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Non-local multi-class traffic low models

FELISIA ANGELA CHIARELLO! PaorA GOATIN!

August 2, 2018

Abstract

We prove the existence for small times of weak solutions for a class of non-local systems
in one space dimension, arising in traffic modeling. We approximate the problem by
a Godunov type numerical scheme and we provide uniform L*° and BV estimates for
the sequence of approximate solutions. We finally present some numerical simulations
illustrating the behavior of different classes of vehicles and we analyze two cost functionals
measuring the dependence of congestion on traffic composition.

1 Introduction

We consider the following class of non-local systems of M conservation laws in one space
dimension:

pi(t,x) + Oy (pi(t, x)vi((r * wi)(t, x))) =0, i=1,..,M, (1.1)

where

M

r(t,z) = Zpi(t,:c), (1.2)
i=1

vi(§) = "™ Y(§), (1.3)

T+
(r*xw)(t,x) == / ! r(t,y)wi(y —x)dy, (1.4)

and we assume:

(H1) The convolution kernels w; € C1([0,7;];RT), n; > 0, are non-increasing functions such
that [ wi(y)dy = J;. We set W := max;—1___ ar wi(0).

(H2) v"* are the maximal velocities, with 0 < v]"®* < v** < ... < O,

(H3) ¢ : RT — RT is a smooth non-increasing function such that ¢(0) = 1 and ¢ (r) = 0 for
r > 1 (for simplicity, we can consider the function ¢ (r) = max{1 —r,0}).

We couple (|1.1)) with an initial datum

pi(0,2) = pY(z), i=1,...,M. (1.5)
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Model is obtained generalizing the n-populations model for traffic flow described in [3]
and it is a multi-class version of the one dimensional scalar conservation law with non-local
flux proposed in [4], where p; is the density of vehicles belonging to the i-th class, 7n; is
proportional to the look-ahead distance and J; is the interaction strength. In our setting, the
non-local dependence of the speed functions v; describes the reaction of drivers that adapt
their velocity to the downstream traffic, assigning greater importance to closer vehicles, see
also [0, B]. We consider different anisotropic discontinuous kernels for each equation of the
system, therefore the results in [I] cannot be applied. The model takes into account the
distribution of heterogeneous drivers and vehicles characterized by their maximal speeds and
look-ahead visibility in a traffic stream. One of the limitations of the standard LWR traffic
flow model [10L 1] is the first in first out rule, conversely in multi-class dynamic faster vehicles
can overtake slower ones and slower vehicles slow down the faster ones.

Due to the possible presence of jump discontinuities, solutions to , are intended
in the following weak sense.

Definition 1. A function p = (p1,...,pm) € (LT NL®)([0, T[xR;RM), T > 0, is a weak
solution of (1.1)), (1.5]) if

o0

T roo
/ / (pi(?tgo + pivi(r * wz-)@x(p) (t,z)dzdt + / p?(x)cp(O, z)dex =0
0 J—o0

for all p € CL(] — 0o, T[xR;R), i =1,..., M.

The main result of this paper is the proof of existence of weak solutions to ([1.1)), ,
locally in time.

Theorem 1. Let p)(z) € (BVNL>®) (R;RT), fori =1,...,M, and assumptions (H1) -
(H3) hold. Then the Cauchy problem (1.1)), (L.5) admits a weak solution on [0,T[ xR, for
some T > 0 sufficiently small.

The paper is organized as follows. Section 2 is devoted to prove uniform L*° and BV
estimates on the approximate solutions obtained through an approximation argument based
on a Godunov type numerical scheme, see [7]. We have to point out that these estimates
heavily rely on the monotonicity properties of the kernel functions w;. In Section 3 we prove
the existence in finite time of weak solutions applying Helly’s theorem and a Lax-Wendroff
type argument, see [9]. In Section [4| we present some numerical simulations for M = 2.
In particular, we consider the case of a mixed flow of cars and trucks on a stretch of road,
and the flow of mixed autonomous and non-autonomous vehicles on a circular road. In this
latter case, we analyze two cost functionals measuring the traffic congestion, depending on
the penetration ratio of autonomous vehicles. The final Appendix contains an alternative
proof of Theorem [I| based on approximate solutions constructed via a Lax-Friedrichs type
scheme, which is commonly used in the framework of non-local equations, see [I], 2, [4].

2 Godunov type approximate solutions

First of all, we extend w;(z) = 0 for x > n;. For j € Z and n € N, let z;,,/ = jAx
be the cells interfaces, z; = (j — 1/2)Ax the cells centers and " = nAt the time mesh.

We aim at constructing a finite volume approximate solution p?? = (plA”:, cee pff), with
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pRE(t, x) = pi; for (t,z) € C} = [t " Xy jo, @jy1 0] and i =1, ..., M.

