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Abstract: In this paper, an extension of the output-only subspace identification, to the class
of linear periodically time-varying (LPTV) systems, is proposed. The goal is to identify a useful
information about the system’s stability using the Floquet theory which gives a necessary and
sufficient condition for stability analysis. This information is retrieved from a matrix called the
monodromy matrix, which is extracted by some simultaneous singular value decompositions
(SVD) and from a resolution of a least squares criterion. The method is, finally, illustrated by
a simulation of a model of a helicopter with a hinged-blades rotor.

Keywords: Helicopter dynamics, Time-varying systems, Periodic motions, Subspace methods,
Stability analysis

1. INTRODUCTION

Over the last forty decades, subspace identification meth-
ods have enjoyed some popularity and numerous applica-
tions of these methods have emerged in civil engineering,
aeronautics and many other fields. The stochastic subspace
identification (SSI) consists in obtaining the modal pa-
rameters (natural frequencies, modal damping ratios and
mode shapes) of a system subject to ambient excitations,
by some geometric manipulations and projections of data
given by sensors measurements or input measurements.
There exist, then, two types of identification algorithms:
output-only and input-output algorithms. A comprehen-
sive overview of different approaches of SSI can be found
in Van Overschee and De Moor [1996].

Unfortunately, most of research interest on subspace meth-
ods has been given to linear time-invariant (LTI) systems.
In contrast, the literature on linear time-varying (LTV)
case is not abundant. However, most physical phenomena
exhibit time varying behaviors, mainly due to internal (fa-
tigue...) or external (disturbances...) operating conditions.
One particular subclass of LTV systems is the linear pe-
riodically time varying (LPTV) systems which are widely
common in communications, circuit modeling and rotating
machines such as wind turbines and helicopters’ rotors.

In time-domain, the few works that have been carried out,
in order to extend the subspace-based methods to these
LPTV cases, can be categorized into two main approaches.
The first approach consists in identifying the considered
system recursively using adaptive algorithms which is ap-
propriate only for slowly-varying dynamics and when a
priori information about the variation behavior is avail-
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able, whereas, the second approach suggests to find a set
of output subsequences that have time-invariant behaviors.
This makes it possible to derive an identification algorithm
for these subsequences, which is close to the classical time-
invariant algorithm. Among the few attempts on the sub-
ject, one can cite Liu [1997] where a discrete time domain
state space model, transition matrices and pseudo-modal
parameters are used to describe and identify recursively
periodic systems, and Verhaegen and Yu [1995] in which
subspace model identification algorithms that allow the
identification of an LPTV state space model from a set of
input-output measurements are presented.

In this paper, the focus is to develop a new identification
algorithm for LPTV systems, with two main features:
first, the algorithm can be applied when the system is
subject to unknown excitations and only output data are
available. Second, it aims at identifying useful parameters
for stability analysis, by the Floquet theory, with no need
to identify the system over a whole period as it is usually
done in periodic cases.

The paper is organized as follows: in Section 2, a typical
SSI algorithm is presented. Section 3 gives the essential
elements of the Floquet theory. Then, Section 4 is devoted
to the design of the new LPTV extended method. Finally,
in Section 5 the efficiency of the method is tested on a
numerical simulation of a model of a helicopter with a
hinged-blades rotor.

2. TYPICAL OUTPUT-ONLY SUBSPACE
IDENTIFICATION

In this section, a typical output-only SSI algorithm, based
on covariance-driven data, from Benveniste and Fuchs
[1985] is recalled. Let consider the LTI discrete-time state
space model of a given system:



{
zk+1 = F zk + vk
yk = H xk + wk

(1)

where x ∈ Rn is the state vector, y ∈ Rr the output vector
or the observation, F ∈ Rn×n the state transition matrix
and H ∈ Rr×n the observation matrix. The vectors v and
w are noises assumed to be white Gaussian.
For chosen parameters p and q such that min{pr, qr} ≥ n,
the covariance-driven Hankel matrix below is built:

Hp,q =


R1 R2 · · · Rq
R2 R3 · · · Rq+1

...
...

...
...

