

Table S25: Distances among original GroEL maps after projecting the maps to 3D space. Map index 

is in bold. Only the asymmetric part of the table is shown. 

 

 103 107 108 130 131 141 144 145 162 

103 0 0.13 0.14 0.22 0.22 0.16 0.23 0.22 0.16 

107  0 0.07 0.10 0.10 0.06 0.09 0.09 0.05 

108   0 0.14 0.14 0.09 0.14 0.13 0.08 

130    0 0.02 0.09 0.09 0.09 0.10 

131     0 0.09 0.09 0.09 0.10 

141      0 0.07 0.06 0.06 

144       0 0.03 0.08 

145        0 0.08 

162         0 

 

Table S26: Distances among Gaussian-based approximations of T20S proteasome maps before 

projecting the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 103 107 108 130 131 141 144 145 162 

103 0 0.14 0.14 0.23 0.23 0.16 0.23 0.22 0.16 

107  0 0.07 0.10 0.10 0.03 0.09 0.09 0.03 

108   0 0.15 0.15 0.10 0.14 0.14 0.07 

130    0 0.00 0.09 0.09 0.09 0.10 

131     0 0.09 0.09 0.09 0.10 

141      0 0.07 0.07 0.03 

144       0 0.00 0.07 

145        0 0.07 

162         0 

 

Table S27: Distances among Gaussian-based approximations of T20S proteasome maps after 

projecting the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 103 107 108 130 131 141 144 145 162 

103 0 0.13 0.12 0.28 0.28 0.19 0.32 0.31 0.19 

107  0 0.05 0.10 0.10 0.03 0.07 0.07 0.03 

108   0 0.16 0.16 0.08 0.13 0.13 0.07 

130    0 0.00 0.09 0.09 0.09 0.11 

131     0 0.09 0.09 0.09 0.11 

141      0 0.05 0.04 0.05 

144       0 0.00 0.07 

145        0 0.06 

162         0 

 

Table S28: Distances among original T20S proteasome maps before projecting the maps to 3D space. 

Map index is in bold. Only the asymmetric part of the table is shown. 

 

 103 107 108 130 131 141 144 145 162 

103 0 0.20 0.13 0.30 0.30 0.23 0.32 0.31 0.23 

107  0 0.09 0.13 0.13 0.04 0.12 0.11 0.06 

108   0 0.22 0.22 0.12 0.20 0.18 0.12 

130    0 0.00 0.12 0.12 0.12 0.13 

131     0 0.12 0.12 0.12 0.13 

141      0 0.09 0.08 0.08 

144       0 0.02 0.10 

145        0 0.09 

162         0 

 

Table S29: Distances among original T20S proteasome maps after projecting the maps to 3D space. 

Map index is in bold. Only the asymmetric part of the table is shown. 

 

 111 114 119 123 125 126 127 128 129 148 149 150 151 

111 0 0.22 0.10 0.23 0.22 0.22 0.24 0.24 0.31 0.25 0.26 0.25 0.23 

114  0 0.27 0.04 0.04 0.05 0.05 0.05 0.12 0.05 0.06 0.06 0.04 

119   0 0.28 0.28 0.28 0.30 0.30 0.37 0.30 0.31 0.30 0.28 

123    0 0.04 0.04 0.04 0.04 0.10 0.05 0.05 0.05 0.04 

125     0 0.04 0.04 0.04 0.10 0.04 0.05 0.05 0.04 

126      0 0.04 0.05 0.11 0.05 0.05 0.05 0.04 

127       0 0.04 0.10 0.04 0.05 0.05 0.04 

128        0 0.09 0.04 0.05 0.05 0.05 

129         0 0.08 0.09 0.10 0.11 

148          0 0.05 0.06 0.05 

149           0 0.03 0.05 

150            0 0.05 

151             0 

 

Table S30: Distances among Gaussian-based approximations of 80S ribosome maps before projecting 

the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 

 

