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Non-local multi-class traffic flow models

Felisia Angela Chiarello1 Paola Goatin1

August 2, 2018

Abstract

We prove the existence for small times of weak solutions for a class of non-local systems
in one space dimension, arising in traffic modeling. We approximate the problem by
a Godunov type numerical scheme and we provide uniform L∞ and BV estimates for
the sequence of approximate solutions. We finally present some numerical simulations
illustrating the behavior of different classes of vehicles and we analyze two cost functionals
measuring the dependence of congestion on traffic composition.

1 Introduction

We consider the following class of non-local systems of M conservation laws in one space
dimension:

∂tρi(t, x) + ∂x
(
ρi(t, x)vi((r ∗ ωi)(t, x))

)
= 0, i = 1, ...,M, (1.1)

where

r(t, x) :=

M∑
i=1

ρi(t, x), (1.2)

vi(ξ) := vmax
i ψ(ξ), (1.3)

(r ∗ ωi)(t, x) :=

∫ x+ηi

x
r(t, y)ωi(y − x) dy , (1.4)

and we assume:

(H1) The convolution kernels ωi ∈ C1([0, ηi];R+), ηi > 0, are non-increasing functions such
that

∫ ηi
0 ωi(y) dy = Ji. We set W0 := maxi=1,...,M ωi(0).

(H2) vmax
i are the maximal velocities, with 0 < vmax

1 ≤ vmax
2 ≤ . . . ≤ vmax

M .

(H3) ψ : R+ → R+ is a smooth non-increasing function such that ψ(0) = 1 and ψ(r) = 0 for
r ≥ 1 (for simplicity, we can consider the function ψ(r) = max{1− r, 0}).

We couple (1.1) with an initial datum

ρi(0, x) = ρ0
i (x), i = 1, . . . ,M. (1.5)
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Model (1.1) is obtained generalizing the n-populations model for traffic flow described in [3]
and it is a multi-class version of the one dimensional scalar conservation law with non-local
flux proposed in [4], where ρi is the density of vehicles belonging to the i-th class, ηi is
proportional to the look-ahead distance and Ji is the interaction strength. In our setting, the
non-local dependence of the speed functions vi describes the reaction of drivers that adapt
their velocity to the downstream traffic, assigning greater importance to closer vehicles, see
also [6, 8]. We consider different anisotropic discontinuous kernels for each equation of the
system, therefore the results in [1] cannot be applied. The model takes into account the
distribution of heterogeneous drivers and vehicles characterized by their maximal speeds and
look-ahead visibility in a traffic stream. One of the limitations of the standard LWR traffic
flow model [10, 11] is the first in first out rule, conversely in multi-class dynamic faster vehicles
can overtake slower ones and slower vehicles slow down the faster ones.

Due to the possible presence of jump discontinuities, solutions to (1.1), (1.5) are intended
in the following weak sense.

Definition 1. A function ρ = (ρ1, . . . , ρM ) ∈ (L1 ∩ L∞)([0, T [×R;RM ), T > 0, is a weak
solution of (1.1), (1.5) if∫ T

0

∫ ∞
−∞

(
ρi∂tϕ+ ρivi(r ∗ ωi)∂xϕ

)
(t, x) dx dt+

∫ ∞
−∞

ρ0
i (x)ϕ(0, x) dx = 0

for all ϕ ∈ C1
c(]−∞, T [×R;R), i = 1, . . . ,M .

The main result of this paper is the proof of existence of weak solutions to (1.1), (1.5),
locally in time.

Theorem 1. Let ρ0
i (x) ∈ (BV ∩ L∞) (R;R+), for i = 1, . . . ,M , and assumptions (H1) -

(H3) hold. Then the Cauchy problem (1.1), (1.5) admits a weak solution on [0, T [×R, for
some T > 0 sufficiently small.

The paper is organized as follows. Section 2 is devoted to prove uniform L∞ and BV
estimates on the approximate solutions obtained through an approximation argument based
on a Godunov type numerical scheme, see [7]. We have to point out that these estimates
heavily rely on the monotonicity properties of the kernel functions ωi. In Section 3 we prove
the existence in finite time of weak solutions applying Helly’s theorem and a Lax-Wendroff
type argument, see [9]. In Section 4 we present some numerical simulations for M = 2.
In particular, we consider the case of a mixed flow of cars and trucks on a stretch of road,
and the flow of mixed autonomous and non-autonomous vehicles on a circular road. In this
latter case, we analyze two cost functionals measuring the traffic congestion, depending on
the penetration ratio of autonomous vehicles. The final Appendix contains an alternative
proof of Theorem 1, based on approximate solutions constructed via a Lax-Friedrichs type
scheme, which is commonly used in the framework of non-local equations, see [1, 2, 4].

2 Godunov type approximate solutions

First of all, we extend ωi(x) = 0 for x > ηi. For j ∈ Z and n ∈ N, let xj+1/2 = j∆x
be the cells interfaces, xj = (j − 1/2)∆x the cells centers and tn = n∆t the time mesh.

We aim at constructing a finite volume approximate solution ρ∆x =
(
ρ∆x

1 , . . . , ρ∆x
M

)
, with
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ρ∆x
i (t, x) = ρni,j for (t, x) ∈ Cnj = [tn, tn+1[×]xj−1/2, xj+1/2] and i = 1, ...,M.

To this end, we approximate the initial datum ρ0
i for i = 1, ...,M with a piecewise constant

function

ρ0
i,j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0
i (x) dx , j ∈ Z.

Similarly, for the kernel, we set

ωki :=
1

∆x

∫ xj+1/2

xj−1/2

ω0
i (x) dx , k ∈ N,

so that ∆x
∑+∞

k=0 ω
k
i =

∫ ηi
0 ωi(x) dx = Ji (the sum is indeed finite since ωki = 0 for k ≥ Ni

sufficiently large). Moreover, we set rnj+k =

M∑
i=1

ρni,j+k for k ∈ N and

V n
i,j := vmax

i ψ

∆x

+∞∑
k=0

ωki r
n
j+k

 , i = 1, . . . ,M, j ∈ Z. (2.1)

We consider the following Godunov-type scheme adapted to (1.1), which was introduced in [7]
in the scalar case:

ρn+1
i,j = ρni,j − λ

(
ρni,jV

n
i,j+1 − ρni,j−1V

n
i,j

)
(2.2)

where we have set λ = ∆t
∆x .

2.1 Compactness estimates

We provide here the necessary estimates to prove the convergence of the sequence of approx-
imate solutions constructed via the Godunov scheme (2.2).

Lemma 1. (Positivity) For any T > 0, under the CFL condition

λ ≤ 1

vmax
M ‖ψ‖∞

, (2.3)

the scheme (2.2) is positivity preserving on [0, T ]× R.

