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Abstract: Most subspace-based methods enabling instability monitoring are restricted to
the linear time-invariant (LTI) systems. In this paper, a new subspace method of instability
monitoring is proposed for the linear periodically time-varying (LPTV) case. For some LPTV
systems, the system transition matrices may depend on some parameter and are also periodic
in time. A certain range of values for the parameter leads to an unstable transition matrix.
Early warning should be given when the system gets close to that region, taking into account
the time variation of the system. Using the theory of Floquet, some symptom parameter of
stability- or residual- is defined. Then, the parameter variation is tracked by performing a set
of parallel cumulative sum (CUSUM) tests. Finally, the method is tested on a simulated model
of a helicopter with hinged blades, for monitoring the ground resonance phenomenon.

Keywords: Helicopter dynamics, Time-varying systems, Periodic motion, Resonance, Subspace
methods, Statistical inference, Fault detection, Stability limits

1. INTRODUCTION

Instability monitoring is currently the subject of extensive
research activities motivated by an increasing requirement
on the design of highly reliable control systems, for numer-
ous applications such as civil engineering and aeronautics.
Under some assumptions, such structures can be modeled
by a linear time-invariant (LTI) model. The goal is to
detect any anomalous behavior on these structures, and
to alarm the user before any dysfunction or destruction
occurs. There is a large amount of literature on the subject
of instability monitoring, which has been handled with
different approaches (see Angeli and Chatzinikolaou [2004]
for details). One particular method, namely the subspace-
based method, consists in comparing the characteristics of
a system at a reference state with a subspace matrix given
by new data corresponding to an unknown, possibly differ-
ent state, as explained in Basseville et al. [2000]. To check
whether a change has occurred or not, a quasi-distance
between the two states - called residual- is defined. Then,
a statistical test decides if this residual is significantly dif-
ferent from zero. If some threshold is exceeded, the system
has changed with respect to the reference. An overview
of the different approaches of this general approach can
be found in Basseville and Nikiforov [1993]. This method
has been largely investigated and successfully tested on
LTI systems. In some complex systems, the characterizing
model may change due to some internal commands or
parameters (Mach number for aircrafts, blade rotational
velocity for helicopters...). In Basseville et al. [2007], the
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system is labeled as LTI, even if it depends on those
internal commands (this class of systems is called linear
parameter-varying (LPV) in control theory, but it is still
considered time-invariant for each fixed parameter). This
assumption holds since for each command’s value, data
has a time-invariant behavior, and since the command
varies slowly as a step function, generally. The problem
will be to detect a significant change of the structural
characteristics leading to instability as those commands
fluctuate and some system eigenvalue starts to cross the
Nyquist circle. This problem has been solved for aircraft
flutter monitoring in Mevel et al. [2005].
The subject of this paper is the extension of this approach
to periodically time-varying (varying, even for fixed in-
ternal command’s values) systems such as wind turbines
and rotor systems, replacing the residual in Mevel et al.
[2005] by a robust one considered in Döhler and Mevel
[2011]. To the best of the knowledge of the authors, the
bibliography on subspace methods for LPTV systems is
not abundant. For instance, in Verhaegen and Yu [1995],
some attempts have been carried out in subspace-based
identification. Some other works have dealt with recursive
tracking of periodic subspaces, as in Buzzi et al. [2003].
Otherwise, Bayesian filtering such as Kalman and particle
filters, or robust and adaptive observers are also used. Two
key features motivate the study reported herein:

• A simple, necessary and sufficient criterion of stability
can be extracted from periodic data, using the theory
of Floquet (Dacunha and Davis [2009]). Therefore, a
simple residual based on this criterion can be built

• A set of time-invariant data subsequences that have
the same time-varying behavior can be found for such



periodic systems, as outlined in Meyer and Burrus
[1975], which makes it possible to apply a detection
algorithm similar to the classical time-invariant one
(Mevel et al. [2005]), for each of these sequences

Once the criterion of stability is found, a set of residu-
als, corresponding to each time-invariant subsequence, is
defined. Then, parallel statistical tests are performed to
decide if an eventual change in the system characteris-
tics has occurred. The statistical test used herein is the
cumulative sum (CUSUM) because it is adequate for on-
line implementation and for the detection of the instant of
change (see Basseville and Nikiforov [1993]). The paper is
organized as follows: in Section 2, the essential elements
of the subspace methods for identification and instability
monitoring are recalled. Then, Section 3 is devoted to the
design of the new LPTV-extended method of instability
monitoring. Finally, in Section 4 an illustrative simulation
case is studied in order to test the efficiency of the sug-
gested method.

