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Abstract. This paper deals with the convergence analysis of the fictitious domain method used

for taking into account the Neumann boundary condition on the surface of a crack (or more

generally an object) in the context of acoustic and elastic wave propagation. For both types of

waves we consider the first order in time formulation of the problem known as mixed velocity-

pressure formulation for acoustics and velocity-stress formulation for elastodynamics. The con-

vergence analysis for the discrete problem depends on the mixed finite elements used. We con-

sider here two families of mixed finite elements that are compatible with mass lumping. When

using the first one which is less expensive and corresponds to the choice made in a previous

paper, it is shown that the fictitious domain method does not always converge. For the second

one a theoretical convergence analysis was carried out in [7] for the acoustic case. Here we

present numerical results that illustrate the convergence of the method both for acoustic and

elastic waves.
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1 Introduction

This work falls within the more general framework of developing efficient numerical meth-

ods for approximating wave propagation in complex media such as anisotropic, heterogeneous

media with cracks or objects of arbitrary shapes. We consider here scattering of acoustic and

elastic waves by perfect reflectors, i.e., objects or cracks with a homogeneous Neumann bound-

ary condition. To solve these wave propagation problems in an efficient way we use a fictitious

domain approach. This approach, also called the domain embedding method, consists in ex-

tending artificially the solution inside the object so that the new domain of computation has a

very simple shape (typically a rectangle in 2D). To account for the boundary condition, a new

auxiliary unknown, defined only at the boundary of the object, is introduced. The solution of

this extended problem has now a singularity across the boundary of the object which can be

related to the new unknown. The main advantage of the method is that the mesh for the so-

lution on the enlarged domain can be chosen independently of the geometry of the object. In

particular, one can use regular grids or structured meshes which allows for simple and efficient

computations.

Special interest has been given to this approach as it has been shown to lead to efficient

numerical methods for a large number of applications (e.g [1, 19, 13, 12, 14, 16, 17]) and these

last years for time dependent wave propagation problems ([9, 11, 21, 18, 5, 2]). The method can

be re-interpreted in terms of optimization theory in which case the auxiliary unknown appears as

a Lagrange multiplier associated to the boundary condition viewed now as an equality constraint

in the functional space. Thus the key point of the approach is that it can be applied to essential

type boundary conditions, i.e., conditions that can be considered as an equality constraint.

To do so with the free surface condition, the dual unknown (velocity in the acoustic case and

stress tensor in the elastic) has to be one of the unknowns. This can be done by considering

either the dual formulation (the formulation with only one unknown, the dual one) or the mixed

dual primal formulation. In both cases, the dual unknown is introduced and seeked for in the

space H(div) in which the Neumann boundary condition v · n or σ · n = 0 can be considered

as an equality constraint. In this case, the Lagrange multiplier is nothing but the jump of the

primal unknown across the boundary of the object.

For the approximation of the mixed formulation in the scalar acoustic case, in [4], the authors

have proposed mixed finite elements, the so-called Qdiv
k+1 − Qk elements, inspired by Nédélec’s

second family [20]. These elements are compatible with mass lumping, and therefore allow

for constructing explicit schemes in time. The generalization of those elements in the case of

elastic waves was introduced in [3] for the velocity-stress formulation.

A non standard convergence analysis of the Qdiv
k+1 − Qk elements has been carried out in [4]

for their scalar version and in [6] for their elastodynamic vectorial version. However this con-

vergence analysis only deals with the velocity-pressure (resp. velocity-stress) mixed problem

without object, that is, it did not concern the convergence of the fictitious domain method.

In this paper the convergence of the fictitious domain method is analyzed. The scalar problem

is considered first, followed by the vectorial elastic case.

2 The fictitious domain formulation of the diffraction problem. The acoustic case

2.1 The continuous problem

We consider the diffraction of an acoustic wave by an object with a Neumann type condition

for the pressure field on its boundary Γ. The object can be either an obstacle with a closed

boundary or a crack with an open boundary (see Fig. 1) but for the sake of clarity we will
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consider here only this second configuration. The domain of propagation is denoted Ω with

an exterior boundary Σ (see Fig. 1) and we assume that C = Ω ∪ Γ is a domain of “simple”

geometry, typically a rectangle. The propagation medium is assumed to be anisotropic and

n

Γ

Σ

Ω

Figure 1: Geometry of the problem.

the equation satisfied by the pressure field is the scalar wave equation. To apply the fictitious

domain method to this type of boundary condition it is classical (e.g. [4]) to formulate the

problem as a first-order velocity-pressure system,





Find (v, p) : (x, t) ∈ Ω × [0, T ] 7→ (v(x, t), p(x, t)) ∈ R
2 × R satisfying,

ρ
∂p

∂t
− div v = f, in Ω, (a)

A
∂v

∂t
− ∇p = 0, in Ω, (b)

v · n = 0, on Γ, (c)

p = 0, on Σ, (d)

(1)

with the initial conditions, {
p(t = 0) = p0,

v(t = 0) = v0,
(2)

where the unknowns p and v denote the pressure and the velocity field. The scalar function

ρ and the tensor A characterize the propagation medium and f represents the external forces.