Proof. Let us assume that ρni,j ≥ 0 for all j ∈ Z and i ∈ 1, ...,M. It suffices to prove that

ρn+1
i,j in (2.2) is non-negative. We compute

ρn+1
i,j = ρni,j

(
1− λV n

i,j+1

)
+ λ ρni,j−1V

n
i,j ≥ 0 (2.4)

under assumption (2.3). �
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Corollary 2. (L1-bound) For any n ∈ N, under the CFL condition (2.3) the approximate
solutions constructed via the scheme (2.2) satisfy∥∥ρni ∥∥1

=
∥∥∥ρ0

i

∥∥∥
1
, i = 1, . . . ,M, (2.5)

where
∥∥ρni ∥∥1

:= ∆x
∑

j

∣∣∣ρni,j∣∣∣ denotes the L1 norm of the i-th component of ρ∆x.

Proof. Thanks to Lemma 1, for all i ∈ {1, ...,M} we have∥∥∥ρn+1
i

∥∥∥
1

= ∆x
∑
j

ρn+1
i,j = ∆x

∑
j

(
ρni,j − λρni,jV n

i,j+1 + λ ρni,j−1V
n
i,j

)
= ∆x

∑
j

ρni,j ,

proving (2.5). �

Lemma 2. (L∞-bound) If ρ0
i,j ≥ 0 for all j ∈ Z and i = 1, ...,M , and (2.3) holds, then the

approximate solution ρ∆x constructed by the algorithm (2.2) is uniformly bounded on [0, T ]×R
for any T such that

T <

(
M
∥∥∥ρ0

∥∥∥
∞
vmax
M

∥∥ψ′∥∥∞W0

)−1

.

Proof. Let ρ̄ = max{ρni,j−1, ρ
n
i,j}. Then we get

ρn+1
i,j = ρni,j

(
1− λV n

i,j+1

)
+ λ ρni,j−1V

n
i,j ≤ ρ̄

(
1 + λ

(
V n
i,j − V n

i,j+1

))
(2.6)

and

∣∣∣V n
i,j − V n

i,j+1

∣∣∣ = vmax
i

∣∣∣∣∣∣∣ψ
∆x

+∞∑
k=0

ωki r
n
j+k

− ψ
∆x

+∞∑
k=0

ωki r
n
j+k+1


∣∣∣∣∣∣∣

≤ vmax
i

∥∥ψ′∥∥∞∆x

∣∣∣∣∣∣
+∞∑
k=0

ωki (rnj+k+1 − rnj+k)

∣∣∣∣∣∣
= vmax

i

∥∥ψ′∥∥∞∆x

∣∣∣∣∣∣−ω0
i r
n
j +

+∞∑
k=1

(ωk−1
i − ωki )rnj+k

∣∣∣∣∣∣
≤ vmax

i

∥∥ψ′∥∥∞∆xM‖ρn‖∞ωi(0) (2.7)

where ‖ρ‖∞ =
∥∥(ρ1, . . . , ρM )

∥∥
∞ = maxi,j

∣∣ρi,j∣∣. So, until ‖ρn‖∞ ≤ K, for some K ≥
∥∥ρ0

∥∥
∞,

we get ∥∥∥ρn+1
∥∥∥
∞
≤ ‖ρn‖∞

(
1 +MKvmax

M

∥∥ψ′∥∥∞W0∆t
)
,

which implies

‖ρn‖∞ ≤
∥∥∥ρ0

∥∥∥
∞
eCn∆t,

with C = MKvmax
M

∥∥ψ′∥∥∞W0. Therefore we get that
∥∥ρ(t, ·)

∥∥
∞ ≤ K for

t ≤ 1

MKvmax
M ‖ψ′‖∞W0

ln

(
K∥∥ρ0
∥∥
∞

)
≤ 1

Me
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

,
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where the maximum is attained for K = e
∥∥ρ0

∥∥
∞.

Iterating the procedure, at time tm, m ≥ 1 we set K = em
∥∥ρ0

∥∥
∞ and we get that the

solution is bounded by K until tm+1 such that

tm+1 ≤ tm +
m

Mem
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

.

Therefore, the approximate solution remains bounded, uniformly in ∆x, at least for t ≤ T
with

T ≤ 1

M
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

+∞∑
m=1

m

em
≤ 1

M
∥∥ρ0

∥∥
∞v

max
M ‖ψ′‖∞W0

.

�

Remark 1. Unlike the classical multi-population model [3], the simplex

S :=

ρ ∈ RM :
M∑
i=1

ρi ≤ 1, ρi ≥ 0 for i = 1, . . . ,M


is not an invariant domain for (1.1), see Figure 1 for a numerical example.

Indeed, let us consider the system

∂tρi(t, x) + ∂x
(
ρi(t, x)vi(r(t, x))

)
= 0, i = 1, ...,M, (2.8)

where r and vi are as in (1.2) and (1.3), respectively. We have the following:

Lemma 3. Under the CFL condition

λ ≤ 1

vmax
M

(
‖ψ‖∞ + ‖ψ′‖∞

) ,
for any initial datum ρ0 ∈ S the approximate solutions to (2.8) computed by the upwind
scheme

ρn+1
j = ρnj − λ

[
F(ρnj ,ρ

n
j+1)− F(ρnj−1,ρ

n
j )
]
, (2.9)

with F(ρnj ,ρ
n
j+1) = ρnj ψ(rnj+1), satisfy the following uniform bounds:

ρnj ∈ S ∀j ∈ Z, n ∈ N.

Proof. Assuming that ρnj ∈ S for all j ∈ Z, we want to prove that ρn+1
j ∈ S. Rewriting (2.9),

we get

ρn+1
i,j = ρni,j − λ

[
vmax
i ρni,jψ(rnj+1)− vmax

i ρni,j−1ψ(rnj )
]
.

Summing on the index i = 1, . . . ,M , gives

rn+1
j =

M∑
i=1

ρn+1
i,j =

M∑
i=1

ρni,j − λ
M∑
i=1

[
vmax
i ρni,jψ(rnj+1)− vmax

i ρni,j−1ψ(rnj )
]

= rnj + λψ(rnj )
M∑
i=1

vmax
i ρni,j−1 − λψ(rnj+1)

M∑
i=1

vmax
i ρni,j .
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Figure 1: Numerical simulation illustrating that the simplex S is not an invariant domain for
(1.1). We take M = 2 and we consider the initial conditions ρ1(0, x) = 0.9χ[−0.5,−0.3] and
ρ2(0, x) = 0.1χ]−∞,0] + χ]0,+∞[ depicted in (a), the constant kernels ω1(x) = ω2(x) = 1/η,
η = 0.5, and the speed functions given by vmax1 = 0.2, vmax2 = 1, ψ(ξ) = max{1 − ξ, 0} for
ξ ≥ 0. The space and time discretization steps are ∆x = 0.001 and ∆t = 0.4∆x. Plots
(b) and (c) show the density profiles of ρ1, ρ2 and their sum r at times t = 1.8, 2.8. The
function maxx∈R r(t, x) is plotted in (d), showing that r can take values greater than 1, even
if r(0, x) = ρ1(0, x) + ρ2(0, x) ≤ 1.