2. SUBSPACE-BASED METHODS FOR LTI
SYSTEMS

2.1 Subspace Identification

Consider the discrete time model, describing a system in
the state space form:{

zk+1 = Fzk + wk
yk = Hzk + vk

(1)

with the state vector z ∈ Rn, the output vector y ∈ Rr,
the state transition matrix F ∈ Rn×n and the observation
matrix H ∈ Rr×n. The vectors w and v are unmeasured
noises, assumed to be white Gaussian. The eigenstructure
of (1) is given by the roots (λ, φλ) of the equations, below:

det(F − λI) = 0, Fφλ = λφλ (2)

Let p and q be chosen parameters such that min{pr, qr} ≥
n. From the output data (yk), a Hankel matrix Hp,q ∈
R(p+1)r×qr is built:

Hp,q=̂


R1 R2 · · · Rq
R2 R3 · · · Rq+1

...
...

...
...

Rp+1 Rp+2 · · · Rp+q

 (3)

where the covariances of the output data write Ri =
E(yky

T
k−i) and E is the expectation operator. When

the number of data N goes to infinity, the approxima-

tions 1 below hold: R̂i = 1
N

∑N
k=i+1 yky

T
k−i and Ĥp,q =

1
N

∑N−p
k=q Yk

+Yk−T , where Yk+ = (yTk · · · yTk+p)
T and

Yk− = (yTk−1 · · · yTk−q)T . The Hankel matrix can be fac-

torized as below (see Benveniste and Fuchs [1985]):

Hp,q = OpCq (4)

whereOp=̂


H
HF

...
HF p

, Cq=̂
[
FG, F 2G, · · · , F qG

]
andG =

E(zky
T
k ). Therefore, the observability matrix Op is ob-

1 In the following, we drop theˆnotation for sake of simplicity

tained from a thin singular value decomposition (SVD)
of the matrix Hp,q and its truncation at the desired order
n (Basseville et al. [2000]):

Hp,q = U∆V T = [U1 U2 ]

[
∆1 0
0 ∆2

] [
V1
T

V2
T

]
(5)

Op = U1∆
1/2
1 (6)

with U1 the left subspace of Hp,q found in the n first
columns of U , and ∆1 the n upper singular values of ∆.
The observation matrix H is found in the first block-row
of Op. To get the transition matrix F , the shift invariance
property ofOp is used in resolving the least square solution
of (Basseville et al. [2007]):

O↑pF = O↓p (7)

where:

O↑p =


H
HF

...
HF p−1

 , O↓p =


HF
HF 2

...
HF p

 (8)

Once F is computed, the eigenvalues λ and the eigen-
vectors φλ can easily be derived from the resolution of
(2). Then, the mode shapes (the observed eigenvectors),
defined by Φλ = Hφλ, are deduced. Let the eigenstructure

be the vector θ =

(
Λ

vec(Φ)

)
considered as a canonical

parametrization of (1), where Λ is the vector whose el-
ements are the eigenvalues and Φ is the matrix of the
observed eigenvectors Φλ = Hφλ.

2.2 Subspace Instability Monitoring

In this section, the statistical subspace-based instability
monitoring from Basseville et al. [2007] and Mevel et al.
[2005] is recalled, where a residual function for change
detection is associated with the subspace identification de-
scribed in the previous section. This function, or residual,
compares the system parameter θ0 of a reference with a
block Hankel matrix computed on new data (yk)k=1···N
corresponding to an unknown, possibly different parameter
θ. To decide whether a significant change has occurred
or not, a local approach is used to decide between two
hypotheses:

H0 : θ = θ0 and H1 : θ = θ0 + δθ/
√
N (9)

where δθ is unknown but fixed. Let K be a left kernel of
the Hankel matrix at the reference H0

p,q, such that:

KT (θ0)H0
p,q = 0, KT (θ0)K(θ0) = I (10)

To check whether new data agree with the reference
state corresponding to θ0, the residual function be-
low is introduced in Basseville et al. [2000]: ζN (θ0) =√
N vec(KT (θ0)Hp,q), where Hp,q is the Hankel matrix

built with new data from the current parameter θ, pos-
sibly different from θ0. From now on, we will use another
residual that is robust to noise changes, recently suggested
in Döhler and Mevel [2011]:



ζN (θ0) =
√
N vec(KT (θ0)U1) (11)

where K is the left kernel of the left subspace U0
1 of H0

p,q
at the reference, and U1 the left subspace of Hankel matrix
Hp,q built on the current data. Let J (θ0) be the matrix of
partial derivatives of the vectorized residual with respect
to the vector of parameters (Mevel et al. [2005]) and Σ(θ0)
is the residual covariance matrix, which can be estimated
as an empirical sum (Basseville et al. [2000]). The matrices
Σ(θ0) and J (θ0) associated to the residual in (11) are
independent of the possibly time varying noise properties
(Döhler and Mevel [2011]). If Σ(θ0) is positive definite
and assuming θ as in (9), the central limit theorem (CLT)
insures that the residual ζN (θ0) in (11) is asymptotically
Gaussian distributed (Döhler and Mevel [2011]):

ζN (θ0) −→
N→∞

N (J (θ0)δθ,Σ(θ0)) (12)

which implies that the mean of ζN (θ0) converges to 0
only under H0 (i.e. δθ = 0). In other words, detecting
if the eigenstructure has changed from the reference is
equivalent to detecting a change in the mean of ζN (θ0).
In order to detect the direction of the change, a normal-
ized residual ζN (θ0) is introduced, such that: ζN (θ0) =
J T (θ0)Σ−1(θ0)ζN (θ0), which leads to the normal distri-
bution:

ζN (θ0) −→
N→∞

N (Σ(θ0)δθ,Σ(θ0)) (13)

where: Σ(θ0) = J T (θ0)Σ−1(θ0)J (θ0). This covariance
matrix is positive definite. Therefore, a positive (resp.
negative) change in the mean of the normalized residual
ζN (θ0) reflects a positive (resp. negative) change in δθ. A
recursive decision function, or residual, is introduced in
order to design an on-line monitoring algorithm:

Zk = J (θ0)
T

Σ(θ0)
−1
vec

(
KT (θ0)U1,k

)
(14)

where U1,k is the current left subspace of the Hankel ma-
trix at the k-th sample data yk, obtained by an update of
the SVD. Based on the recursive residual in (14) and con-
sidering that the Zk’s are independent Gaussian which de-
scribe themselves a change in θ by a change in their mean,
a commonly used CUSUM test (Basseville and Nikiforov
[1993]) is applied. In general, only the part Λ of θ changes
with respect to time. The eigenvectors are assumed to be
constant, considering the small displacement hypothesis
(SDH). Now, denote ρ as the norm of one of the eigenvalues
λ’s of F and notice that when one of the ρ’s increases
to 1, the system goes toward instability (Basseville and
Nikiforov [1993]). The CUSUM test described below allows
to detect an increase in any component of the parameter
by using as Jacobian matrix the corresponding submatrix
of J(θ0) : the sensitivity J(θ0) is replaced in (14) by the
column J(ρ0) corresponding to the sensitivity with respect

to ρ at ρ equal to ρ0: Sk(ρ0) = Σ(ρ0)
−1/2∑k

j=q Zj(ρ0),

Tk(ρ0) = minq≤j≤k Sj(ρ0) and gk(ρ0) = Sk(ρ0) − Tk(ρ0).
The two hypotheses H0,k and H1,k to decide between, at
each instant k, are now:{

H0,k : Egk(ρ0) ≈ 0
H1,k : Egk(ρ0) > ε

(15)

where ε is some empirically tuned threshold (Mevel et al.
[2005]) that allows to detect only the significant changes. If

this threshold is exceeded, the test reacts and the current
data are describing a new value for the parameter ρ > ρ0.
The test described above is applied to all the norms of the
eigenvalues (λi)i=1···n, and when a change is detected in
one of the ρi, the system is considered to be unstable.