Moreover, we assume that ρ satisfies

0 < ρ− ≤ ρ(x) ≤ ρ+ < +∞,

and A is a second order symmetric positive tensor such that

0 < κ|w|2 ≤ A(x)w · w ≤ ν|w|2, ∀w 6= 0.

We also assume that the support of the initial data and the source do not intersect Γ,

supp(v0) ∪ supp(p0) ⊂ C \ Γ,
⋃

t≤T

supp(f(t)) ⊂ C \ Γ. (3)

The natural variational formulation of this problem would be set in some functional spaces that

depend on the shape of the obstacle (i.e., depend on Ω). More precisely, the classical variational
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formulation is, 



Find (v(t), p(t)) ∈ X0 × M satisfying,

d

dt

∫

Ω

Av · w dx +

∫

Ω

div(w)p dx = 0, ∀w ∈ X0,

d

dt

∫

Ω

ρpq dx −
∫

Ω

div(v)q dx = (f, q), ∀q ∈ M,

(v, p)/t=0 = (v0, p0),

(4)

where the functional spaces are defined as,

X0 = {w ∈ H(div; Ω), w · n = 0, on Γ} , M = L2(Ω).

The fictitious domain formulation of this problem consists in taking into account the boundary

condition on Γ in a weak way, by introducing a Lagrange multiplier λ defined on Γ. This allows

for working in functional spaces (for the volume unknowns) which do not depend any more on

the shape of the obstacle. The fictitious domain formulation is then the following, (to simplify

the notations, we still denote by (v(t), p(t)) the new unknowns defined now in C)






Find (v(t), p(t), λ(t)) ∈ X × M × G satisfying,

d

dt
a(v, w) + b(w, p) − < w · n, λ >Γ = 0, ∀w ∈ X,

d

dt
(p, q)ρ − b(v, q) = (f, q), ∀q ∈ M,

< v · n, µ >Γ = 0, ∀µ ∈ G,

(v, p)/t=0 = (v0, p0),

(5)

where the functional spaces are now defined as,

X(= X(C)) = H(div; C), M = L2(C), G = H
1/2

00 (Γ),

the bilinear forms as,





a(v, w) =

∫

C

Av · w dx, ∀(v, w) ∈ X × X,

(p, q)η =

∫

C

η p q dx, ∀(p, q) ∈ M × M,

b(w, q) =

∫

C

div(w)q dx, ∀(w, q) ∈ X × M,

(6)

and the bracket < w · n, µ >Γ is the duality product between G and G ′

. In the following we will

denote by (·, ·) := (·, ·)1 the usual L2(C) scalar product.

Remark 1 On the regularity of the solution. The space regularity of the volumic part of the

solution is at most,

v(t) ∈ H
1

2
−ε(div, C), p(t) ∈ H

1

2
−ε(C), ε > 0,

and this is obtained for regular enough data and a regular geometry of the crack. The regularity

in Ω (i.e. outside the obstacle) is in general higher and depends on the geometry of the obstacle.

For a closed boundary we have,

p/Ω(t) ∈ H2(Ω), λ(t) ∈ H3/2(Γ)
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While for an open boundary, due to the singular behavior near the tip of the crack [15] (the

solution behaves as
√

r, r being here the distance to the tip), we have

p/Ω(t) ∈ H3/2−ε(Ω), λ(t) ∈ H1−ε(Γ), ε > 0.

2.2 The semi-discrete approximation

For the approximation in space of this problem, we introduce finite dimensional spaces Xh ⊂
X , Mh ⊂ M and GH ⊂ G satisfying the approximation properties,

∣∣∣∣∣∣∣∣∣

lim
h→0

inf
wh∈Xh

‖v − wh‖X = 0, ∀v ∈ X,

lim
h→0

inf
qh∈Mh

‖p − qh‖M = 0, ∀p ∈ M,

lim
H→0

inf
µH∈GH

‖λ − µH‖G = 0, ∀λ ∈ G.

(7)

The semi-discrete problem is then,






Find (vh(t), ph(t), λH(t)) ∈ Xh × Mh × GH such that,

d

dt
a(vh, wh) + b(wh, ph) − < wh · n, λH >Γ = 0, ∀wh ∈ Xh,

d

dt
(ph, qh)ρ − b(vh, qh) = (f, qh), ∀qh ∈ Mh,

< vh · n, µH >Γ = 0, ∀µH ∈ GH ,

vh(t = 0) = vh,0,
ph(t = 0) = ph,0,

(8)

where (vh,0, ph,0) ∈ Xh × Mh is an approximation of the exact initial condition.

The question is : how to choose the approximate spaces in order to insure the convergence

of (vh, ph, λH) to (v, p, λ) ?