To this end, we approximate the initial datum p? for i = 1,..., M with a piecewise constant

function
0 1 Tit1/2 )
Pii = Ax pi(x)de,  jeZ

Tj—1/2

Similarly, for the kernel, we set

1 [Tit1)2
ko = 0
w; Ax/x w; (x)dx, keN,

j—1/2
so that Az Y /20 wh = o w;i(z)dz = J; (the sum is indeed finite since wf = 0 for k > N;
M
sufficiently large). Moreover, we set g = Zp:fj 4 for k€ N and
i=1
+oo
Vi = 0" A$war?+k , i=1,...,.M, jeL. (2.1)
k=0

We consider the following Godunov-type scheme adapted to (1.1]), which was introduced in [7]
in the scalar case:

P = oy = A (Vi = oy Vi) (22)
At

where we have set A = Ar

2.1 Compactness estimates

We provide here the necessary estimates to prove the convergence of the sequence of approx-
imate solutions constructed via the Godunov scheme ([2.2]).

Lemma 1. (Positivity) For any T > 0, under the CFL condition
1

A S TIVATIEE
(K] S

the scheme (2.2) is positivity preserving on [0,T] x R.

Proof. Let us assume that pij =0 for all j € Z and 7 € 1, ..., M. It suffices to prove that
pz;rl in (2.2) is non-negative. We compute

Py = Pl (1 - Wz",}ﬂ) + AP Vi =0 (2.4)

under assumption ([2.3)). O



Corollary 2. (L'-bound) For any n € N, under the CFL condition (2.3) the approzimate
solutions constructed via the scheme (2.2)) satisfy

P i=1,...,M, (2.5)

lotll = 2]

where Hp?Hl = Ax Zj pi;| denotes the L' norm of the i-th component of p™®.

Proof. Thanks to Lemmal[l} for all 7 € {1, ..., M} we have

‘ P?Hul =Av) pift=Ax) ] (pl-fj = A0 Vi + /\Pﬁj—ﬂ/%f}) =Az) pl,
7 7 7

proving ([2.5). O

Lemma 2. (L*°-bound) If paj >0 forallj €Z andi=1,....M, and (2.3) holds, then the
approzimate solution p™* constructed by the algorithm (2.2)) is uniformly bounded on [0, T] xR
for any T such that

-1
< (v it on)

Proof. Let p =max{p;';_1,p;;} Then we get

ot = oty (1= M) sty v < (1A (W - Vi) (2.6)
and
~+00 +o00
max k k
A B T S S g R D S
k=0 k=0
+oo
max k
<o Y]| Az Y wf (e — )
k=0
+o00
= 0PVl A [—llr} + > _(wi — )
k=1
< o |[¢|| Az M| p" || sowi(0) (2.7)
where [|p|l. = ||(p1,--- ,pM)HOO = max; ; |pij|. So, until [|p"||, < K, for some K > HpOHOO,
we get

p | et (1 MR ]| Woat)

which implies
Pl < [|67] e,

with C' = MKUJI\H/[&XHWHOOWO. Therefore we get that Hp(t, )HOO < K for

t< maxl ! In [0( S 0 : ’
MEvE[W I Wo — \[[0°] ) — Me||p®|| omi ¢l Wo
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where the maximum is attained for K = erOH

Iterating the procedure, at time t”*, m > 1 we set K = emH pOHOO and we get that the
solution is bounded by K until #™*! such that
m

tm+1 < tm+
N Mem|| O] Loi Y| Wo

Therefore, the approximate solution remains bounded, uniformly in Az, at least for t < T

with
“+oo

1 m 1
T < <
- MHPOH max‘|¢/” WO Z — MHpOH max”w/H WO

]
Remark 1. Unlike the classical multi-population model [3], the simplex
M
S:=<{peRM: Zpigl, pi>0fori=1.... M
i=1
is not an invariant domain for (1.1f), see Figure (1| for a numerical example.
Indeed, let us consider the system
Opi(t,x) + 0y (pi(t, x)vi(r(t,x)) =0,  i=1,.., M, (2.8)

where r and v; are as in (1.2]) and (1.3)), respectively. We have the following;:

Lemma 3. Under the CFL condition
1
OB (19l + 1471l 0)

for any initial datum p, € S the approzimate solutions to (2.8) computed by the upwind
scheme

pith=pf — A [F(p?, pi1) —F(pj 1, p?)} , (2.9)
with ¥ (p}, pf 1) = pj(ri,), satisfy the following uniform bounds:

p; €S VjeZ, neN.

Proof. Assuming that p7 € S for all j € Z, we want to prove that p}”l € S. Rewriting (2.9)),
we get

Pt = piy = A [0 () — o)

Summing on the index i = 1,..., M, gives

M
it = Zp?jl me /\Z[ O () = o ()|

— i=

M M
=T M) Yo = M) D el
i=1

=1

—
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Figure 1: Numerical simulation illustrating that the simplex S is not an invariant domain for
(L.1). We take M = 2 and we consider the initial conditions p1(0,z) = 0.9x|_g.5—0.3) and
p2(0,2) = 0.1X]_s0,0] + X]0,+-00[ depicted in (a), the constant kernels wi(z) = wa(z) = 1/7,
n = 0.5, and the speed functions given by v{"* = 0.2, vJ'** = 1, ¥(§) = max{l — &,0} for
¢ > 0. The space and time discretization steps are Az = 0.001 and At = 0.4Ax. Plots
(b) and (c) show the density profiles of p;, p2 and their sum r at times t = 1.8, 2.8. The
function max,cgr (¢, ) is plotted in (d), showing that r can take values greater than 1, even
if r(0,2) = p1(0,z) + p2(0,z) < 1.