Defining the following function of ρnj

Φ(ρn1,j , . . . , ρ
n
M,j) = rnj + λψ(rnj )

M∑
i=1

vmax
i ρni,j−1 − λψ(rnj+1)

M∑
i=1

vmax
i ρni,j ,

we observe that

Φ(0, . . . , 0) = λψ(0)

M∑
i

vmax
i ρni,j−1 ≤ λ‖ψ‖∞v

max
M ≤ 1

if λ ≤ 1/vmax
M ‖ψ‖∞ and

Φ(ρn1,j , ..., ρ
n
M,j) = 1− λψ(rnj+1)

M∑
i=1

vmax
i ρni,j ≤ 1
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for ρnj ∈ S such that rnj =
∑M

i=1 ρ
n
i,j = 1. Moreover

∂Φ

∂ρni,j
(ρnj ) = 1 + λψ′(rnj )

M∑
i=1

vmax
i ρni,j−1 − λψ(rnj+1)vmax

i ≥ 0

if λ ≤ 1/vmax
M

(
‖ψ‖∞ +

∥∥ψ′∥∥∞). This proves that rn+1
j ≤ 1.

To prove the positivity of (2.9), we observe that

ρn+1
i,j = ρni,j

(
1− λvmax

i ψ(rnj+1)
)

+ λvmax
i ρni,j−1ψ(rnj ) ≥ 0

if λ ≤ 1/vmax
M ‖ψ‖∞. �

Lemma 4. (Spatial BV-bound) Let ρ0
i ∈ (BV ∩ L∞) (R,R+) for all i = 1, ...,M. If (2.3)

holds, then the approximate solution ρ∆x(t, ·) constructed by the algorithm (2.2) has uniformly
bounded total variation for t ∈ [0, T ], for any T such that

T ≤ min
i=1,...,M

1

H
(
TV (ρ0

i ) + 1
) , (2.10)

where H = ‖ρ‖∞ vmax
M W0M

(
6MJ0‖ρ‖∞

∥∥ψ′′∥∥∞ +
∥∥ψ′∥∥∞).

Proof. Subtracting the identities

ρn+1
i,j+1 = ρni,j+1 − λ

(
ρni,j+1V

n
i,j+2 − ρni,jV n

i,j+1

)
, (2.11)

ρn+1
i,j = ρni,j − λ

(
ρni,jV

n
i,j+1 − ρni,j−1V

n
i,j

)
, (2.12)

and setting ∆n
i,j+1/2 = ρni,j+1 − ρni,j , we get

∆n+1
i,j+1/2 = ∆n

i,j+1/2 − λ
(
ρni,j+1V

n
i,j+2 − 2 ρni,jV

n
i,j+1 + ρni,j−1V

n
i,j

)
.

Now, we can write

∆n+1
i,j+1/2 =

(
1− λV n

i,j+2

)
∆n
i,j+1 (2.13)

+ λV n
i,j∆

n
i,j−1/2

− λρni,j
(
V n
i,j+2 − 2V n

i,j+1 + V n
i,j

)
. (2.14)

Observe that assumption (2.3) guarantees the positivity of (2.13). The term (2.14) can be
estimated as

V n
i,j+2 − 2V n

i,j+1 + V n
i,j =

= vmax
i

ψ
∆x

+∞∑
k=0

ωki r
n
j+k+2

− 2ψ

∆x
+∞∑
k=0

ωki r
n
j+k+1

+ ψ

∆x

+∞∑
k=0

ωki r
n
j+k



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= vmax
i ψ′(ξj+1)∆x

+∞∑
k=0

ωki r
n
j+k+2 −

+∞∑
k=0

ωki r
n
j+k+1


+ vmax

i ψ′(ξj)∆x

+∞∑
k=0

ωki r
n
j+k −

+∞∑
k=0

ωki r
n
j+k+1


= vmax

i ψ′(ξj+1)∆x

+∞∑
k=1

(ωk−1
i − ωki )rnj+k+1 − ω0

i r
n
j+1


+ vmax

i ψ′(ξj)∆x

+∞∑
k=1

(ωki − ωk−1
i )rnj+k + ω0

i r
n
j


= vmax

i (ψ′(ξj+1)− ψ′(ξj))∆x

+∞∑
k=1

(ωk−1
i − ωki )rnj+k+1 − ω0

i r
n
j+1


+ vmax

i ψ′(ξj)∆x

+∞∑
k=1

(ωk−1
i − ωki )(rnj+k+1 − rnj+k) + ω0

i (r
n
j − rnj+1)


= vmax

i ψ′′(ξ̃j+1/2)(ξj+1 − ξj)∆x

+∞∑
k=1

M∑
β=1

ωki ∆n
β,j+k+3/2


+ vmax

i ψ′(ξj)∆x

 M∑
β=1

N−1∑
k=1

(ωk−1
i − ωki )∆n

β,j+k+1/2 − ω
0
i ∆

n
β,j+1/2

 ,

with ξj ∈ I
(

∆x
∑+∞

k=0 ω
k
i r
n
j+k,∆x

∑+∞
k=0 ω

k
i r
n
j+k+1

)
and ξ̃j+1/2 ∈ I

(
ξj , ξj+1

)
, where we set

I(a, b) =
[
min{a, b},max{a, b}

]
. For some ϑ, µ ∈ [0, 1], we compute

ξj+1 − ξj = ϑ∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+2 + (1− ϑ)∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1

− µ∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1 − (1− µ)∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k

= ϑ∆x
+∞∑
k=1

ωk−1
i

M∑
β=1

ρnβ,j+k+1 + (1− ϑ)∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1

− µ∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1 − (1− µ)∆x

+∞∑
k=−1

ωk+1
i

M∑
β=1

ρnβ,j+k+1

= ∆x

+∞∑
k=1

[
ϑωk−1

i + (1− ϑ)ωki − µωki − (1− µ)ωk+1
i

] M∑
β=1

ρnβ,j+k+1

+ (1− ϑ)∆xω0
i

M∑
β=1

ρnβ,j−1 − µ∆xω0
i

M∑
β=1

ρnβ,j+1

8



− (1− µ)∆x

ω0
i

M∑
β=1

ρnβ,j + ω1
i

M∑
β=1

ρnβ,j+1

 .

By monotonicity of ωi we have

ϑωk−1
i + (1− ϑ)ωki − µωki − (1− µ)ωk+1

i ≥ 0 .

Taking the absolute values we get

∣∣ξj+1 − ξj
∣∣ ≤ ∆x


+∞∑
k=2

[
ϑωk−1

i + (1− ϑ)ωki − µωki − (1− µ)ωk+1
i

]
+ 4ω0

i

M‖ρn‖∞

≤ ∆x


+∞∑
k=2

[
ωk−1
i − ωk+1

i

]
+ 4ω0

i

M‖ρn‖∞

≤ ∆x 6W0M‖ρn‖∞ .