3 The fictitious domain method using the Qdiv
1 − Q0 element

3.1 Position of the problem

For the volumic unknowns, we introduce a regular mesh Th of the rectangular domain C
composed of square elements of length h. In [4], we introduced for the problem without obsta-

cle new mixed finite elements, the so-called Qdiv
k+1 −Qk elements, inspired by Nédélec’s second

family [20]. These elements are compatible with mass lumping, and therefore allow for con-

structing an explicit scheme in time. A non standard convergence analysis of these Qdiv
k+1 − Qk

elements was carried out in [4]. Naturally, our first choice for the problem with an obstacle was

naturally the lowest order element Qdiv
1 − Q0 for the velocity and the pressure fields,





Xh = {wh ∈ X / ∀K ∈ Th, wh|K ∈ Q1 × Q1} ,

Mh = M0
h with M0

h = {qh ∈ M / ∀K ∈ Th, qh|K ∈ Q0} .
(9)

For more details on this element we refer to [4]. Notice that the velocity approximation space

Xh contains the lower order Raviart Thomas element,

Xh
RT = {wh ∈ X / ∀K ∈ Th, wh|K ∈ P10 × P01} .
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For the approximation of the Lagrange multiplier, we introduce a mesh of Γ composed of N
curvilinear segments Sj of length Hj , and we set H = supj Hj . We assume that this mesh is

uniformly regular,

∃ν, 0 < ν ≤ 1, such that : ∀j, 1 ≤ j ≤ N, Hj ≥ νH. (10)

We then choose the space of continuous linear piecewise functions:

GH =
{
νH ∈ G / ∀Sj , j = 1, . . . , N, νH

∣∣
Sj

∈ P1

}
. (11)

The spaces (Xh, M
0
h ,GH) clearly satisfy the approximation properties (7). This choice which

seemed to us natural, since the convergence was proven without obstacle, is the one that was

used in [5] for the more complex elastodynamic case. However we have not been able to prove

the convergence of the fictitious domain method with these spaces.

The convergence analysis of the fictitious domain method applied to other problems [1, 12,

18] shows that convergence holds if a compatibility condition between the step sizes of the two

meshes is satisfied,

H ≥ αh. (12)

We will show in what follows some numerical illustrations which seem to indicate that for

some special configurations of obstacles, the method does not converge.

3.2 Numerical illustrations

The computational domain is the square [0, 10]mm × [0, 10]mm composed by a homoge-

neous isotropic material with ρ = 1000Kgr/m3 and A = I × 109Pa. It is excited by an initial

condition on the pressure centered on (xc, zc) = (5, 5)mm,

p((x, z), t = 0) = 0.1 F

(
r

r0

)
,

where F (r) is supported in [0, 1] and given by (for r ∈ [0, 1])

F (r) = A0 − A1 cos(2πr) + A2 cos(3πr) − A3 cos(6πr),

with r = (x − xc, z − zc)
t, r = ‖r‖, r0 = 1mm and

A0 = 0.35875, A1 = 0.48829, A2 = 0.14128, A3 = 0.01168.

We consider a uniform mesh of squares using a discretization step h = 0.025mm. The time

discretization is done using a leap frog scheme with the time step ∆t chosen in such a way that

the ratio ∆t/h is equal to the maximal value that ensures the stability. Perfectly matched layers

are used to simulate a non bounded domain.

Horizontal obstacle. In the first experiment we consider a plane horizontal crack

(x, z) = (5 + 2
√

2(2t − 1), 5 − 2
√

2)mm, t ∈ [0, 1], (13)

that we discretize using a uniform mesh of step H = Rh. The method converges and we obtain

good results for reasonable values for the parameter R (in the interval [0.75, 3]). In the first

column of figure 2 we show the results for R = 1.2. At the beginning, the wave is totally

6



Éliane Bécache, Jeronimo Rodriguez and Chrysoula Tsogka

reflected by the boundary. When the wave front reach the tips of the crack, two scattered waves

are created.

(a) t = 2.6516506 µs (b) t = 2.6516506 µs

(c) t = 5.3033012 µs (d) t = 5.3033012 µs

Figure 2: Qdiv
1 − Q0. Isotropic medium. H/h = 1.2

Diagonal obstacle. In the second experiment we treat a plane diagonal defect given by

(x, z) = (5 + 4t, 1 + 4t)mm, t ∈ [0, 1], (14)

that is, the same obstacle considered in the previous paragraph rotated by π/4 radians with

respect to (xc, zc), the center of the initial condition. As the medium is isotropic, the solution of

the continuous problem is also a rotation of the solution with the horizontal crack.

We discretize the Lagrange multiplier using again a uniform mesh of step H = Rh with several

values for the parameter R. However, this time, the approximated solution does not seem to

converge towards the physical solution (see for instance the second column of the figure 2

for R = 1.2). The incident wave is not completely reflected but also transmitted through the

interface.

4 The modified element Qdiv
1 − P disc

1

4.1 Presentation of the modified element

We propose to modify the space Mh in such a way that

div
(
Xh

)
⊂ Mh, (15)

7
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which could simplify the analysis. In particular, we discretize the pressure in the space

Mh = M1
h with M1

h = {qh ∈ M / ∀K ∈ Th, qh|K ∈ P1(K)} . (16)

Since M0
h ⊂ M1

h we have obviously

inf
qh∈Mh

‖p − qh‖ρ ≤ inf
q0

h
∈M0

h

∥∥p − q0
h

∥∥
ρ
,

so that the approximation properties (7) are still satisfied.

4.2 Some numerical illustrations using the modified element

Let us now show some numerical illustrations of the behavior of the fictitious domain method

with the new finite element space. The numerical experiments that we have considered are the

same as in section 3.2 and will allow us to compare both finite elements.