Defining the following function of p’

M M
q)(p?,ja .. 7P7X4,j) = 7“? + Aw(r?) szmaxpzr‘tjfl - AT/’(T?H) szmaXPZy
i=1 i=1

we observe that
M
2(0;+,0) = M) 3 el < Mol <1

if A < 1/0 ], and

M
D(p s oons Pl g) = 1= Mp(rfy ) D v p; < 1
=1



for p € S such that r} = Zf\il p}; = 1. Moreover

0o M
8p’?.(p?) = LM (r) Yo pll g = (o > 0
I i=1

if A < 1/vpp (Hszoo + HWHOO). This proves that r}”l < 1.
To prove the positivity of (2.9)), we observe that

ot = oty (1= Nmp(r7 ) ) + NP7 > 0
if A < 1/ |0 O

Lemma 4. (Spatial BV-bound) Let p) € (BV NL>®) (R,RY) for alli=1,..., M. If (2.3)
holds, then the approzimate solution p™® (t,-) constructed by the algorithm (2.2)) has uniformly
bounded total variation for t € [0,T), for any T such that

1
T < mi 2.10
il H (TV (p?)+1)° (2:10)

where H = ||pll. vEWoM (63 Jol ool + '] )-

Proof. Subtracting the identities

1
Piyi = Pijs1 — A (P?,m a2 ijViZ-H) : (2.11)
P =pi = A (ijViZ'—&—l - ij—lVLZ') ) (2.12)

and setting A2j+1/2 = P41 — Pijs we get

n+1 _ AT n n n y/n n n
Aijrie =Bijryp —A (Pm+1 g2 — 2P Vij Pz‘,j—lvz',j) :

Now, we can write

1
A2j+1/2 - (1 —A z‘f}+2> Afj (2.13)
T AVIAL 12
— Ay <Vif3'+2 =2V + Vf}) : (2.14)

Observe that assumption (2.3) guarantees the positivity of (2.13). The term (2.14]) can be
estimated as
igre = 2V Vi =

+oo +oo +o0

__.max k n k. n k n
= Y szwirj+k+2 — 29 AmeierrkH + A:CZwirj+k
k=0 k=0 k=0



+o0o
k k
= oY (& 41)A Zwi e — Wi
=0 k=0
—+00 +00
k k
+ Y (§5) A Wi T — sz‘ ik
k=0 k=0
+o0
k—1 k 0
= v Y (§11) Az Z(WZ W )7”;‘1+k+1 — Wi
k=1
+0o0
ko k=1 0
+ oY (&) A Z(wl —w; )rig Wity
k=1
+0o0
__ ,max / A k=1 k\,.n _,.0.n
= 0" (Y (&) — Y (&) Az (w; Wi T e — Wi T
k=1
+oo
/ k—1 k 0
+ 0" Y (&) Az Z(% — Wi ) (ripgr — i) T wi (7] = 1541)
k=1
+oo M
"egE k
= 0P (Ei1p2) (€1 — A | D) WFAR ks
k=1 =1
M N- 1
-1 0
+ U Y(g) A Z Btkri/z ~ Wilg e |
p=1 k:l

with & € 7 (Ax Zk Owl ]Jrk,Am Zk Owl g+k+1> and £j+1/2 IS I(fj,fjﬂ), where we set

Z(a,b) = [min{a, b}, max{a, b}]. For some ¥, u € [0, 1], we compute

+o00 M +oo M
k k
i1 — & = VAx Zwi Z P8 jrkse + (1 —0)Ax Zwi Z PB j+k+1
k=0  B=1

k=0 B=1

- MAQ?Z‘*’ Zpﬁ,ﬁkﬂ szw Zp@ﬁk
k=0  p=1 k=0 B=1
= 9Azx wa_l Z Pg,j+k+1 + (1 —-9)Azx wa Z ﬂg7j+k+1
— - k=0 =1

+00 M
k1
—,quZw Zpﬁd-i-k-&-l — pAz Z w; " Zpgoﬂrkﬂ
k=0 k=—1 p=1

= Aacz [ﬁwf_l +(1—)wk — pk — (1 - u)wf“} ZPgMHI
p=1

S

+(1-9) A‘W?Zpﬂa 1 — pAaw] ZPMH
B=1



M

M
— (L= Az [ WD phi+wl > Pk
B=1 B=1

By monotonicity of w; we have

Yol 4+ (1 — 9wl — pwl — (1 — p)wftt > 0.