Rp+1 Rp+2 · · · Rp+q

 (2)

The covariances of the output data write Ri = E(yky
T
k−i),

where E is the expectation operator. The Ri’s can be

estimated by R̂i = 1
N

∑N
k=i+1 yky

T
k−i, where N is the

number of output measurements that are available (N �
1). Then, let the estimated Hankel matrix be:

Ĥp,q =
1

N

N−p∑
k=q

Yk+Yk−T (3)

where:

Yk+ =
[
yTk · · · yTk+p

]T
, Yk− =

[
yTk−1 · · · yTk−q

]T
(4)

Let G = E(zky
T
k ) be the correlation between the state and

the observation, Op=̂
[
HT , (HF )T , · · · , (HF p)T

]T
and

Cq=̂
[
FG, F 2G, · · · , F qG

]
the p-th order observability

matrix and the q-th order (shifted) controllability matrix.
The computation of the Ri’s leads to the decomposition
(see Benveniste and Fuchs [1985]):

Hp,q = OpCq (5)

Therefore, the observability matrix Op can be obtained
with a thin singular value decomposition (SVD) of the
Hankel matrixHp,q and its truncation at the desired model
order n (Basseville et al. [2000]):

Hp,q = U∆V T = [U1 U2 ]

[
∆1 0
0 ∆2

] [
V1
T

V2
T

]
(6)

Op = U1∆1
1
2 (7)

where ∆1 contains the first n singular values and U1 the n
first columns of U . The observation matrix H is extracted
from the first r rows of the observability matrix Op. The
state transition matrix F is obtained from a least squares
resolution of (Benveniste and Fuchs [1985]):

O↑pF = O↓p (8)

where:

O↑p =


H
HF

...
HF p−1

 , O↓p =


HF
HF 2

...
HF p

 (9)

Finally, the eigenstructure of the system (1) is retrieved
from:

det(F − Iλ) = 0, Fφλ = λφλ (10)

(λ, φλ) denote the eigenvalues and the eigenvectors (also,
called mode shapes) of the system.

3. FLOQUET THEORY

The Floquet theory is a mathematical theory of ordi-
nary differential equations (ODEs). Introduced by Floquet
[1883], it is the first complete theory for the class of peri-
odically time-varying systems. In this section, some of its
essential elements, that are related to the study hereafter,
are briefly reviewed. More details can be found in Dacunha
and Davis [2011].

Let consider the periodic differential system:

ẋ(t) = A(t)x(t) (11)

where x ∈ Rn is the state vector. The state transition
matrix A ∈ Rn×n is continuous in time (or at least,
piecewise continuous) and periodic, of period T > 0. If
an initial condition x(t0) = x0 is fixed, a solution of (11)
is guaranteed to exist.
Let Φ(t) be the matrix whose n columns are n linearly
independent solutions of (11), Φ(t) is known as the Fun-
damental Transition Matrix (FTM). It has the properties:

Φ̇(t) = A(t)Φ(t), Φ(t+ T ) = Φ(t)Φ(T ),∀t

3.1 Stability Analysis

Let Q be the value of the fundamental matrix at t = T :

Q = Φ(T ), R =
1

T
log(Q) (12)

Q is called the Monodromy Matrix . According to Floquet’s
theory, the dynamical system (11) is stable if and only if
the eigenvalues of R are negative or, similarly, if the norms
of the eigenvalues of Q are less than one.

3.2 Floquet Transformation

The Floquet transformation, also called the Lyapunov-
Floquet transformation, gives an underlying autonomous
system (a system with a constant state transition matrix
with respect to time) that is equivalent to the initial
periodic system i.e: the transformation is invertible.
If the change of variable x(t) = Φ(t)e−Rtz(t) is made, the
theory insures that:

ż(t) = Rz(t) (13)

Assume that the equation of observation of the considered
system is: y(t) = Cx(t), where C ∈ Rr×n. The equivalent
equation for the new variable z is:

ẏ(t) = Cx(t) = CΦ(t)e−Rtz(t) (14)

It is easy to demonstrate that Φ(t + T )e−R(t+T ) =
Φ(t)e−Rt using the fact that R = 1

T log(Φ(T )). Therefore,
any periodic system can be transformed into an equivalent
autonomous system with an equivalent periodic observa-
tion matrix.