(a) t = 2.6516506 µs (b) t = 2.6516506 µs

(c) t = 5.3033012 µs (d) t = 5.3033012 µs

Figure 3: Qdiv
1 − P disc

1 . Isotropic medium. H/h = 1.2

Horizontal obstacle Once again we discretize the horizontal crack defined by (13) using

a uniform mesh of step H = Rh. The results obtained with the new mixed finite element

Qdiv
1 − P disc

1 are similar to those given by the Qdiv
1 − Q0 element. The method converges for

reasonable values of the parameter R (in the interval [0.75, 3]). In the first column of the figure

3 we can see the results for R = 1.2.

8
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Diagonal obstacle We now consider the diagonal crack defined by the expression (14). We

recall that the continuous problem is a rotation of π/4 radians with respect to the point (xc, zc) =
(5, 5). The Lagrange multiplier is again discretized using an uniform mesh of step H = Rh.

Contrary to the results obtained with the element Qdiv
1 − Q0, the ones given by the modified

element Qdiv
1 − P disc

1 converge towards the physical solution when choosing reasonable values

for the ratio H/h. As we show in the second column of figure 3, this time the incident wave

is almost completely reflected by the obstacle. The scattered waves created by the tips of the

crack are well approximated.

4.3 Damping of the spurious modes

Using a dispersion analysis we have shown [7] that the modified element gives rise to some

spurious modes. In this section we propose a way to damp the amplitude of these modes (with-

out damping the “physical part”), so that they do not perturb too much the approximate solution.

The modified space M1
h can be decomposed as

Mh = M0
h ⊕ M r

h , (17)

where M0
h is the space of piecewise constants and M r

h is its orthogonal complement (for the L2

scalar product). The space M r
h is composed of P1 discontinuous functions with vanishing mean

value per element.

From the dispersion analysis, we observe that the main components of the spurious modes

(the O(1) part) belong to M r
h. In order to damp this main part, we introduce the L2 orthogonal

projection on M r
h , that we denote by PMr

h
, defined for any p ∈ Mh as,

PMr
h
(p) ∈ M r

h and (PMr
h
(p), qh) = (p, qh), ∀qh ∈ M r

h .

The approximate problem with damping consists in finding (ph, vh) ∈ Mh × Xh such that






d

dt
a(vh, wh) + b(wh, ph)− < wh · n, λH >Γ= 0, ∀wh ∈ Xh,

d

dt
(ph, qh)ρ + (PMr

h
(ph), qh)β − b(vh, qh) = (f, qh), ∀qh ∈ Mh,

< vh · n, µH >Γ= 0, ∀µH ∈ GH .

(18)

In this system β represents a damping parameter, which is chosen as a positive constant in the

applications. The case β = 0 gives back the non-damped problem, while a strictly positive β
corresponds to a dissipative problem. From the numerical point of view, it remains to define a

procedure in order to choose this parameter in an appropriate way.

Remark 2 The convergence analysis for (18) was carried out in [7] and error estimates were

obtained.

5 Numerical error estimates

In this section we are interested in estimating numerically the order of convergence of the

method. To do so, we consider solving the wave equation on a disk Ω ⊂ IR2 with homogeneous

Neumann boundary conditions on its boundary Γ = ∂Ω. The geometry of the problem is

presented in Figure 4.
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Γ Γ
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Figure 4: The geometry of the problem. On the left the initial domain of propagation Ω and on the right the

extended domain, C, introduced by the fictitious domain formulation of the problem.

To compute the solution we extend the unknowns in the domain of simple geometry C (see

Figure 4) and use the fictitious domain formulation (5) with a zero force term f = 0 and the

initial conditions given in section 3.2. The center of the initial condition, (xc, zc) = (5, 5)mm,

coincides with the center of the disk Ω whose radius is R = 4mm. The physical properties of

the material and size of the computational domain are the same as in section 3.2. In practice to

truncate the extended domain C, we surround the computational domain by a perfectly matched

absorbing layer model (PML, [8, 10]).

We remark that the solution of this problem is rotationally invariant because of the symmetry

in the geometry and the initial conditions. We use this symmetry in order to compute a reference

solution by solving an one dimensional problem. More precisely, when expressed in cylindrical

coordinates, it is easy to see that the solution of the two dimensional problem, (Ω being [0, R]×
[0, 2π], and where ̺ = 1000Kgr/m3 and a = 109Pa),

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
∂vr

∂t
− ∂p

∂r
= 0, in [0, R] × [0, 2π],

a
∂vθ

∂t
− ∂p

∂θ
= 0, in [0, R] × [0, 2π],

̺
∂p

∂t
− ∂vr

∂r
− 1

r
vr = 0, in [0, R] × [0, 2π],

vr = 0, on [r = R] × [0, 2π],

with initial conditions,

p0(r, θ) = 0.1F (r/r0), vr = vθ = 0,

depends only on r, i.e., vr(r, θ) = vr(r), vθ = 0, p(r, θ) = p(r). Thus, it can be deduced by

solving the following one-dimensional problem,

∣∣∣∣∣∣∣∣∣∣

a
∂vr

∂t
− ∂p

∂r
= 0, in [0, R],

̺
∂p

∂t
− ∂vr

∂r
− 1

r
vr = 0, in [0, R],

vr = 0, for r = 0 and r = R,

(19)

with initial conditions,

p(r, t = 0) = 0.1F (r/r0), vr(t = 0, r) = 0.