3. SUBSPACE INSTABILITY MONITORING IN
LPTV CASE

Linear periodically time-varying systems are encountered
in many different fields. Some of the most relevant appli-
cations that involve periodic behaviors are rotor systems
such as helicopters and wind turbines, satellite control of
attitude or also in communications. This class of systems
is considered as an intermediate class bridging the time-
invariant case to the time-varying one. For the latter
class, the stability analysis is generally based on complex
algebraic-analytic tools (see Bourles and Bogdan [2011]
for details). Finding a criterion of stability is a crucial
step in subspace instability monitoring, because a residual
based on this criterion has to be built and then tracked
by the statistical test presented in the last section. It
seems difficult to get a simple criterion for time-varying
systems in general. Hopefully, there exist specific methods
for periodic systems that give relatively simple criteria
about stability. One of these methods is the modal analysis
using the transformation of Floquet, described hereafter.

3.1 Transformation of Floquet

Let consider the continuous LPTV system below, with a
period T :{

ẋ(t) = A(t)x(t) + w(t), A(t+ T ) = A(t),∀t ∈ R
y(t) = Cx(t) + v(t)

(16)

with x ∈ Rn the state vector, A ∈ Rn×n the state
matrix, y ∈ Rr the output vector and C ∈ Rr×n the
observation matrix. The vectors w and v are two additive
noises assumed to be white Gaussian. The idea of the
Floquet transformation is to replace this system by an
equivalent autonomous (i.e. the matrix of transition is no
more function of time) one.

Theorem 1. If A is continuous in time- or at least piecewise
continuous- and an initial condition x(t0) = x0 is fixed,
then a solution of ẋ(t) = A(t)x(t) is guaranteed to exist.
Let Φ(t) be the matrix whose n columns are n linearly
independent solutions, Φ(t) is known as the Fundamental

Transition Matrix (FTM) and Φ̇(t) = A(t)Φ(t), Φ(t +
T ) = Φ(t)Φ(T ).

Proof. see Dacunha and Davis [2009]

Corollary 2. (Floquet Transformation) The value of the
fundamental matrix at t = T is called the Monodromy
Matrix.

Q = Φ(T ) (17)

Let R = 1
T log(Q) and x(t) = Φ(t)e−Rtz(t). Then, the

first-order ordinary differential equation above can be
transformed into the equivalent equation:

ż(t) = Rz(t) (18)



The equation of observation for the new variable z is
y(t) = C

′
(t)z(t) where C

′
(t) = CΦ(t)e−Rt and C

′
(t +

T ) = CΦ(t + T )e−R(t+T ) = CΦ(t)Φ(T )e−RT e−Rt =

CΦ(t)e−Rt = C
′
(t). Therefore, any system that writes as

in (16) can be transformed into an equivalent autonomous
system with a periodic matrix of observation:{

ż(t) = Rz(t) +
(
Φ(t)e−Rt

)−1
w(t)

y(t) = C
′
(t)z(t) + v(t), C

′
(t+ T ) = C

′
(t),∀t

(19)

According to Floquet theory, the continuous system (19)
is stable if and only if the real parts of eigenvalues of R
are negative or, similarly, if the norms of the eigenvalues of
Q in (17) are inferior to one. Let consider the discretized
form of (19), at a sampling rate 1

τ (where T is assumed to
be a multiple of τ) (Ma and Iglesias [2002]):{

zk+1 = Fzk + Γkwk
yk = Hkzk + vk

(20)

The discretized monodromy matrix F = eRτ , the dis-
cretized matrix of observation Hk = C

′
(kτ) and Γk =∫ (k+1)τ

kτ
eRγdγ are periodic. The discrete period is Td = T

τ .