 

 

 

 

 



 111 114 119 123 125 126 127 128 129 148 149 150 151 

111 0 0.22 0.10 0.23 0.23 0.23 0.23 0.24 0.32 0.24 0.25 0.24 0.23 

114  0 0.27 0.01 0.01 0.02 0.02 0.02 0.11 0.03 0.03 0.03 0.02 

119   0 0.28 0.28 0.28 0.29 0.29 0.37 0.29 0.30 0.29 0.28 

123    0 0.01 0.01 0.01 0.01 0.10 0.02 0.02 0.02 0.01 

125     0 0.01 0.01 0.01 0.10 0.01 0.02 0.03 0.01 

126      0 0.01 0.02 0.10 0.02 0.02 0.02 0.01 

127       0 0.01 0.09 0.01 0.02 0.02 0.01 

128        0 0.09 0.01 0.02 0.02 0.02 

129         0 0.08 0.09 0.10 0.10 

148          0 0.03 0.03 0.02 

149           0 0.01 0.02 

150            0 0.02 

151             0 

 

Table S31: Distances among Gaussian-based approximations of 80S ribosome maps after projecting 

the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 111 114 119 123 125 126 127 128 129 148 149 150 151 

111 0 0.13 0.04 0.13 0.11 0.12 0.13 0.13 0.20 0.13 0.14 0.14 0.13 

114  0 0.14 0.01 0.01 0.01 0.02 0.02 0.09 0.02 0.02 0.02 0.01 

119   0 0.14 0.13 0.14 0.15 0.15 0.25 0.16 0.16 0.15 0.14 

123    0 0.01 0.00 0.01 0.01 0.08 0.02 0.01 0.01 0.00 

125     0 0.01 0.01 0.01 0.07 0.02 0.02 0.02 0.01 

126      0 0.01 0.01 0.08 0.02 0.01 0.01 0.01 

127       0 0.01 0.07 0.01 0.02 0.02 0.01 

128        0 0.06 0.01 0.02 0.02 0.01 

129         0 0.06 0.07 0.07 0.08 

148          0 0.02 0.03 0.02 

149           0 0.00 0.01 

150            0 0.01 

151             0 

 

Table S32: Distances among original 80S ribosome maps before projecting the maps to 3D space. 

Map index is in bold. Only the asymmetric part of the table is shown. 

 

 111 114 119 123 125 126 127 128 129 148 149 150 151 

111 0 0.14 0.07 0.14 0.14 0.14 0.14 0.14 0.23 0.14 0.15 0.15 0.14 

114  0 0.15 0.01 0.01 0.01 0.01 0.02 0.11 0.02 0.01 0.01 0.01 

119   0 0.15 0.15 0.15 0.15 0.16 0.25 0.16 0.16 0.16 0.15 

123    0 0.00 0.00 0.01 0.01 0.10 0.01 0.01 0.01 0.00 

125     0 0.00 0.01 0.01 0.10 0.01 0.01 0.01 0.01 

126      0 0.01 0.01 0.10 0.01 0.01 0.01 0.00 

127       0 0.01 0.10 0.01 0.01 0.01 0.01 

128        0 0.10 0.01 0.01 0.01 0.01 

129         0 0.10 0.10 0.10 0.10 

148          0 0.02 0.02 0.02 

149           0 0.00 0.01 

150            0 0.01 

151             0 

 

Table S33: Distances among original 80S ribosome maps after projecting the maps to 3D space. Map 

index is in bold. Only the asymmetric part of the table is shown. 