10
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To solve numerically the one dimensional problem (19), we use piecewise constant func-

tions for the discretization of pr and continuous piecewise linear functions for vr. For the time

discretization a second order leap frog scheme is employed.

In figure 5 we display the results of the numerical convergence analysis. The reference

solution in 1D, is obtained on a fine grid with a space discretization step h1d = 1/160mm. The

two dimensional problem is solved with four different discretizations using hx = hz = h =
1/10, 1/20, 1/40 and 1/80mm. For each discretization we compute the difference between the

obtained solution and the reference one. In figure 5 we display the logarithm of the error as a

function of the logarithm of the discretization step. The rate of convergence is deduced from the

slope s of the line. We can remark that the results obtained numerically are slightly better than

our theoretical predictions. Note however, that the estimate obtained on the L∞([0, T ], H(div))
norm of v is h0.48 which indicates that the theoretical estimations are optimal (cf. [7]).

−4.5 −4 −3.5 −3 −2.5 −2
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−2.6
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(a) sup
t≤T

‖v− vh‖X , s = 0.48.
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−4.8

−4.6

−4.4

−4.2
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−3.8

−3.6

−3.4
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(b) sup
t≤T

‖p−ph‖M , s = 0.63.

−4.5 −4 −3.5 −3 −2.5 −2
−6
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−5

−4.5

−4

−3.5

−3

−2.5

(c) sup
t≤T

‖λ − λh‖G , s = 1.2.

Figure 5: Numerical error on v, p and λ versus the discretization step.

In figure 6 we display the same results but with the norm of the error now computed in

C̃ = C/Bb(Γ), i.e., the domain C restricted from Bb(Γ), defined by

Bb(Γ) =

{
x ∈ C s.t. min

y∈Γ
|x − y| ≤ b

}
. (20)

We observe that the convergence rate of the method is higher, actually one approximately re-

covers the order of convergence of the method without obstacle, here O(h). Furthermore, we

remarked numerically that b = h is the critical value, i.e., the convergence rate does not change

for bigger values of b and it decreases for b < h. This agrees with our intuition in the sense

that the elements that we need to remove are the ones in which the solution has less regularity

(see remark 1), i.e., the elements that have non-zero intersection with the boundary Γ. Finally,

notice that the rate of convergence on λ (approximately 1) is higher than expected (1/2). We

conjecture that this is due to the closed boundary of the object and that this rate would be lower

for a crack (see remark 1).

6 Extension to the elastodynamic case

We consider in this section the problem of elastic wave scattering by a crack. The gen-

eralization of the fictitious domain method to this case was presented in [5]. For the space

discretization of the volume unknowns, which are in this case the stress tensor and the velocity

field, an original finite element method was proposed and analyzed in [6]. The lower order

elements of this family coupled with piecewise linear continuous elements for the surface un-

known were used in [5]. This choice corresponds to the vectorial analogue of the Qdiv
1 × Q0

11
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−4.5 −4 −3.5 −3 −2.5 −2
−4

−3.5
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−2.5
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−1.5

(a) sup
t≤T

‖v − vh‖Hdiv( eC). s = 0.82.
−4.5 −4 −3.5 −3 −2.5 −2
−6

−5.5

−5

−4.5

−4

−3.5

−3

(b) sup
t≤T

‖p− ph‖L2( eC). s = 1.

Figure 6: Numerical error on v, p and λ versus the discretization step. Here we compute the norm of the error in

the domain C̃ which is C restricted from Bb(Γ), i.e., Γ and its vicinity (20).

element coupled with P1 continuous elements on the crack that was discussed in section 3. Also

here, the same questions and difficulties arise. Namely, from the theoretical point of view, the

convergence of the method was not proved and numerical examples indicate that for some crack

geometries the method does not converge. The solution we propose is to use instead the mod-

ified Qdiv
1 × P disc

1 element. As for the case without crack, the theoretical convergence of the

method is not a straightforward generalization of the scalar case. Although we were not able to

prove the convergence of the method theoretically we will show numerical results that indicate

that the method converges.

We briefly present in the following the continuous elastodynamic problem, the finite ele-

ments used for the space discretization and the numerical results obtained in this case.

6.1 The continuous problem

Consider the geometry given in Fig. 1 and assume now that the material filling Ω is an

elastic solid. In this case, and under the assumption of small deformations, wave propagation is

governed by the linear elastic wave equations,






Find (σ, v) : (x, t) ∈ Ω × [0, T ] 7→ (σ(x, t), v(x, t)) ∈ R
4 × R

2 satisfying,

ρ
∂v

∂t
− div σ = f, in Ω, (a)

A
∂σ

∂t
− ε(v) = 0, in Ω, (b)

σn = 0, on Γ, (c)

v = 0, on Σ, (d)

(21)

together with the initial conditions,

{
v(t = 0) = v0,

σ(t = 0) = σ0.
(22)

In (21), v is the velocity field and σ the stress tensor. This formulation is preferred to the

classical displacement formulation because the boundary condition on the crack is natural (of

Neumann type) for the displacement while it becomes essential on σ and the fictitious domain

approach can then be followed. Note that the couple (σ, v) plays the same role here as the