Taking the absolute values we get

—+00

€41 = & < Az 37 [k (1= D)k — ok = (1= )l + 4w b Mlp"
k=2
“+o0o
<Az T [ = el b M7
k=2

< Az 6 WoM | p"| -

Until Zj ‘Ag,j < KjforB=1,...,M for some K; > Zj ’A%J

and rearranging the indexes, we have

, taking the absolute values

Z ‘Aﬁiuz‘ < Z ‘A2j+1/2‘ <1 —A (VZ}H - VZZ’+1>> +AtHK;,
j j
where H = ||p|| ., VAF<WoM <6MJ0||pHOOH1/J”HOO + Hl//HOO) . Therefore, by we get
> ’AZ;EIN} <> }AZj-&-l/Z’ (1+AtG) + At HEK,,
J J
with G = v ||¢'|| _WoM | p|| .- We thus obtain
> ‘A2j+1/2‘ <Ay ’A?,j+1/2‘ + Mt
J J

that we can rewrite as

TV (piAx)(nAt, ) < eQnAt TV (pg)) + eHK1nAt 1
< HEnAt (Tv (o) + 1) 1,

since H > G and it is not restrictive to assume K7 > 1. Therefore, we have that TV (piAx) <

K, for
t< 1 In Ki+1 ’
HK; TV(pg)—i—l




where the maximum is attained for some K; < e (TV (P?) + 1) — 1 such that

| Ky +1 K,

n = .
TV (0)) + 1 Ki+1

Therefore the total variation is uniformly bounded for

1
t < .
= He (IV () + 1)

Iterating the procedure, at time ¢, m > 1 we set K1 = e™ (TV (P?) + 1) — 1 and we get that
the solution is bounded by K; until t™*! such that

m

< m g . 2.15
B He™ (TV () +1) (2.15)
Therefore, the approximate solution has bounded total variation for ¢ < T with
1
T< i
H(TV (p?) + 1)
O

Corollary 3. Let p) € (BVNL>®) (R;R"). If ([2.3) holds, then the approzimate solution
P constructed by the algorithm [2.2)) has uniformly bounded total variation on [0,T] x R,

for any T satisfying (2.10)).

Proof. If T < At, then TV (p2%;[0,T] x R) < TTV (p?). Let us assume now that T > At.
Let ny € N\{0} such that npAt <T < (np + 1)At. Then

TV (p**; [0, T] x R)

anl anl

- Z ZAt Pijs1 — PL +(T—nTAt)Z Pijr1 = Pig |+ Z ZAx

n=0 j€Z JEZL n=0 j€EZ

n+1 n
Pij — Pigj

ST supyepo, ) TV (p£7)(¢,1)

We then need to bound the term

TLTfl

n+1 n
> D Aot = o)
n=0 jEZ

From the definition of the numerical scheme ({2.2]), we obtain
ntl _on o A (o Y pn oy
Pi,;j Pij Pij—1Vij — PijVij+1
=A <P2j—1 (VZIQ- - 53+1) +Viin (PZj—l - PZJ)) :
Taking the absolute values and using (2.7]) we obtain

n—+1 n
Pij — Pij

<A (vflaXHw'HOOM\pnuoowxomx

o] + ol

).

mn n
Pij—1 ~ Pij

10



Summing on j, we get

> Aaloi! = pi| = o[ | Mp" i (0) A Y Al
JEL JEZL
+ v’}’naXHwHOOAtZ ij—l - PZ]' )
JEZ
which yields
np—1
> D Aol =iy
n=0 j€Z
<O LT sup TV (o2t ) + i [ LMWT sup Aot |
te[0,T] t€[0,7] o0
that is bounded by Corollary 2] Lemma [2] and Lemma [4] O

3 Proof of Theorem [1

To complete the proof of the existence of solutions to the problem , , we follow a
Lax-Wendroff type argument as in [4], see also [9], to show that the approximate solutions
constructed by scheme converge to a weak solution of . By Lemma [2| Lemma
and Corollary [3] we can apply Helly’s theorem, stating that for i = 1,..., M, there exists a
subsequence, still denoted by p2%, which converges to some p; € (L' N BV)([0,7] x R;R™)
in the Li --norm. Let us fix i € {1,...,M}. Let ¢ € CL([0,T[xR) and multiply by

@(t", x;). Summing over j € Z and n € {0,...,nyp} we get
nr— 1
2 Z olt" ;) (15" — o)

nTl

=)\ Z th(tn,%‘) (ijVitlj-l—l - p’?,j—lvi?j) :
n=0 j

Summing by parts we obtain

np—1
=Y e((ng — 1)At, z)) p”+Zs00% pu+zz< o, -))ij
; .
npr—1
+ A Z Z (", 2j41) — p(t", 25)) Vi 10t = 0. (3.1)
Multiplying by Az we get
— Az (= DAL z;)plT + Az o(0,2)p0; (3.2)
j j
npr— 1 n—1
t fL'] (t 7'1"])) n
+ AzAt Z Z N pr; (3.3)

11



nr—1 n
o(t", z11) " x;
+ AzAt Z s e " “"( Dy =0, (3.4)
J
By Llloc convergence of piA“ — pi, it is straightforward to see that the terms in (3.2)), (3.3))

converge to

[ (w00 - o) s [ [ poset e, 65

as Az — 0. Concerning the last term (3.4), we can rewrite

np—1

ot x +1 go(t”,x )
arar 3 AP

npr—1

ot x +1 @(t",az‘)
= daat 30 3T 2 (oYt — o5Vy) (3.6)
npr— 1
t tm
L AzAt Z Z o( %+1 <P( 7333) n,]VzZ
J

By (2.7) we get the estimate

max 2
Vi — PVl < of™|[¢'|| AzM || p| 5 wi(0).