3.2 Residuals Generation

As outlined in Meyer and Burrus [1975], the data (yk) have
different varying dynamics in the periodic case. However,
the subsequences (yk0+iTd)i∈N and (zk0+iTd)i∈N are shown
to have time-invariant behaviors for any k0 ∈ N. A total
of Td different time-invariant subsequences exists. Let the
eigenstructure below be the parameter function of one of
these subsequences (denoted the j-th subsequence, with
j ∈ [[1, Td]]):

θ(j) =


Λ

vec(Φj)
vec(Φj+1)

...
vec(Φj+p)

 (21)

where Λ is the vector of the eigenvalues λi of F and
the mode shapes Φ are the observed eigenvectors of F ,
Φj = [Hjφ1, · · · , Hjφn] with Fφi = λiφi. The condition
in the discrete form is that the eigenvalues of F are in the
Nyquist circle. The Hankel matrices are built using the
time-invariant subsequences as described hereafter.

Lemma 3. For any j ≥ q and if (NTd + p) data samples

are available, the j-th Hankel matrix H(j)
p,q is defined as:

H(j)
p,q =

1

N

N−1∑
i=0

Y+
j+iTd

Y−Tj+iTd (22)

This matrix can be factorized as in (4) to the product:

H(j)
p,q = O(j)

p C(j)
q (23)

where O(j)
p is the observability matrix for the j-th subse-

quence, such that:

O(j)
p =

[
HT
j (Hj+1F )

T · · · (Hj+pF
p)
T
]T

(24)

Notice that unlike the LTI case, the observation matrix
Hj+i is varying with i = 1, · · · , p.

Proof. see Jhinaoui et al. [2012]

Fact 4. For notation simplicity, T is assumed to be a
multiple of τ . In general, this is not the case and the time-
invariant subsequences are the ensembles (yb jτ+iTτ c)i and

the data Y+
j+iTd

and Y−j+iTd are replaced by Y+

b jτ+iTτ c
and

Y−
b jτ+iTτ c

(where bc is the floor operator), in order to get

the sum for approximately the same subsequence.

The observability matrix can be obtained, similarly to
Section 2, from a thin singular value decomposition (SVD)

of the Hankel matrix H(j)
p,q:

H(j)
p,q =

[
U

(j)
1 U

(j)
2

] [
∆

(j)
1 0

0 ∆
(j)
2

][
(V

(j)
1 )

T

(V
(j)
2 )

T

]
(25)

O(j)
p = U

(j)
1 (∆

(j)
1 )1/2 (26)

Writing O(j)
p in the modal basis gives:

O(j)

p =
[

ΦTj (Φj+1D)
T · · · (Φj+pD

p)
T
]T
. T

=O(j)
p . T (27)

where diagonal matrix D is defined as D = diag(Λ), and
T is an invertible transformation. When p is large enough
(if the rank of the observability matrix is n), the j-th
subsequence of the periodic system (20) is described by

its observability matrix O(j)
p . For a full characterization at

a reference θ0 = (θ
(j)
0 )j=1,··· ,Td , the observability matrices

should be given for all the Td subsequences (y1+iTd)i,
(y2+iTd)i, (y3+iTd)i, · · · , (yTd+iTd)i. For each subsequence
(j)j=1···Td , the Hankel matrix is computed as in (22).

Then, a left kernel K(j) of the left subspace U
(j)
1 of H(j)

p,q

is deduced:

(K(j))
T
U

(j)
1 = 0, ∀j ∈ [[1, Td]] (28)

The Td equations in (28) are satisfied if current output

data describe well the reference parameters θ
(j)
0 . These

functions are the candidates to be the residuals that
compare current data to reference parameters. In the
periodic case, there are Td residuals, one for each of the
Td time-invariant subsequences. At an instant k, these
residuals write in recursive forms ∀j ∈ [[1, Td]], as in (14):

Z
(j)
k = (J (j)(θ

(j)
0 ))T (Σ(j)(θ

(j)
0 ))−1vec(K(j)TU

(j)
1,k) (29)

where K(j) is the left kernel at the reference θ
(j)
0 , U

(j)
1,k the

left subspace update of the Hankel matrix H(j)
p,q, when the

k-th data sample of the (j)-th subsequence is available,

and J (j)(θ
(j)
0 ) and Σ(j)(θ

(j)
0 ) are the residual’s sensitivity

and covariance matrices as in Döhler and Mevel [2011].