12
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couple (v, p) in the scalar case. The matrix A becomes now a fourth-order symmetric definite

positive tensor. The fictitious domain formulation is





Find (σ(t), v(t), λ(t)) ∈ Xsym × M × G satisfying,

d

dt
a(σ, τ ) + b(τ , v) − < τn, λ >Γ = 0, ∀τ ∈ Xsym,

d

dt
(v, w)ρ − b(σ, w) = (f, w), ∀w ∈ M,

< σn, µ >Γ = 0, ∀µ ∈ G,

(σ, v)/t=0 = (σ0, v0),

(23)

where the bilinear forms are defined by (6) with the obvious changes. The functional spaces are

X(= X(C)) = X × X, M = M × M, G = G × G,

and the stress tensor belongs to the subspace of symmetric tensors in X,

Xsym =
{
σ ∈ X / as(σ) = 0

}
,

with as(σ) defined in 2D by,

as(σ) = σ12 − σ21.

6.2 The approximate problem

The semi-discrete formulation For the approximation in space of this problem, we intro-

duce finite dimensional spaces Xh
sym ⊂ Xsym, Mh ⊂ M and GH ⊂ G satisfying the usual

approximation properties,

∣∣∣∣∣∣∣∣∣∣

inf
h≥0

inf
τh∈Xh

sym
‖τ − τ h‖X = 0, ∀τ ∈ Xsym,

inf
h≥0

inf
vh∈Mh

‖v − vh‖M = 0, ∀v ∈ M,

inf
H≥0

inf
µH∈GH

‖µ − µH‖G = 0, ∀µ ∈ G.

(24)

The semi-discrete problem is then,





Find (σh(t), vh(t), λH(t)) ∈ Xh
sym × Mh × GH such that,

d

dt
a(σh, τ h) + b(τ h, vh) − < τ h · n, λH >Γ = 0, ∀τ h ∈ Xh

sym,

d

dt
(vh, wh)ρ − b(σh, wh) = (f, wh), ∀wh ∈ Mh,

< σh · n, µH >Γ = 0, ∀µH ∈ GH ,

σh(t = 0) = σh,0,
vh(t = 0) = vh,0,

(25)

and where (σh,0, ph,0) ∈ Xh
sym × Mh is an approximation of the exact initial condition.

13
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The two families of mixed finite elements. Following the same ideas as for the scalar prob-

lem, an original finite element for the elastodynamic system which is compatible with mass

lumping was introduced in [6]. The difference with the Qdiv
k+1 − Qk elements is due to the

symmetry of the stress tensor. Namely the lowest order element in this case is,




Xh =
{
τ h ∈ X / ∀K ∈ Th, τ h|K ∈ (Q1 × Q1)

2
}

,

Xh
sym =

{
τ h ∈ Xh / as(τ h) = 0

}
, Mh = Mh

0 = (M0
h)2,

(26)

M0
h being defined as for the scalar case. Another characterization Xh

sym is

Xh
sym = {σ12 ∈ H1(Ω)/σ12 |K ∈ Q1, ∀K ∈ Th and

(σ11, σ22) ∈ H(div, Ω)/(σ11, σ22) |K ∈ (Q1)
2, ∀K ∈ Th

}
.

(27)

We obviously do not have Xh
sym = Xh × Xh. This implies in particular that the approxi-

mation space Xh
sym does not contain the lowest order Raviart Thomas element. Convergence

results and error estimates for the problem without Lagrange multiplier were obtained in [6].

We recall here the approximation properties for the space Xh
sym. Let τ ∈ Xsym with

(τ11, τ22) ∈ H1,0 × H0,1 (cf. [6] for more details), and τ12 = τ21 ∈ H1 then

lim
h→0

inf
τhXh

sym
‖τ − τ h‖X = 0.

Moreover, if (τ11, τ22) ∈ H2,1 × H1,2 and τ12 ∈ H2 then

inf
τh∈Xh

sym
‖τ − τ h‖X ≤ Ch(|τ11|H2,1 + |τ22|H1,2 + |τ12|H2). (28)

The approximation of the Lagrange multiplier is done in the space GH = (Gh)
2, Gh being

defined by (11). The spaces (Mh
0,G

H
) satisfy the usual approximation properties (7).

The choice of the above approximation spaces seemed once again reasonable. However,

as for the scalar case no theoretical convergence results were obtained for the fictitious domain

formulation. Moreover, numerical examples indicate that for some crack geometries the method

does not converge. To face this drawback, the same approach as for the scalar case was followed.

The modified element consists in this case to discretize the velocity in Mh
1 = (M1

h)2. From the

numerical point of view this choice introduces spurious modes in the velocity whose amplitude

is more important than in the scalar case. The selective damping of the spurious modes is

achieved using the same tools as in section 4.3. Namely, the second equation of (25) is replaced

by
d

dt
(vh, wh)ρ + (PMh

r(vh), wh)β − b(σh, wh) = (f, wh), ∀wh ∈ Mh,

where Mh
r = (M r

h)2 and β is the damping parameter.