Set R > 0 such that ¢(t,z) = 0 for |x| > R and jo, j1 € Z such that —R €]z
Relx 1], then

Jo—%° xjo—&-%] and

J1 5’ 31+

nr
So(tna xj-i—l) - Sp(tn7 .’IJ])
AmAtZZ Axr (ij iZ’H JVZT;)

n=0 j
ny  Ji
< DAl 30 D o | M || i(0) A
n=0 j=jo

< 1020l o[ ¢ || M|l pl12wi(0) Az 2 R T,

which goes to zero as Az — 0.
Finally, again by the Llloc convergence of piA‘” — p;, we have that

TLTl

o(t" :U+1 go(t”,m) n T
AzAt Z Z j j )pde' . _>/0 /R&mgo(t,x)pi(t,x)vi(r*wi)dxdt.

4 Numerical tests

In this section we perform some numerical simulations to illustrate the behaviour of solutions
to (1.1) for M = 2 modeling two different scenarios. In the following, the space mesh is set
to Az = 0.001.
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4.1 Cars and trucks mixed traffic

In this example, we consider a stretch of road populated by cars and trucks. The space
domain is given by the interval [—2, 3] and we impose absorbing conditions at the boundaries,
adding N1 = 11 /Ax ghost cells for the first population and Ny = 13 /Ax for the second one at
the right boundary, and just one ghost cell for both populations at the left boundary, where
we extend the solution constantly equal to the last value inside the domain. The dynamics is
described by the following 2 x 2 system

{Wl (t,2) + 8y (p1(t, ) o™ ((r+ wi)(t,2))) =0, @)

with

m m

W2($):2<1_m>7 n2 = 0.1,
2 2

¥(§) = max {1 —¢,0}, £>0,

v =0.8, vy =1.3.

In this setting, p; represents the density of trucks and po is the density of cars on the road.
Trucks moves at lower maximal speed than cars and have grater view horizon, but of the same
order of magnitude. Figure 2| describes the evolution in time of the two population densities,
correspondent to the initial configuration

p1(0,2) = 0.5X(—1.1,~1.6)>
p2(0,2) = 0.5X[-1.6,—1.9];

in which a platoon of trucks precedes a group of cars. Due to their higher speed, cars overtake
trucks, in accordance with what observed in the local case [3].

4.2 Impact of connected autonomous vehicles

The aim of this test is to study the possible impact of the presence of Connected Autonomous
Vehicles (CAVs) on road traffic performances. Let us consider a circular road modeled by
the space interval [—1, 1] with periodic boundary conditions at x = 41. In this case, we
assume that autonomous and non-autonomous vehicles have the same maximal speed, but
the interaction radius of CAVs is two orders of magnitude grater than the one of human-driven
cars. Moreover, we assume CAVs have constant convolution kernel, modeling the fact that
they have the same degree of accuracy on information about surrounding traffic, independent
from the distance. In this case, model reads

Oup1(t,x) + 0 (p1(t, 2)oP™P((r + wi) (¢, )
Orpa2(t, %) + 0 (p2(t, 2)v5™P((r + w2) (¢, )))
p1(0,2) = B(0.5 + 0.3sin(57x)),

p2(0,2) = (1 — B) (0.5 + 0.3sin(b7z)),

0
0

(4.2)
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Figure 2: Density profiles of cars and trucks at increasing times corresponding to the non-local

model (4.1)).
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2
wa () = " (1 - x) ; n2 = 0.01,

T2
¥(§) = max {1 -, 0}, £>0,
vt = vy = 1.

Above p; represents the density of autonomous vehicles, ps the density of non-autonomous
vehicles and § € [0, 1] is the penetration rate of autonomous vehicle. Figure [3| displays the
traffic dynamics in the case § = 0.9.

As a metric of traffic congestion, given a time horizon T > 0, we consider the two following
functionals:

T
J(B) = /0 d| 8yr| dt (4.3)

T
V() = /0 [p1(8, D)™ P((r + wi)(t, 7)) + p2(t, Z)og Y ((r * w2)(t, 7)) dt (4.4)

where = xg & 0. The functional J measures the integral with respect to time of the spatial
total variation of the total traffic density, see [5]. Instead, the functional ¥ measures the
integral with respect to time of the traffic flow at a given point Z, corresponding to the
number of cars that have passe through z in the studied time interval. Figure [ displays
the values of the functionals J and W for different values of 3 =0, 0.1, 0.2,..., 1. We can
notice that the functionals are not monotone and present minimum and maximum values.
The traffic evolution patterns corresponding these stationary velues are reported in Figure
showing the (¢, x)-plots of the total traffic density r(¢,x) corresponding to these values of f.
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Figure 5: (¢, x)-plots of the total traffic density (¢, z) = p1(¢,z) + p2(t, z) in (4.2) correspond-
ing to different values of 8: (a) no autonomous vehicles are present; (b) point of minimum
for U; (c) point of minimum for J; (d) point of maximum for J.
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Appendix A Lax-Friedrichs numerical scheme

We provide here an alternative existence proof for (1.1)), based on approximate solutions
constructed via the following adapted Lax-Friedrichs scheme:

+1 _
Pij = Pij = A (E’Z‘H/z - 1%71/2) ) (A1)
with
n 1 non 1 n n o n n
EFijrye = 9Pij Vi + §pi,j+1vi,j+1 + ) (pi,j - pi,jﬂ) ; (A.2)

where a > 1 is the viscosity coefficient and A = %.