Until
∑

j

∣∣∣∆n
β,j

∣∣∣ ≤ K1 for β = 1, . . . ,M for some K1 ≥
∑

j

∣∣∣∆0
β,j

∣∣∣, taking the absolute values

and rearranging the indexes, we have

∑
j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ (1− λ
(
V n
i,j+2 − V n

i,j+1

))
+ ∆tHK1,

where H = ‖ρ‖∞ vmax
M W0M

(
6MJ0‖ρ‖∞

∥∥ψ′′∥∥∞ +
∥∥ψ′∥∥∞) . Therefore, by (2.7) we get

∑
j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ (1 + ∆tG) + ∆tHK1,

with G = vmax
M

∥∥ψ′∥∥∞W0M‖ρ‖∞. We thus obtain∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ ≤ eGn∆t
∑
j

∣∣∣∆0
i,j+1/2

∣∣∣+ eHK1n∆t − 1,

that we can rewrite as

TV (ρ∆x
i )(n∆t, ·) ≤ eGn∆t TV (ρ0

i ) + eHK1n∆t − 1

≤ eHK1n∆t
(

TV (ρ0
i ) + 1

)
− 1 ,

since H ≥ G and it is not restrictive to assume K1 ≥ 1. Therefore, we have that TV (ρ∆x
i ) ≤

K1 for

t ≤ 1

HK1
ln

(
K1 + 1

TV (ρ0
i ) + 1

)
,

9



where the maximum is attained for some K1 < e
(
TV (ρ0

i ) + 1
)
− 1 such that

ln

(
K1 + 1

TV (ρ0
i ) + 1

)
=

K1

K1 + 1
.

Therefore the total variation is uniformly bounded for

t ≤ 1

He
(
TV (ρ0

i ) + 1
) .

Iterating the procedure, at time tm, m ≥ 1 we set K1 = em
(
TV (ρ0

i ) + 1
)
−1 and we get that

the solution is bounded by K1 until tm+1 such that

tm+1 ≤ tm +
m

Hem
(
TV (ρ0

i ) + 1
) . (2.15)

Therefore, the approximate solution has bounded total variation for t ≤ T with

T ≤ 1

H
(
TV (ρ0

i ) + 1
) .

�

Corollary 3. Let ρ0
i ∈ (BV ∩ L∞) (R;R+). If (2.3) holds, then the approximate solution

ρ∆x constructed by the algorithm (2.2) has uniformly bounded total variation on [0, T ] × R,
for any T satisfying (2.10).

Proof. If T ≤ ∆t, then TV (ρ∆x
i ; [0, T ] × R) ≤ T TV (ρ0

i ). Let us assume now that T > ∆t.
Let nT ∈ N\{0} such that nT∆t < T ≤ (nT + 1)∆t. Then

TV (ρ∆x
i ; [0, T ]× R)

=

nT−1∑
n=0

∑
j∈Z

∆t
∣∣∣ρni,j+1 − ρni,j

∣∣∣+ (T − nT∆t)
∑
j∈Z

∣∣∣ρnT
i,j+1 − ρ

nT
i,j

∣∣∣︸ ︷︷ ︸
≤T supt∈[0,T ]TV(ρ∆x

i )(t,·)

+

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣.

We then need to bound the term

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣.
From the definition of the numerical scheme (2.2), we obtain

ρn+1
i,j − ρ

n
i,j = λ

(
ρni,j−1V

n
i,j − ρni,jV n

i,j+1

)
= λ

(
ρni,j−1

(
V n
i,j − V n

i,j+1

)
+ V n

i,j+1

(
ρni,j−1 − ρni,j

))
.

Taking the absolute values and using (2.7) we obtain∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣ ≤ λ(vmax
i

∥∥ψ′∥∥∞M‖ρn‖∞ωi(0)∆x
∣∣∣ρni,j−1

∣∣∣+ vmax
i ‖ψ‖∞

∣∣∣ρni,j−1 − ρni,j
∣∣∣) .

10



Summing on j, we get∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣ = vmax
i

∥∥ψ′∥∥∞M‖ρn‖∞ωi(0) ∆t
∑
j∈Z

∆x
∣∣∣ρni,j−1

∣∣∣
+ vmax

i ‖ψ‖∞∆t
∑
j∈Z

∣∣∣ρni,j−1 − ρni,j
∣∣∣,

which yields

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
≤ vmax

M ‖ψ‖∞T sup
t∈[0,T ]

TV (ρ∆x
i )(t, ·) + vmax

M

∥∥ψ′∥∥∞MW0T sup
t∈[0,T ]

∥∥∥ρ∆x
i (t, ·)

∥∥∥
1

∥∥∥ρ∆x
i (t, ·)

∥∥∥
∞

that is bounded by Corollary 2, Lemma 2 and Lemma 4. �

3 Proof of Theorem 1

To complete the proof of the existence of solutions to the problem (1.1), (1.5), we follow a
Lax-Wendroff type argument as in [4], see also [9], to show that the approximate solutions
constructed by scheme (2.2) converge to a weak solution of (1.1). By Lemma 2, Lemma 4
and Corollary 3, we can apply Helly’s theorem, stating that for i = 1, . . . ,M , there exists a
subsequence, still denoted by ρ∆x

i , which converges to some ρi ∈ (L1 ∩BV)([0, T ] × R;R+)
in the L1

loc-norm. Let us fix i ∈ {1, . . . ,M}. Let ϕ ∈ C1
c([0, T [×R) and multiply (2.2) by

ϕ(tn, xj). Summing over j ∈ Z and n ∈ {0, . . . , nT } we get

nT−1∑
n=0

∑
j

ϕ(tn, xj)
(
ρn+1
i,j − ρ

n
i,j

)

= −λ
nT−1∑
n=0

∑
j

ϕ(tn, xj)
(
ρni,jV

n
i,j+1 − ρni,j−1V

n
i,j

)
.

Summing by parts we obtain

−
∑
j

ϕ((nT − 1)∆t, xj)ρ
nT
i,j +

∑
j

ϕ(0, xj)ρ
0
i,j +

nT−1∑
n=1

∑
j

(
ϕ(tn, xj)− ϕ(tn−1, xj)

)
ρni,j

+ λ

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
V n
i,j+1ρ

n
i,j = 0. (3.1)

Multiplying by ∆x we get

−∆x
∑
j

ϕ((nT − 1)∆t, xj)ρ
nT
i,j + ∆x

∑
j

ϕ(0, xj)ρ
0
i,j (3.2)

+ ∆x∆t

nT−1∑
n=1

∑
j

(
ϕ(tn, xj)− ϕ(tn−1, xj)

)
∆t

ρni,j (3.3)

11



+ ∆x∆t

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
∆x

V n
i,j+1ρ

n
i,j = 0. (3.4)

By L1
loc convergence of ρ∆x

i → ρi, it is straightforward to see that the terms in (3.2), (3.3)
converge to∫

R

(
ρ0
i (x)ϕ(0, x)− ρi(T, x)ϕ(T, x)

)
dx+

∫ T

0

∫
R
ρi(t, x)∂tϕ(t, x) dx dt , (3.5)

as ∆x→ 0. Concerning the last term (3.4), we can rewrite

∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
V n
i,j+1ρ

n
i,j

= ∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x

(
ρni,jV

n
i,j+1 − ρni,jV n

i,j

)
(3.6)

+ ∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
ρni,jV

n
i,j .