3.3 Parallel CUSUM Tests

Let ρ0 be the norm of one of the eigenvalues contained
in Λ. The goal herein is to decide whether the value of
ρ0 has increased. For each time-invariant subsequence, the
hypotheses to decide between at the time sample k are:



H
(j)
0,k : Eg

(j)
k (ρ0) ≈ 0

H
(j)
1,k : Eg

(j)
k (ρ0) > ε (30)

where ε is some predefined threshold that allows to detect
only the significant changes. The Td CUSUM tests to per-
form, corresponding to each time-invariant subsequence,
are:

S
(j)
k (ρ0) = Σ

(j)
(ρ0)−1/2

k∑
i=q

Z(j)
i (ρ0)

T
(j)
k (ρ0) = min

q≤i≤k
S

(j)
i (ρ0)

g
(j)
k (ρ0) = S

(j)
k (ρ0)− T (j)

k (ρ0) (31)

Z(j)
i (ρ0) is the recursive residual with respect to ρ0 and re-

placing, in (29), the sensitivity J (j)(θ
(j)
0 ) by the sensitivity

J (j)(ρ0). Notice that when the monitoring starts, no infor-
mation is available about the relation in time between the
identified reference and the current data. In other words, if
the monitoring starts at t = t0 (with t0 ≥ q) and (NTd+p)
data are available, it is not known to which kernel K(j)

the Hankel matrix H(t0)
p,q = 1

N

∑N−1
i=0 Y

+
t0+iTd

Y−Tt0+iTd
corre-

sponds, because the phase of identification and the phase
of monitoring may have not the same time origin. The
current data is synchronized with the reference parameter
kernel (denoted K(j∗)) as follows:

K(j∗) := argmin
j=1···Td

(
∥∥∥(K(j))TH(t0)

p,q

∥∥∥) (32)

To summarize the algorithm:

• using the identification algorithm described in Jhi-
naoui et al. [2012], a set of Td kernels K(j), cor-
responding to the Td time-invariant subsequences is

computed at a fixed reference θ0 = (θ
(j)
0 )j=1,··· ,Td

• the Jacobians and the covariances matrices are com-
puted (see Döhler and Mevel [2011])

• start the monitoring. If it starts at t = t0, the current
data are synchronized with the identified kernels
using (32)

• for t ≥ t0, the CUSUM tests are performed for each
subsequence, in parallel, as in (31)

• the instant time of change is defined as the instant
when one (or more) of the parallel CUSUM tests
exceeds some fixed threshold (Mevel et al. [2005])

Notice also, that for some complex systems, the mechanical
model is function of some internal parameters, such as
rotational velocity Ω for helicopters’ blades. In this case,
the system is periodic of period T = 2π

Ω . And then, the

period of the discrete system is Td = 2π
Ωτ . When Ω = Ω1,

the system is LPTV and there exist Td1 = 2π
Ω1τ

time-
invariant subsequences, and when Ω = Ω2 > Ω1, the
system is LPTV and there exist Td2 = 2π

Ω2τ
time-invariant

subsequences, with Td2 < Td1. As in the case reported in
Basseville et al. [2007] and assuming that the velocity is
slowly varying as step function, for two different velocities
Ω1 and Ω2, the Td2 subsequences (y1+iTd2), (y2+iTd2), · · · ,
(yTd2+iTd2) from Ω = Ω2 and (y1+iTd1), (y2+iTd1), · · · ,
(yTd2+iTd1) from Ω = Ω1 are considered as coming from the

same subsystem, whereas, the Td1−Td2 other subsequences
vanish when the velocity changes to Ω = Ω2.