Lemma 5. For any T > 0, under the CFL conditions

Aa < 1, (A.3)
a = O (|9 oo (A4)

the scheme (A.2)-(A.1) is positivity preserving on [0,T] x R.
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Proof. Let us assume that pij =0 for all j € Z and i € 1,..., M. Tt suffices to prove that
pz;rl in (A.1]) is non-negative. Compute

A A
1
P?j =pij+ 504(/)Zj+1 — 2075+ pij_1) + 5 (PZj—l‘/;Z—l - PZ]’+1V¢Z+1) (A.5)
A A
= pias (@ Vi) + = Aa) + 0l g (@ = Vi) (A.6)
under assumptions (A.3]) and (A.4]), we obtain that p?}rl is positive. O

Corollary 4. (L! bound) For any T > 0, under the CFL conditions (A.3))-(A.4) the scheme
(A-2)-(A1) preserves the L norm of the i-th component of p™*.

Proof. See proof of Corollary [2} O

Lemma 6. (L*°-bound) If P?,j >0 forallj € Z andi = 1,....M, and the CFL condi-

tions (A.3)-(A4)) hold, the approzimate solution p™® constructed by the algorithm (A.2))-(A 1))
is uniformly bounded on [0,T] x R for any T such that

-1
< (o] ot om) A
oo
Proof. From (A.6) we can define
n—i—l_én v 1—\ n in —_ynr
Pij = Pij—1\ @1 Vij +( a)pij + g Pig+1 \ &~ Vij+
Let p = max {pzjfl, Pijs ijH}' Then we get
it <p 1+5<Vﬂ, —yn )
I 9 3,j—1 3,7+1

and by (27)

Vo1 = Vi | < 205 |0/]] LA wi(0)M] - (A.8)

Therefore, until ||p"||, < K, for some K > HpOHOO, we get

and we can reason as in the proof of Lemma O

| e e (1 MK ]| oAt
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Lemma 7. (BV estimates) Let p) € (BV NL>®) (R,R") for all i = 1,....,M. If (A.4)
holds and
2

At < Ax, A9
= 201 Ax [P, Wo ool (8.9)

then the solution constructed by the algorithm (A.2)-(A.1) has uniformly bounded total vari-

ation for any T such that
1
T < min , A.10
~i=1,.,M D (TV (p9) + 1) ( )

where D = | pll., i WoM (3MJolloll [0, + 2] )

Proof. Subtracting the following expressions

A A
1
Pige1 = Pigrn + 5Pl = 2001 + Pijra) T 5 (P ( i Vi~ Pij+2Vi ]+2>

A A
1
Piy = piy+ 5Pl = 2005+ pijn) + 5 (Pﬁjflvﬂ 1 Pu+1V,J+1>

we get
ATl )\aA”H + (1 = Aa)A? 4+ 2qant!
ij+1/2 = i,j—1/2 4j+1/2 T 9 T 543/2

/\
Vig Al 1o+ P51 (Vn - {Z—l) = Vo jysso + pijt1 (Vﬁjﬂ - VZ'Z‘JFQH :

Now, we can write

+o00 M

X k
VJZ - Vn _p = oy (§j—1/2)Ax E wj E :PE,M - ng-ﬁ-k—l
k=0 ,3—1

= v P (12 AxZw ZAﬁHk 1/2

k=0 p=1
M +o0

= oY (&) A | Y Y (@ = wF gk — s |
B=1k=0

and

+o00 M

n n __ ..max,// k n n
e — Vil = MY (§132) AT E w; E PBjtk+2 — PBj+k+1
k=0  B=1

+o00 M
= VY (& 43/2) A Z wf Z AL ivktso

k=0 B=1
M +oo

= v’ ( (&j43/2)Az ZZ lk t— Pﬁ,y+k+1—wnpﬁ,1+1
B=1k=1
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We get

n+1
A,J+1/2
B N A A n \ Am
N M +oco
k k
3Pk |V (G An | DD (W =™ eh e — wne
B=1k=0
) M Ho0
k=1 _ 0
= 5P | Y (a2 A > W DB k1 = @7 PG
B=1k=1

n n
- Vi,j—f—?) Ajijrs/e

A A
=5 (e ) Aty + (12 Ay + 5 (o
A
=+ 5(023'—1 - /’?,j+1) (V;ng - i7,1j—1>
A\ M +oco
Wb
+ 500 |V (§ ) A DD (@ =W YPB i — Wi
B=1 k=0
M 40
x ko ktl
£ 0P () Ar | Y (W = Wit P8k — Wl
B=1k=0