By (2.7) we get the estimate

ρni,jV
n
i,j+1 − ρni,jV n

i,j ≤ vmax
i

∥∥ψ′∥∥∞∆xM‖ρ‖2∞ωi(0).

Set R > 0 such that ϕ(t, x) = 0 for |x| > R and j0, j1 ∈ Z such that −R ∈ ]xj0− 1
2
, xj0+ 1

2
] and

R ∈ ]xj1− 1
2
, xj1+ 1

2
], then

∆x∆t

nT∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
(ρni,jV

n
i,j+1 − ρni,jV n

i,j)

≤ ∆x∆t‖∂xϕ‖∞
nT∑
n=0

j1∑
j=j0

vmax
i

∥∥ψ′∥∥∞M‖ρ‖2∞ωi(0) ∆x

≤ ‖∂xϕ‖∞ vmax
i

∥∥ψ′∥∥∞M‖ρ‖2∞ωi(0) ∆x 2RT ,

which goes to zero as ∆x→ 0.
Finally, again by the L1

loc convergence of ρ∆x
i → ρi, we have that

∆x∆t

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
∆x

ρni,jV
n
i,j− 1

2

→
∫ T

0

∫
R
∂xϕ(t, x)ρi(t, x)vi(r ∗ ωi) dx dt .

4 Numerical tests

In this section we perform some numerical simulations to illustrate the behaviour of solutions
to (1.1) for M = 2 modeling two different scenarios. In the following, the space mesh is set
to ∆x = 0.001.
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4.1 Cars and trucks mixed traffic

In this example, we consider a stretch of road populated by cars and trucks. The space
domain is given by the interval [−2, 3] and we impose absorbing conditions at the boundaries,
adding N1 = η1/∆x ghost cells for the first population and N2 = η2/∆x for the second one at
the right boundary, and just one ghost cell for both populations at the left boundary, where
we extend the solution constantly equal to the last value inside the domain. The dynamics is
described by the following 2× 2 system{

∂tρ1(t, x) + ∂x
(
ρ1(t, x)vmax

1 ψ((r ∗ ω1)(t, x))
)

= 0,

∂tρ2(t, x) + ∂x
(
ρ2(t, x)vmax

2 ψ((r ∗ ω2)(t, x))
)

= 0,
(4.1)

with

ω1(x) =
2

η1

(
1− x

η1

)
, η1 = 0.3,

ω2(x) =
2

η2

(
1− x

η2

)
, η2 = 0.1,

ψ(ξ) = max {1− ξ, 0} , ξ ≥ 0,

vmax1 = 0.8, vmax2 = 1.3.

In this setting, ρ1 represents the density of trucks and ρ2 is the density of cars on the road.
Trucks moves at lower maximal speed than cars and have grater view horizon, but of the same
order of magnitude. Figure 2 describes the evolution in time of the two population densities,
correspondent to the initial configuration{

ρ1(0, x) = 0.5χ[−1.1,−1.6],

ρ2(0, x) = 0.5χ[−1.6,−1.9],

in which a platoon of trucks precedes a group of cars. Due to their higher speed, cars overtake
trucks, in accordance with what observed in the local case [3].

4.2 Impact of connected autonomous vehicles

The aim of this test is to study the possible impact of the presence of Connected Autonomous
Vehicles (CAVs) on road traffic performances. Let us consider a circular road modeled by
the space interval [−1, 1] with periodic boundary conditions at x = ±1. In this case, we
assume that autonomous and non-autonomous vehicles have the same maximal speed, but
the interaction radius of CAVs is two orders of magnitude grater than the one of human-driven
cars. Moreover, we assume CAVs have constant convolution kernel, modeling the fact that
they have the same degree of accuracy on information about surrounding traffic, independent
from the distance. In this case, model (1.1) reads

∂tρ1(t, x) + ∂x
(
ρ1(t, x)vmax

1 ψ((r ∗ ω1)(t, x))
)

= 0, i = 1, ...,M,

∂tρ2(t, x) + ∂x
(
ρ2(t, x)vmax

2 ψ((r ∗ ω2)(t, x))
)

= 0,

ρ1(0, x) = β (0.5 + 0.3 sin(5πx)),

ρ2(0, x) = (1− β) (0.5 + 0.3 sin(5πx)),

(4.2)
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Figure 2: Density profiles of cars and trucks at increasing times corresponding to the non-local
model (4.1).

with

ω1(x) =
1

η1
, η1 = 1,
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ω2(x) =
2

η2

(
1− x

η2

)
, η2 = 0.01,

ψ(ξ) = max {1− ξ, 0} , ξ ≥ 0,

vmax1 = vmax2 = 1.

Above ρ1 represents the density of autonomous vehicles, ρ2 the density of non-autonomous
vehicles and β ∈ [0, 1] is the penetration rate of autonomous vehicle. Figure 3 displays the
traffic dynamics in the case β = 0.9.

As a metric of traffic congestion, given a time horizon T > 0, we consider the two following
functionals:

J(β) =

∫ T

0
d| ∂xr| dt , (4.3)

Ψ(β) =

∫ T

0

[
ρ1(t, x̄)vmax

1 ψ((r ∗ ω1)(t, x̄)) + ρ2(t, x̄)vmax
2 ψ((r ∗ ω2)(t, x̄))

]
dt , (4.4)

where x̄ = x0 ≈ 0. The functional J measures the integral with respect to time of the spatial
total variation of the total traffic density, see [5]. Instead, the functional Ψ measures the
integral with respect to time of the traffic flow at a given point x̄, corresponding to the
number of cars that have passe through x̄ in the studied time interval. Figure 4 displays
the values of the functionals J and Ψ for different values of β = 0, 0.1, 0.2, . . . , 1. We can
notice that the functionals are not monotone and present minimum and maximum values.
The traffic evolution patterns corresponding these stationary velues are reported in Figure 5,
showing the (t, x)-plots of the total traffic density r(t, x) corresponding to these values of β.
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Figure 3: Density profiles corresponding to the non-local problem (4.2) with β = 0.9 at
different times.
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Figure 5: (t, x)-plots of the total traffic density r(t, x) = ρ1(t, x)+ρ2(t, x) in (4.2) correspond-
ing to different values of β: (a) no autonomous vehicles are present; (b) point of minimum
for Ψ; (c) point of minimum for J ; (d) point of maximum for J .
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Appendix A Lax-Friedrichs numerical scheme

We provide here an alternative existence proof for (1.1), based on approximate solutions
constructed via the following adapted Lax-Friedrichs scheme:

ρn+1
i,j = ρni,j − λ

(
Fni,j+1/2 − F

n
i,j−1/2

)
, (A.1)

with

Fni,j+1/2 :=
1

2
ρni,jV

n
i,j +

1

2
ρni,j+1V

n
i,j+1 +

α

2

(
ρni,j − ρni,j+1

)
, (A.2)

where α ≥ 1 is the viscosity coefficient and λ = ∆t
∆x .