Convergence issues. From the numerical point of view we observe that the method converges

under a compatibility condition of the form (12) between the two discretization meshes. From

the theoretical point of view the convergence proof in this case is not a straightforward gener-

alization of the acoustic case [7]. The main difficulty comes from the non standard regularity

required to obtain the approximation properties for Xh
sym (see (28)). Indeed, the maximal regu-

larity (in space) of the stress tensor in the case of a domain with a crack is σ ∈ (H
1

2
−ε(div, C))2,

and σ is symmetric. This regularity is not sufficient to obtain (28) and thus we cannot conclude.
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7 Numerical illustrations

We present in what follows some numerical results that illustrate the difficulties related with the

convergence of the method that we discussed in the previous section. The computational domain

is again the square [0, 10]× [0, 10] mm2 composed by an homogeneous isotropic material with

density and Lame coefficients given by

ρ = 1000 Kgr/m3, λ = 3.45 × 109 Pa, µ = 2.04 × 109 Pa. (29)

We introduce an initial condition on the velocity field centered on (xc, zc) = (5, 5)mm,

v((x, z), t = 0) = 0.1 F

(
r

r0

)
r

r
,

where F (·), r and r have been defined in section 3.2 and r0 = 1.5mm. We consider the diagonal

crack parameterized by (14) on which we impose a free surface boundary condition. We use a

mesh composed by squares with a discretization step h = 0.025mm. For the time discretization

we use again a leap frog scheme with a time step ∆t such that the ratio ∆t/h is equal to the

maximal value that guarantees the stability. The crack is also discretized using a regular mesh

with H = 1.2h. Perfectly matched layers are used to bound the computational domain.

(a) Qdiv
1 × Q0 (b) Qdiv

1 × P disc
1

Figure 7: Modulus of the velocity field at t = 2.5965 µs.

Results with the Qdiv
1 × Q0 element. When we use the original finite element, the incident

wave (which is here a pressure wave) is not completely reflected by the obstacle but also trans-

mitted as it can be clearly seen in figure 7-(a). Similar results are also obtained when using other

ratios between H and h and when refining the meshes. This indicates the lack of convergence

as for the scalar case.

Results with the Qdiv
1 × P disc

1 element. The solution obtained with the new finite element

seems to converge towards the solution of the continuous problem. The incident wave is com-

pletely reflected by the obstacle and the scattered waves generated by the extremities of the

crack are well approximated (see figure 7-(b)). As for the scalar case, the enrichment of Mh

introduces spurious modes in the solution. Although the amplitude of these non-physical waves
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goes to zero with the size of the discretization step, it is still significant for usual choices of the

discretization parameters, typically corresponding to 20 points per wavelength. These spurious

modes are for example visible in the results presented in figure 8-(a) where we have amplified

by a factor eight the results of figure 7-(b).

(a) Qdiv
1 × P disc

1 , β = 0 (b) Qdiv
1 × P disc

1 , β = 5̺106

Figure 8: Modulus of the velocity field ×8 at t = 2.5965 µs.

Influence of the damping parameter on the solution. To illustrate the effect of the damping

parameter β on the solution we present in figure 9 results obtained for different values of β. We

have made the following observations: when we do not use any damping, the solution is polluted

by spurious modes. On the other hand, the amplitude of the transmitted (non-physical) waves

through the crack increases as the value of the damping β increases. This is expected because

the limit case β → +∞ corresponds to seeking the velocity in Q0 and we know that in this

case, the method does not converge. There is thus an optimal value for the damping parameter

β to be determined so as the spurious modes are damped while the transmitted non-physical

wave remains small. In the next section we determine numerically the rate of convergence of

the method for a particular geometry and we discuss a procedure for choosing the value of β.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−3

β/ρ =0
β/ρ =1e−6
β/ρ =5e−6
β/ρ =1e−3

(a) |v|((7.5, 2.5)mm, t)

0 1 2 3 4 5 6
0

0.005

0.01

0.015
β/ρ =0
β/ρ =1e−6
β/ρ =5e−6
β/ρ =1e−3

(b) |v|((5.0, 0.5)mm, t)

Figure 9: The modulus of the velocity |v|(xi, t), t ∈ [0, 6]µs computed using the Qdiv
1 × P disc

1 element with

h = 0.025mm and different values of the damping parameter β.
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Éliane Bécache, Jeronimo Rodriguez and Chrysoula Tsogka

8 Numerical error estimates

In the same way as for the scalar case, we determine numerically the order of convergence

of the fictitious domain method. To do so we consider the geometry in section 5 with R = 4
mm, no external forces and an initial condition on the velocity field given by

v((x, z), t = 0) = 0.1 F

(
r

r0

)
r + r

⊥

r
,

where F (·), r and r have been defined in section 3.2 and r0 = 1.5mm. The domain of propaga-

tion is an isotropic medium with the density and Lame coefficients given by (29). The extended

domain C introduced by the fictitious domain formulation is truncated using perfectly matched

layers (PML, [8, 10]). We consider the final time equal to T = 5µs when both, the pressure and

shear waves have reached the boundary.