M +oo
-1 _ 0
Y (€ ay2) A ZZ Pﬁ,y+k+1 Wi P 1
B=1k=1

)\ n n n )\ n n
=3 (a + Vm-> picie (L =A) ALy s+ 3 (a - V;,J'H) i,j+3/2
A

—3 (VZZ‘ - z’f%l) (Agy‘—m + AZ]-+1/2)
M +oo

A V23 max 3 7
+ 5Pt |V W (E)(Eimrje — &) A [ DD (wf —wf ol — whpB
B=1k=0
M +o0
+ X ) §]+3/2 )Ax Z Z w; — wk+1)(Pg,j+k - Pg,j+k+2) —W?(Pg,jfl - pﬁ,jﬂ)ﬂ
B=1k=0
A
=3 (a + Vi > ij—1/2 (A.11)
+ < Vil ﬁ—l)) AZj+1/2 (A.12)
>\ n
3 ( - Vw+2> Aij+3/2 (4.13)
~ +o0 M
+ S | G (€mrgz — G B | YWD NGk
k=0  B=1
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+o00 M

P () | S o) 3 (M jariasa + Abinsse)
k=0 p=1

M
0
Y (AZJ—I/? - Ag,ﬂl/?)
p=1

where £j+1 € Z(&j41/2:&j+3/2)- For some 9, u € [0, 1], we compute

+o00 M
&1z = Ejpapp = DT Y Wiy pfiip+ ( szw Z PB.j+k—1
k=0 /3—1 k=0  p=1
— pAz ZW Z PBj+ht2 ~ p)Ax Zw Z PB gkt
k=0 p=1 k=0  p=1
+00 M 400
=0AxY wf Y ikt (L-9)Az Y Wit Zpg,ﬂk
k=0 B=1 k=—1 =

_MA:):Zwk 2Zp5d+k (1—p AxZwk lszBJH€
k=2 k=1

= sz [ﬁwf +(1- ﬁ)wf“ — uwf_Q - (1- ,u)wzk_l} Z pE,j+k
k=2 p=1
M M
+ JAx Z Z PB,j+1
M M
w°me VWl Y Rl Y P8
B=1 B=1

= (1= mAz | o] ZPB,J’H
B=1

By monotonicity of w, we have

ol + (1 — 9w — =2 — (1 — p)wt=1 <.

)

Taking the absolute values we get
§j—1/2 — §j+3/2’ < Az Z {/Mf_Q +01- M)Wf_l - ﬁwzk - (1=9)w; P+ 3w 0) ¢ Mllp"ll
k=2

< Aw {3 w2 = Wb 4 8ui(0) p Mp"]l,
< Az 6wi(0)M[|p" |
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Observe that assumption (A.4) guarantees the positivity of (A.11) and (A.13]). Similarly,
(A.9) ensures the positivity of (A.12)).
Until Zj ‘AgJ’ < Kjfor 8 = 1,...,M for some K; > Zj ‘A%’j

values and rearranging the indexes, we have

A
Z ‘Afﬁm( = Z ‘AZj—f—l/Q‘ <1 Ty (Vij—1— Vi,jﬂ)) + At DK,
J J

, taking the absolute

where D = ||p|| o, Vi*WoM (SMJOHpHOOHW’HOO + 2Hw’HOO> . Therefore, by we get

> ‘A?ﬁm‘ <> ‘Agjo/Q’ (1+ AtC) + At DK,
J J

with C = ||| WoM||pl|,- In this way we obtain
1 CnA 0 DK nAt
Z ‘AZ;F-H&‘ <e” tZ ’Az‘,j+1/2‘ te -1,
J J

that we can rewrite as
TV (pi,a0) (nAL, ) < ATV (p)) 4 PEImAL 1
< ¢PKinAt (TV (o) + 1) 1, (A.14)

since D > 2C and it is not restrictive to assume K; > % Therefore we have that TV (Pi, Az) <
K, for

1 Ki+1
t < In L :
DK, TV (p]) +1
where the maximum is attained for some K1 < e (TV (p?) + 1) — 1 such that

| Ki+1 K,
n = .
TV () + 1 Ki+1

Therefore the total variation is uniformly bounded for

1
"= De (TV (p)) +1)

Iterating the procedure, at time ¢, m > 1 we set K1 = e™ (TV (P?) + 1) — 1 and we get that
the solution is bounded by K; until %! such that

gl < gm g = . A5
= Do I () + ) 419)
Therefore, the approximate solution satisfies the bound (A.14)) for ¢ < T with
1
T< .
D (TV (p?) +1)
U
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Corollary 5. Let p? € BV(R; [0, 1]). If (A3)-(A4) holds, then the approzimate solution p™*
constructed by the algorithm (A.2)-(A.1) has uniformly bounded total variation on [0,T] x R,

for any T satisfying (A.10)).