Lemma 5. For any T > 0, under the CFL conditions

λα < 1, (A.3)

α ≥ vmax
M ‖ψ‖∞, (A.4)

the scheme (A.2)-(A.1) is positivity preserving on [0, T ]× R.
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Proof. Let us assume that ρni,j ≥ 0 for all j ∈ Z and i ∈ 1, ...,M. It suffices to prove that

ρn+1
i,j in (A.1) is non-negative. Compute

ρn+1
i,j = ρni,j +

λ

2
α(ρni,j+1 − 2ρni,j + ρni,j−1) +

λ

2

(
ρni,j−1V

n
i,j−1 − ρni,j+1V

n
i,j+1

)
(A.5)

= ρni,j−1

λ

2

(
α+ V n

i,j−1

)
+ ρni,j(1− λα) + ρni,j+1

λ

2

(
α− V n

i,j+1

)
, (A.6)

under assumptions (A.3) and (A.4), we obtain that ρn+1
i,j is positive. �

Corollary 4. (L1 bound) For any T > 0, under the CFL conditions (A.3)-(A.4) the scheme
(A.2)-(A.1) preserves the L1 norm of the i-th component of ρ∆x.

Proof. See proof of Corollary 2. �

Lemma 6. (L∞-bound) If ρ0
i,j ≥ 0 for all j ∈ Z and i = 1, ...,M , and the CFL condi-

tions (A.3)-(A.4) hold, the approximate solution ρ∆x constructed by the algorithm (A.2)-(A.1)
is uniformly bounded on [0, T ]× R for any T such that

T <

(
M
∥∥∥ρ0

∥∥∥
∞
vmax
M

∥∥ψ′∥∥∞W0

)−1

. (A.7)

Proof. From (A.6) we can define

ρn+1
i,j =

λ

2
ρni,j−1

(
α+ V n

i,j−1

)
+ (1− λα)ρni,j +

λ

2
ρni,j+1

(
α− V n

i,j+1

)
Let ρ̄ = max

{
ρni,j−1, ρ

n
i,j , ρ

n
i,j+1

}
. Then we get

ρn+1
i,j ≤ ρ̄

[
1 +

λ

2

(
V n
i,j−1 − V n

i,j+1

)]
and by (2.7) ∣∣∣V n

i,j−1 − V n
i,j+1

∣∣∣ ≤ 2vmax
M

∥∥ψ′∥∥∞∆xωi(0)M‖ρ‖∞. (A.8)

Therefore, until ‖ρn‖∞ ≤ K, for some K ≥
∥∥ρ0

∥∥
∞, we get∥∥∥ρn+1

∥∥∥
∞
≤ ‖ρn‖∞

(
1 +MKvmax

M

∥∥ψ′∥∥∞W0∆t
)
,

and we can reason as in the proof of Lemma 2. �
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Lemma 7. (BV estimates) Let ρ0
i ∈ (BV ∩ L∞) (R,R+) for all i = 1, ...,M . If (A.4)

holds and

∆t ≤ 2

2α+ ∆x ‖ψ′‖∞W0 vmax
M ‖ρ‖∞

∆x, (A.9)

then the solution constructed by the algorithm (A.2)-(A.1) has uniformly bounded total vari-
ation for any T such that

T ≤ min
i=1,...,M

1

D
(
TV (ρ0

i ) + 1
) , (A.10)

where D = ‖ρ‖∞ vmax
M W0M

(
3MJ0‖ρ‖∞

∥∥ψ′′∥∥∞ + 2
∥∥ψ′∥∥∞).

Proof. Subtracting the following expressions

ρn+1
i,j+1 = ρni,j+1 +

λ

2
α(ρni,j − 2ρni,j+1 + ρni,j+2) +

λ

2

(
ρni,jV

n
i,j − ρni,j+2V

n
i,j+2

)
,

ρn+1
i,j = ρni,j +

λ

2
α(ρni,j−1 − 2ρni,j + ρni,j+1) +

λ

2

(
ρni,j−1V

n
i,j−1 − ρni,j+1V

n
i,j+1

)
,

we get

∆n+1
i,j+1/2 =

λ

2
α∆n+1

i,j−1/2 + (1− λα)∆n
i,j+1/2 +

λ

2
α∆n+1

i,j+3/2

+
λ

2

[
V n
i,j∆

n
i,j−1/2 + ρni,j−1

(
V n
i,j − V n

i,j−1

)
− V n

i,j+2∆i,j+3/2 + ρi,j+1

(
V n
i,j+1 − V n

i,j+2

)]
.

Now, we can write

V n
i,j − V n

i,j−1 = vmax
i ψ′(ξj−1/2)∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k − ρnβ,j+k−1

= vmax
i ψ′(ξj−1/2)∆x

+∞∑
k=0

ωki

M∑
β=1

∆n
β,j+k−1/2

= vmax
i ψ′(ξj−1/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )ρβ,j+k − ω0

i ρβ,j−1

 ,

and

V n
i,j+2 − V n

i,j+1 = vmax
i ψ′(ξj+3/2)∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+2 − ρnβ,j+k+1

= vmax
i ψ′(ξj+3/2)∆x

+∞∑
k=0

ωki

M∑
β=1

∆n
β,j+k+3/2

= vmax
i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=1

(ωk−1
i − ωki )ρβ,j+k+1 − ω0

ηρβ,j+1

 .
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We get

∆n+1
i,j+1/2 =

=
λ

2

(
α+ V n

i,j

)
∆n
i,j−1/2 + (1− λα) ∆n

i,j+1/2 +
λ

2

(
α− V n

i,j+2

)
∆n
i,j+3/2

+
λ

2
ρni,j−1

vmax
i ψ′(ξj−1/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
η )ρnβ,j+k − ω0

ηρ
n
β,j−1




− λ

2
ρni,j+1

vmax
i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=1

(ωk−1
i − ωki )ρnβ,j+k+1 − ω0

i ρ
n
β,j+1




=
λ

2

(
α+ V n

i,j

)
∆n
i,j−1/2 + (1− λα) ∆n

i,j+1/2 +
λ

2

(
α− V n

i,j+2

)
∆n
i,j+3/2

+
λ

2
(ρni,j−1 − ρni,j+1)

(
V n
i,j − V n

i,j−1

)
+
λ

2
ρni,j+1

vmax
i ψ′(ξj−1/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )ρnβ,j+k − ω0

ηρ
n
β,j−1


± vmax

i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )ρnβ,j+k − ω0

i ρ
n
β,j−1


−vmax

i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=1

(ωk−1
i − ωki )ρnβ,j+k+1 − ω0

i ρ
n
β,j+1




=
λ

2

(
α+ V n

i,j

)
∆n
i,j−1/2 + (1− λα) ∆n

i,j+1/2 +
λ

2

(
α− V n

i,j+2

)
∆n
i,j+3/2

− λ

2

(
V n
i,j − V n

i,j−1

)(
∆n
i,j−1/2 + ∆n

i,j+1/2

)
+
λ

2
ρni,j+1

vmax
i ψ′′(ξj+1)(ξj−1/2 − ξj+3/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )ρnβ,j+k − ω0