4. ILLUSTRATIVE EXAMPLE

4.1 Helicopter Model

The proposed method is applied to simulation data of a
helicopter on the ground. The goal is to detect the ground
resonance before it occurs. Similar to that proposed in
Byers and Gandhi [2009], the present mechanical model
is developed to characterize the dynamic behavior of a
helicopter with a hinged rotor (see Fig. 1). The fuselage
is considered to be a rigid body with mass M . The body
is connected to springs (KbX ,KY ) and viscous dampers
(CX , CY ) which represent the flexibility and the damping
of the landing skid. The rotor head system, rotating at a
speed Ω, consists of an assembly of one rigid rotor hub with
Nb blades. Each blade is represented by a concentrated
mass m located at a distance b from the lag articulation
(point B) and, on each k-th articulation, a torsional spring
Kφk and viscous damper Cφk are present. The degrees of
freedom of the system are the two lateral displacements
of the fuselage x and y, and the lag angular motions φk
for each of the Nb blades. The equations of motion of this

Fig. 1. Helicopter’s mechanical model

system writes:

M(t)Ẍ(t) + C(t)Ẋ(t) +K(t)X(t) = 0 (33)

The mass, the damping and the stiffness matrices M,
C and K are periodic of period T = 2π

Ω and X =

[ x y φ1 φ2 · · · φNb ]
T

. Let X =
[
XT ẊT

]T
, then (33)

can be written in a state space form:

Ẋ (t) = A(t)X (t) (34)

Where the periodic state transition matrix writes:

A(t) =

[
0 I

−M−1(t)K(t) −M−1(t)C(t)

]
(35)

The equation of observation is y(t) = CX (t) where C =
[ 0 I ]. The numerical values used for simulation are those
reported in Byers and Gandhi [2009] and Nb = 4.

4.2 Simulation

Using Matlab, time series data are simulated from the
mechanical model above with a sampling rate 1

τ = 50Hz.
The scenario consists in simulating an angular velocity’s
acceleration from Ω0 = 3.1rad/s to Ωfinal = 4.5rad/s
(close to resonance) with a step of 0.1rad/s. For each value
of Ω, 1000 samples are simulated and the eigenvalues of F



in (20) are computed. The imaginary parts of these eigen-
values are negligible. Therefore, the real parts ρ1 · · · ρn,
which are positive, are close approximations of the norms
of these eigenvalues. The evolution of the ρi’s with respect
to airspeeds Ω is plotted in Fig. 2. The resonance onset
can be observed when one of the ρi’s exceeds 1. Notice
that the ρi’s vary very close to instability.

Fig. 2. Real parts ρ1 to ρ6 vs. angular velocity (N.B:
ρ1 ' ρ2)

4.3 Results

At the chosen reference corresponding to Ω0 = 3.1rad/s,
the system is identified on a large data set from the sub-
space identification algorithm described in Jhinaoui et al.
[2012]. The kernels, Jacobians and covariance matrices
of the Td0 = 102 time-invariant data subsequences are
computed at this reference (Döhler and Mevel [2011]). At
the beginning of the monitoring phase, the Hankel matrix
computed on current data is synchronized with respect
to its proper reference kernel (as given in (32)). This
synchronization is performed using (32) whose minimum
is plotted in Fig. 3. The x-axis represents the index of
the reference kernels, and the y-axis the value of the cost
in equation (32). It corresponds to the correct phase (as
defined by the simulation) at an index equal to 50. Once

Fig. 3. Cost function vs. indexes of reference kernels

the synchronization is done, the monitoring phase begins.
For each of the Td time-invariant subsequences, a CUSUM
test is started. The number of tests Td is decreasing with
respect to the angular velocity Ω which means that some
time-invariant subsequences have vanished. At Ωfinal, only
70 subsequences (then, 70 parallel tests) will remain. A
choice of ε = 1000 was taken based on the fluctuation of
the tests in the reference zone for Ω (Mevel et al. [2005]).
If one of the tests reacts (if some ρi’s have significantly
increased. Here it is ρ5 that increases), monitoring is
stopped. Two of these test evolutions are reported in Fig.
4. All tests have the same behavior and their reactions
to the increase in parameter value are clearly observed.
They all react and the earliest response corresponds to
Ω = 4.1rad/s, which is close to the zone of resonance.

Fig. 4. CUSUM test evolution over time

5. CONCLUSION

The problem of instability monitoring for linear period-
ically time-varying systems is addressed. The most chal-
lenging point is to define a simple criterion of stability
for these LPTV systems. This problem is solved using
the Floquet theory. Then, new instability monitoring tests
are developed, similarly to the time-invariant case. The
suggested method is successfully tested on simulation data
of a helicopter model. Current works are carried out to
apply the same method to real industrial applications.
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