The fact of having a problem that is rotationally invariant allows us to compute a reference

solution solving a 1D problem. More precisely, rewriting equations (21) in polar coordinates
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ
∂vr

∂t
=

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

1

r
(σrr − σθθ), in [0, R] × [0, 2π],

ρ
∂vθ

∂t
=

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

2

r
σrθ, in [0, R] × [0, 2π],

∂σrr

∂t
= (2µ + λ)

∂vr

∂r
+ λ

vr

r
+ λ

1

r

∂vθ

∂θ
, in [0, R] × [0, 2π],

∂σθθ

∂t
= (2µ + λ)

(
1

r

∂vθ

∂θ
+

vr

r

)
+ λ

∂vr

∂r
, in [0, R] × [0, 2π],

∂σrθ

∂t
= µ

(
1

r

∂vr

∂θ
+

∂vθ

∂r
− vθ

r

)
, in [0, R] × [0, 2π],

σrr = 0, σrθ = 0, in R × [0, 2π],

(30)

with the initial conditions

vs((r, θ), t = 0) = 0.1F (
r

r0

), s ∈ {r, θ}, (31)

we remark that the solution depends only on r and the former equations are equivalent to the

two following decoupled one dimensional problems:

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ
∂vr

∂t
=

∂σrr

∂r
+

1

r
(σrr − σθθ), in [0, R],

∂σrr

∂t
= (2µ + λ)

∂vr

∂r
+ λ

vr

r
, in [0, R],

∂σθθ

∂t
= (2µ + λ)

vr

r
+ λ

∂vr

∂r
, in [0, R],

σrr = 0, in R,

(32)

∣∣∣∣∣∣∣∣∣∣

ρ
∂vθ

∂t
=

∂σrθ

∂r
+

2

r
σrθ, in [0, R] × [0, 2π],

∂σrθ

∂t
= µ

(
∂vθ

∂r
− vθ

r

)
, in [0, R] × [0, 2π],

σrθ = 0, in R × [0, 2π].

(33)

We solve numerically those systems using piecewise constant functions for the discretization of

the velocity field and continuous linear functions for the stress tensor. For the time discretization
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we use a leap frog scheme. The reference solution is obtained using a very fine mesh (h1d ≈
1/800). The two dimensional problem is solved using four different meshes with hz = hz =
1/10, 1/20, 1/40 and 1/80. We use the larger time step ∆t authorized by the CFL condition.

The mesh for the object is uniform and with a discretization step H such that H/h ≈ 1.2
for each mesh. In all cases the damping parameter β is equal to zero. For each numerical

experiment we compute the difference between the approximated solution and the reference

solution. In figure 10 we display the logarithm of the error on the stress tensor, the velocity

field and the Lagrange multiplier versus the logarithm of the discretization step. The rate of

convergence is thus given by the slope of the lines. We observe that the order of convergence

for σ in L∞([0, T ], (H(div, C))2) norm and for v in L∞([0, T ], (L2(C))2) norm is near the

value we could expect (i.e. 1/2), while for λ in L∞([0, T ], (L2(Γ))2) is around 1 instead of 1/2,

which we beleive that it is due to the closed boundary geometry, as in the scalar case.
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‖λ − λh‖G , s = 0.92

Figure 10: Numerical error on σ, v and λ versus the discretization step.

In figure 11 we represent the logarithm of the errors on the stress tensor and the velocity field

measured on C̃ = C \ B0.15(Γ). As for the scalar case we recover the order of convergence of

the method without obstacle (i.e. O(h) here) when we remove a neighborhood of the object in

which the solution is not very smooth.

−4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8 −2.6 −2.4
−3.5

−3
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(a) sup
t≤T

‖σ − σh‖Hdiv( eC). s = 0.96.
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(b) sup
t≤T

‖v − vh‖L2( eC). s = 1.05.

Figure 11: Numerical error σ, v versus the discretization step. Here we compute the norm of the error on C̃ .

Finally we discuss the influence of the damping parameter β on the convergence results. In

order to do so we repeat the experiment described above using the mesh with h = 1/40 mm

for β/ρ10−6 = 0, 0.5, 2.5, 5, 7.5, 10, 12.5 and 15 . We display on figure 12 the logarithm of the

error on σ, v and λ as a function of the value of β/ρ10−6. As we can see, better results are

obtained for values of β/ρ10−6 between 2.5 and 5. We also observe that the error increases
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when we choose β too large. The same experiments done for different materials show that the

optimal range for β/ρ is independant of the material. It depends only on the number of points

per wavelength in the discretization. It should be proportional to 1/∆t:
β

ρ
=

ζ

∆t
where ζ , an

adimensional constant, determined by the previous experiment, should be chosen in the interval

[0.03, 0.06].
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Figure 12: Numerical error on σ, v and λ versus the damping parameter β/ρ.

Conclusion

We consider in this paper the application of the fictitious domain method for taking into

account the Neumann boundary condition on the surface of a crack (or more generally an object)

in the context of acoustic and elastic wave propagation. We first demonstrate with numerical

examples that the method introduced in [5] does not converge for all crack geometries. We

propose instead the use of a modified version of the mixed finite elements introduced in [4, 6].

Those elements consist in enriching the approximation space for the primal unknown. We

carried out the theoretical and numerical convergence analysis of the method in the acoustic

case (cf. [7]). In the elastic case, although not obtained theoretically, the convergence of the

method is verified through extensive numerical simulations.
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élastodynamique linéaire. (i) construction. C.R. Acad. Sci. Paris, t. 325, Série I:545–550,

1997.
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