 101 115 133 135 146 156 161 163 

101 0 0.04 0.05 0.04 0.22 0.14 0.09 0.11 

115  0 0.07 0.07 0.22 0.13 0.08 0.11 

133   0 0.01 0.21 0.15 0.09 0.08 

135    0 0.21 0.15 0.09 0.08 

146     0 0.29 0.20 0.22 

156      0 0.13 0.16 

161       0 0.11 

163        0 

 

Table S34: Distances among Gaussian-based approximations of TRPV1 channel maps before 

projecting the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 101 115 133 135 146 156 161 163 

101 0 0.03 0.03 0.03 0.22 0.14 0.07 0.10 

115  0 0.05 0.05 0.22 0.12 0.05 0.10 

133   0 0.00 0.21 0.15 0.07 0.07 

135    0 0.21 0.15 0.07 0.07 

146     0 0.29 0.18 0.22 

156      0 0.12 0.15 

161       0 0.10 

163        0 

 

Table S35: Distances among Gaussian-based approximations of TRPV1 channel maps after projecting 

the maps to 3D space. Map index is in bold. Only the asymmetric part of the table is shown. 

 

 101 115 133 135 146 156 161 163 

101 0 0.05 0.04 0.04 0.38 0.20 0.10 0.10 

115  0 0.10 0.08 0.38 0.19 0.09 0.13 

133   0 0.01 0.37 0.22 0.11 0.07 

135    0 0.37 0.22 0.10 0.07 

146     0 0.46 0.37 0.40 

156      0 0.17 0.22 

161       0 0.13 

163        0 

 

Table S36: Distances among original TRPV1 channel maps before projecting the maps to 3D space. 

Map index is in bold. Only the asymmetric part of the table is shown. 

 

 101 115 133 135 146 156 161 163 

101 0 0.04 0.04 0.03 0.38 0.20 0.07 0.08 

115  0 0.07 0.06 0.39 0.20 0.06 0.12 

133   0 0.01 0.37 0.22 0.10 0.06 

135    0 0.37 0.21 0.08 0.06 

146     0 0.46 0.36 0.40 

156      0 0.15 0.21 

161       0 0.12 

163        0 

 

Table S37: Distances among original TRPV1 channel maps after projecting the maps to 3D space. 

Map index is in bold. Only the asymmetric part of the table is shown. 

 

 



 104 120 132 143 153 158 165 168 169 

104 0 0.03 0.03 0.02 0.02 0.12 0.02 0.16 0.23 

120  0 0.02 0.04 0.05 0.13 0.05 0.18 0.24 

132   0 0.03 0.05 0.10 0.05 0.15 0.21 

143    0 0.02 0.12 0.01 0.16 0.23 

153     0 0.15 0.02 0.20 0.26 

158      0 0.13 0.16 0.18 

165       0 0.17 0.24 

168        0 0.10 

169         0 

 

Table S38: Distances among Gaussian-based approximations of GroEL maps before projecting the 

maps to 3D space, for the standard deviation of Gaussian functions of 1 voxel and the target 

approximation error of 5 %. For comparison with Table S22 obtained for a larger standard deviation 

of Gaussian functions (1.5 voxel) and a larger target approximation error (10 %). Map index is in bold. 

Only the asymmetric part of the table is shown. 

 

 104 120 132 143 153 158 165 168 169 

104 0 0.03 0.03 0.02 0.03 0.12 0.03 0.17 0.23 

120  0 0.03 0.05 0.05 0.12 0.06 0.18 0.24 

132   0 0.04 0.06 0.10 0.05 0.16 0.21 

143    0 0.03 0.12 0.02 0.17 0.23 

153     0 0.14 0.03 0.19 0.26 

158      0 0.12 0.17 0.18 

165       0 0.17 0.24 

168        0 0.10 

169         0 

 

Table S39: Distances among Gaussian-based approximations of GroEL maps after projecting the 

maps to 3D space, for the standard deviation of Gaussian functions of 1 voxel and the target 

approximation error of 5 %. For comparison with Table S23 obtained for a larger standard deviation 

of Gaussian functions (1.5 voxel) and a larger target approximation error (10 %). Map index is in bold. 

Only the asymmetric part of the table is shown. 

 