Proof. Let us fix T € Rt such that (A.10) and (A.7) hold. If T < At, then TV (p; ag; R X
[0,T]) < TTV (pip). Let us assume now that T > At. Let M € N\{0} such that npAt <
T < (ng + 1)At. Then

TV (pi,az; R x [0,T7) (A.16)
TLTfl TLTfl

= Z ZAt pij1— pij| + (T — npAt) Z Piger = Pig |+ Z ZAQE p?jl — i
n=0 jEZ JEL n=0 jez

<T'sup;ejo,r) TV (p5®) ()

(A.17)
We then need to bound the term
nr—1
> D Aalgirt =l (A.18)
n=0 j€Z

Let us make use of the definition of the numerical scheme (A.2)-(A.1)), we obtain

n+1 n
Pij — Pij

A A

= 5 (@4 Vig) (pigr = pig) = 5 (@ = Vig1) (pig = piji1)
A

+5Pij-1 (Vij—1— Vijs1) -

If (A.4)) holds, we can take the absolute value

n+1 n
Pij — Pij

A A
=5 (@+Vigr) [pig-1 = pis| = 5 (@ = Vi) |pig = pign

A
+ 5’01,;‘—1”%,;‘—1 — Vijual-

Summing on j and rearranging the indexes we get

ZAm

JET

n+1 n
Pij — Pij

At
= o Z ‘pi,j—l—l — Pij

(200 + Vij2 — Vi)

jez
At
+ 5 2l [Vigor = Vgl
jez
At max ||,/
= Z i1 — pi (20‘ + o[ HOOA"’“"W’?(O)MM’OO>
ez

24



+At2\pi,j_1mmmaxu¢ .. WoM||pl|

JEZ
which yields

7LT71

Z Z Ax p?j'l —pij (A.19)

n=0 j€Z

< Telrnat (TV (p)) + 1) (a+ lv}&axuzp | Az WoM |7l ) (A.20)

+ TNl aoi™ ||| . WoM |71l (A.21)
O

Proof of Theorem [Il Let us define
1 1
9P s Pijn) = ,JVZZ + p2]+1vj+1 +5 5 (sz - p2j+1> .

Fix i € {1,...M}. Let ¢ € Ci([O,T] x R) and multiply (A.1) by (", z;). Summing over
j€Zand n€{0,1,....nr} we get
nr— 1
2 2 el DICHEY
J
np—1

=-A Z 29” ) ( sz-"P?,jﬂv)*Q(PZj—lv-“aPij—l))-

Summing by parts we obtain

np—1

7ZS0 T—lAt:z:jperZgoOx]pw+ZZ< (tn—l’azj))pgfj
J
nr— 1
+ A Z Z (", zjp1) — o(t", z5)) 9(pijs - Pijin) = 0. (A.22)
Multiplying by Ax
G (e zy) — et zy)
—Amng (np — 1)At, xj)p”—i-A:UZ(pOmJ p”—l—A:cAtZZ At Pi
J J n=1 j
(A.23)
nr— 1
o(t" $+1 (p(tn,l") " .
J

By Li . convergence of p; ar — pj, it is straightforward to see that the first two terms in

A.23)) converge to

T
/ (R (@)p(0,2) — pi(T, 7)o (T, x)) dx + / / pilt,2) 0ot ) dr (A.25)
R 0 R
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as Az — 0. Concerning the last term, we can observe that

900 PRy ) = PE Vi

o 1
< S|Pt — i+ 50t — PVl + ei (Vi — Vil
2 2
o + VX4 1
< M2 | Hoo Pl — Pl + §WOAxTV (pi,Ax(tn’.))Uﬁasz/Hoo
o+ v (Y]l
< f Pijr1 — Pij| T T Az

where J = o ||v/ H Wo TV (pi az(T,-)). Therefore, the last term in (A.22)) can be rewrit-

ten as

npr—1

o(t", x +1 @(t”,x')
AzAt Z Z : 9P} PN

nTl

NN Z ZSO (t" 1‘J+1 @(tn»%) Rvs

'L] 2y

TLTI

ot x +1 SO(t"JC‘)
J

By LIOC convergence of p; A, — p; and boundedness of w;, the first term in the above decom-
position converges to

T
/ / pi(t, 2)v(r * wy)Opp(t, ) da dt.
0o JRr

Set R > 0 such that ¢(t,z) = 0 for [x| > R and jo, j1 € Z such that —R €]z;,_1/2, Tj,11/2]
and R €]z, _1/9, %), 41/2], then

npr—1

o(t",x +1 Sﬁ(tnaﬁ')
AxAt Z Z I : (Q(Pﬁj, --wPZjJrN) - pZ]VzZ)
J

nr—1 j1 max
oa+v P
< Axatjogl, 33 (fg””oo i~ oly| +7 b
n=0 j=jo
-1 5
Oé+1}max‘|¢|’ nr
= LT Oapllo AxAL Y DD o1 — Py + 1000l T Az 2 R

n=0 j=jo
1% _|_ vmax
< AN e 3,01, TV (91 00T, ) A + 00l T A2 7
which goes to zero when Az — 0. Finally, again by the Lloc convergence of piA‘” — pi, We
have that

npr—1

o(t" ", x;
Az At Z Z xﬁl <,0( ,x])) i Vi —>/ /3x90 (t, ) pi(t, x)vi(r * w;) dadt .
J
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