ηρ
n
β,j−1


+ vmax

i ψ′(ξj+3/2)∆x

 M∑
β=1

+∞∑
k=0

(ωki − ωk+1
i )(ρnβ,j+k − ρnβ,j+k+2) −ω0

i (ρ
n
β,j−1 − ρnβ,j+1)

)]

=
λ

2

(
α+ V n

i,j−1

)
∆n
i,j−1/2 (A.11)

+

(
1− λα− λ

2

(
V n
i,j − V n

i,j−1

))
∆n
i,j+1/2 (A.12)

+
λ

2

(
α− V n

i,j+2

)
∆n
i,j+3/2 (A.13)

+
λ

2
ρni,j+1

vmax
i ψ′′(ξ̃j+1)(ξj−1/2 − ξj+3/2)∆x

+∞∑
k=0

ωki

M∑
β=1

∆n
β,j+k−1/2


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+ vmax
i ψ′(ξj+3/2)∆x

+∞∑
k=0

(ωk+1
i − ωki )

M∑
β=1

(
∆n
β,j+k+1/2 + ∆n

β,j+k+3/2

)

+ω0
i

M∑
β=1

(
∆n
β,j−1/2 + ∆n

β,j+1/2

)
 .

where ξ̃j+1 ∈ I(ξj+1/2, ξj+3/2). For some ϑ, µ ∈ [0, 1], we compute

ξj−1/2 − ξj+3/2 = ϑ∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k + (1− ϑ)∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k−1

− µ∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+2 − (1− µ)∆x
+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k+1

= ϑ∆x

+∞∑
k=0

ωki

M∑
β=1

ρnβ,j+k + (1− ϑ)∆x

+∞∑
k=−1

ωk+1
i

M∑
β=1

ρnβ,j+k

− µ∆x
+∞∑
k=2

ωk−2
i

M∑
β=1

ρnβ,j+k − (1− µ)∆x
+∞∑
k=1

ωk−1
i

M∑
β=1

ρnβ,j+k

= ∆x
+∞∑
k=2

[
ϑωki + (1− ϑ)ωk+1

i − µωk−2
i − (1− µ)ωk−1

i

] M∑
β=1

ρnβ,j+k

+ ϑ∆x

ω0
i

M∑
β=1

ρnβ,j + ω1
i

M∑
β=1

ρnβ,j+1


+ (1− ϑ)∆x

ω0
i

M∑
β=1

ρnβ,j−1 + ω1
i

M∑
β=1

ρnβ,j + ω2
i

M∑
β=1

ρnβ,j+1


− (1− µ)∆x

ω0
i

M∑
β=1

ρnβ,j+1

 .

By monotonicity of ωη we have

ϑωki + (1− ϑ)ωk+1
i − µωk−2

i − (1− µ)ωk−1
i ≤ 0.

Taking the absolute values we get

∣∣∣ξj−1/2 − ξj+3/2

∣∣∣ ≤ ∆x


+∞∑
k=2

[
µωk−2

i + (1− µ)ωk−1
i − ϑωki − (1− ϑ)ωk+1

i

]
+ 3ωi(0)

M‖ρn‖∞

≤ ∆x


N−2∑
k=2

[
ωk−2
i − ωk+1

i

]
+ 3ωi(0)

M‖ρn‖∞

≤ ∆x 6ωi(0)M‖ρn‖∞.
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Observe that assumption (A.4) guarantees the positivity of (A.11) and (A.13). Similarly,
(A.9) ensures the positivity of (A.12).

Until
∑

j

∣∣∣∆n
β,j

∣∣∣ ≤ K1 for β = 1, ...,M for some K1 ≥
∑

j

∣∣∣∆0
β,j

∣∣∣, taking the absolute

values and rearranging the indexes, we have∑
j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ (1 +
λ

2

(
Vi,j−1 − Vi,j+1

))
+ ∆tDK1

where D = ‖ρ‖∞ vmax
M W0M

(
3MJ0‖ρ‖∞

∥∥ψ′′∥∥∞ + 2
∥∥ψ′∥∥∞) . Therefore, by (A.8) we get∑

j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤∑
j

∣∣∣∆n
i,j+1/2

∣∣∣ (1 + ∆t C) + ∆tDK1

with C = vmax
M

∥∥ψ′∥∥∞W0M‖ρ‖∞. In this way we obtain∑
j

∣∣∣∆n+1
i,j+1/2

∣∣∣ ≤ eCn∆t
∑
j

∣∣∣∆0
i,j+1/2

∣∣∣+ eDK1n∆t − 1,

that we can rewrite as

TV (ρi,∆x)(n∆t, ·) ≤ eCn∆t TV (ρ0
i ) + eDK1n∆t − 1

≤ eDK1n∆t
(

TV (ρ0
i ) + 1

)
− 1, (A.14)

since D ≥ 2C and it is not restrictive to assume K1 ≥ 1
2 . Therefore we have that TV (ρi,∆x) ≤

K1 for

t ≤ 1

DK1
ln

(
K1 + 1

TV (ρ0
i ) + 1

)
,

where the maximum is attained for some K1 ≤ e
(
TV (ρ0

i ) + 1
)
− 1 such that

ln

(
K1 + 1

TV (ρ0
i ) + 1

)
=

K1

K1 + 1
.

Therefore the total variation is uniformly bounded for

t ≤ 1

De
(
TV (ρ0

i ) + 1
) .

Iterating the procedure, at time tm, m ≥ 1 we set K1 = em
(
TV (ρ0

i ) + 1
)
−1 and we get that

the solution is bounded by K1 until tm+1 such that

tm+1 ≤ tm +
m

Dem
(
TV (ρ0

i ) + 1
) . (A.15)

Therefore, the approximate solution satisfies the bound (A.14) for t ≤ T with

T ≤ 1

D
(
TV (ρ0

i ) + 1
) .

�
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Corollary 5. Let ρ0
i ∈ BV(R; [0, 1]). If (A.3)-(A.4) holds, then the approximate solution ρ∆x

constructed by the algorithm (A.2)-(A.1) has uniformly bounded total variation on [0, T ]×R,
for any T satisfying (A.10).

Proof. Let us fix T ∈ R+ such that (A.10) and (A.7) hold. If T ≤ ∆t, then TV (ρi,∆x;R×
[0, T ]) ≤ T TV (ρi,0). Let us assume now that T ≥ ∆t. Let M ∈ N\{0} such that nT∆t <
T ≤ (nT + 1)∆t. Then

TV (ρi,∆x;R× [0, T ]) (A.16)

=

nT−1∑
n=0

∑
j∈Z

∆t
∣∣∣ρni,j+1 − ρni,j

∣∣∣+ (T − nT∆t)
∑
j∈Z

∣∣∣ρnT
i,j+1 − ρ

nT
i,j

∣∣∣︸ ︷︷ ︸
≤T supt∈[0,T ]TV(ρ∆x

i )(t,·)

+

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
(A.17)

We then need to bound the term

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣. (A.18)

Let us make use of the definition of the numerical scheme (A.2)-(A.1), we obtain

ρn+1
i,j − ρ

n
i,j

=
λ

2

(
α+ Vi,j+1

)
(ρi,j−1 − ρi,j)−

λ

2

(
α− Vi,j+1

)
(ρi,j − ρi,j+1)

+
λ

2
ρi,j−1

(
Vi,j−1 − Vi,j+1

)
.

If (A.4) holds, we can take the absolute value∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
=
λ

2

(
α+ Vi,j+1

) ∣∣ρi,j−1 − ρi,j
∣∣− λ

2

(
α− Vi,j+1

) ∣∣ρi,j − ρi,j+1

∣∣
+
λ

2

∣∣ρi,j−1

∣∣∣∣Vi,j−1 − Vi,j+1

∣∣.
Summing on j and rearranging the indexes we get∑

j∈Z
∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣
=

∆t

2

∑
j∈Z

∣∣ρi,j+1 − ρi,j
∣∣ (2α+ Vi,j+2 − Vi,j+1

)
+

∆t

2

∑
j∈Z

∣∣ρi,j−1

∣∣ ∣∣Vi,j−1 − Vi,j+1

∣∣
=

∆t

2

∑
j∈Z

∣∣ρi,j+1 − ρi,j
∣∣ (2α+ vmax

M

∥∥ψ′∥∥∞∆xωη(0)M‖~ρ‖∞
)
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+ ∆t
∑
j∈Z

∣∣ρi,j−1

∣∣∆x vmax
M

∥∥ψ′∥∥∞W0M‖~ρ‖∞

which yields

nT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
i,j − ρ

n
i,j

∣∣∣ (A.19)

≤ TeC1n∆t
(

TV (ρ0
i ) + 1

) (
α+

1

2
vmax
M

∥∥ψ′∥∥∞∆xW0M‖~ρ‖∞
)

(A.20)

+ T‖~ρ‖L1v
max
M

∥∥ψ′∥∥∞W0M‖~ρ‖∞. (A.21)

�

Proof of Theorem 1. Let us define

g(ρni,j , ..., ρ
n
i,j+N ) :=

1

2
ρni,jV

n
i,j +

1

2
ρni,j+1V

n
i,j+1 +

α

2

(
ρni,j − ρni,j+1

)
.

Fix i ∈ {1, ...,M}. Let ϕ ∈ C1
c([0, T ] × R) and multiply (A.1) by ϕ(tn, xj). Summing over

j ∈ Z and n ∈ {0, 1, ..., nT } we get

nT−1∑
n=0

∑
j

ϕ(tn, xj)
(
ρn+1
i,j − ρ

n
i,j

)

= −λ
nT−1∑
n=0

∑
j

ϕ(tn, xj)
(
g(ρni,j , ..., ρ

n
i,j+N )− g(ρni,j−1, ..., ρ

n
i,j+N−1)

)
.

Summing by parts we obtain

−
∑
j

ϕ((nT − 1)∆t, xj)ρ
nT
i,j +

∑
j

ϕ(0, xj)ρ
0
i,j +

nT−1∑
n=1

∑
j

(
ϕ(tn, xj)− ϕ(tn−1, xj)

)
ρni,j

+ λ

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
g(ρni,j , ..., ρ

n
i,j+N ) = 0. (A.22)

Multiplying by ∆x

−∆x
∑
j

ϕ((nT − 1)∆t, xj)ρ
nT
i,j + ∆x

∑
j

ϕ(0, xj)ρ
0
i,j + ∆x∆t

nT−1∑
n=1

∑
j

(
ϕ(tn, xj)− ϕ(tn−1, xj)

)
∆t

ρni,j

(A.23)

+ ∆x∆t

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
∆x

g(ρni,j , ..., ρ
n
i,j+N ) = 0. (A.24)

By L1
loc convergence of ρi,∆x → ρi, it is straightforward to see that the first two terms in

(A.23) converge to∫
R

(ρ0
i (x)ϕ(0, x)− ρi(T, x)ϕ(T, x)) dx+

∫ T

0

∫
R
ρi(t, x)∂tϕ(t, x) dx dt (A.25)
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as ∆x→ 0. Concerning the last term, we can observe that∣∣∣g(ρni,j , ..., ρ
n
i,j+N )− ρni,jV n

i,j

∣∣∣
≤ α

2

∣∣∣ρni,j+1 − ρni,j
∣∣∣+

1

2

∣∣∣∣(ρni,j+1 − ρni,j)V n
i,j+1 + ρni,j

(
V n
i,j+1 − V n

i,j

)∣∣∣∣
≤
α+ vmax

M ‖ψ‖∞
2

∣∣∣ρni,j+1 − ρni,j
∣∣∣+

1

2
W0∆xTV (ρi,∆x(tn, ·))vmaxM

∥∥ψ′∥∥∞
≤
α+ vmax

M ‖ψ‖∞
2

∣∣∣ρni,j+1 − ρni,j
∣∣∣+ J ∆x.

where J = 1
2v

max
M

∥∥ψ′∥∥∞W0 TV (ρi,∆x(T, ·)). Therefore, the last term in (A.22) can be rewrit-
ten as

∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
g(ρni,j , ..., ρ

n
i,j+N )

= ∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
ρni,jV

n
i,j

+ ∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
(g(ρni,j , ..., ρ

n
i,j+N )− ρnj V n

i,j).

By L1
loc convergence of ρi,∆x → ρi and boundedness of ωi, the first term in the above decom-

position converges to ∫ T

0

∫
R
ρi(t, x)v(r ∗ ωη)∂xϕ(t, x) dx dt .

Set R > 0 such that ϕ(t, x) = 0 for |x| > R and j0, j1 ∈ Z such that −R ∈]xj0−1/2, xj0+1/2[
and R ∈]xj1−1/2, xj1+1/2[, then

∆x∆t

nT−1∑
n=0

∑
j

ϕ(tn, xj+1)− ϕ(tn, xj)

∆x
(g(ρni,j , ..., ρ

n
i,j+N )− ρni,jV n

i,j)

≤ ∆x∆t‖∂xϕ‖∞
nT−1∑
n=0

j1∑
j=j0

(
α+ vmax

M ‖ψ‖∞
2

∣∣∣ρni,j+1 − ρni,j
∣∣∣+ J ∆x

)

=
α+ vmax

M ‖ψ‖∞
2

‖∂xϕ‖∞∆x∆t

nT−1∑
n=0

j1∑
j=j0

∣∣∣ρni,j+1 − ρni,j
∣∣∣+ ‖∂xϕ‖∞ J ∆x 2Rτ

≤
α+ vmax

M ‖ψ‖∞
2

‖∂xϕ‖∞TV (ρi,∆x(T, ·))∆x+ ‖∂xϕ‖∞ J ∆x 2Rτ

which goes to zero when ∆x → 0. Finally, again by the L1
loc convergence of ρ∆x

i → ρi, we
have that

∆x∆t

nT−1∑
n=0

∑
j

(
ϕ(tn, xj+1)− ϕ(tn, xj)

)
∆x

ρni,jV
n
i,j →

∫ T

0

∫
R
∂xϕ(t, x)ρi(t, x)vi(r ∗ ωi) dx dt .
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