4. SUBSPACE IDENTIFICATION FOR LPTV

In this section, an extension of SSI to the linear peri-
odically time-varying case is suggested. Let consider the
periodic state-space system, of a period T :{

ẋ(t) = A(t)x(t) + v(t), A(t+ T ) = A(t),∀t ∈ R
y(t) = Cx(t) + w(t)

(15)

where v and w are two white noises. As outlined in
Section 3, an equivalent representation can be given by
the Floquet’s transformation:{

ż(t) = Rz(t) +
(
Φ(t)e−Rt

)−1
v(t)

y(t) = C
′
(t)z(t) + w(t), C

′
(t+ T ) = C

′
(t),∀t

(16)

where C
′
(t) = CΦ(t)e−Rt is periodic of period T . Sam-

pling at rate 1
τ (τ > 0 and T assumed to be a multiple

of τ), yields the discrete time model below (Kim et al.
[2006]): {

zk+1 = Fzk + Γkwk
yk = Hkzk + vk

(17)

The discretized monodromy matrix F = eRτ , the dis-
cretized matrix of observation Hk = C

′
(kτ) and Γk =∫ (k+1)τ

kτ
eRγdγ are periodic. The discrete period is Td = T

τ .
If µ is an eigenvalue of the continuous system R, the
corresponding eigenvalue λ of F is such that: λ = eτµ.
According to the theory of Floquet, the continuous system
is stable when all the eigenvalues µ of R are negative.
The discrete system is, then, stable when the norms of
the eigenvalues λ are inferior to one. The goal herein is to
identify these eigenvalues and, thus, to draw conclusions
about the stability.

Following the lines of Meyer and Burrus [1975], a set
of time-invariant data subsequences exists in the case of
LPTV systems. It means that if a system is periodic of
period Td, the ensembles (zk0+iTd)i∈N and (yk0+iTd)i∈N
are time-invariant series for any k0 ∈ N. A total of Td
different time-invariant subsequences exists. One of these
subsequences (denoted the j-th subsequence) is illustrated
in Fig. 1. The Hankel matrix can not be computed as in the

Fig. 1. The j-th time-invariant subsequence

time-invariant case, because each subsequence describes a
different dynamical behavior from the others. The Hankel
matrix should be redefined using each one of these time-
invariant subsequences, separately. For any j ≥ q and if
(NTd + p) data samples are available, the j-th Hankel

matrix H(j)
p,q is defined as:

H(j)
p,q =

1

N

N−1∑
i=0

Y+
j+iTd

Y−Tj+iTd (18)

Fact 1. Notice that T is assumed to be a multiple of
τ . Otherwise, the time-invariant subsequences are the
ensembles (yb jτ+iTτ c)i and the data Y+

j+iTd
and Y−j+iTd are

replaced by Y+

b jτ+iTτ c
and Y−

b jτ+iTτ c
(where bc is the floor

operator), in order to get the sum for approximately the
same subsequence.

Proposition 2. From the periodicity of the observation
matrix H, i.e. Hj+iTd = Hj for all non negative integer i,
one deduce the following property for the Hankel matrix:

H(j)
p,q =


Hj

Hj+1F
...

Hj+pF
p


[

1

N
F

N−1∑
i=0

zj−1+iTdy
T
j−1+iTd

· · · 1

N
F q

N−1∑
i=0

zj−q+iTdy
T
j−q+iTd

]
+ εN

(19)

where εN is a function converging to zero when N goes to
infinity.

Proof. See the appendix.

Corollary 3. As in the time-invariant case, the Hankel

matrix H(j)
p,q converges to the decomposition below:

H(j)
p,q = O(j)

p C(j)
q (20)

The j-th observability and (shifted) controllability matri-
ces are defined as:

O(j)
p =

[
HT
j , (Hj+1F )T , · · · , (Hj+pF

p)T
]T

(21)

C(j)
q =

[
FG(j−1), F 2G(j−2), · · · , F qG(j−q) ] (22)

where G(j) is the state-output cross correlation of the j-
th invariant subsequence. It can be estimated by G(j) =
1
N

∑N−1
i=0 zj+iTdy

T
j+iTd

. The observability matrix O(j)
p can

be obtained as in Section 2 via an SVD of H(j)
p,q and its

truncation at the desired model order n:

H(j)
p,q =U (j)∆(j)(V (j))T

=
[
U

(j)
1 U

(j)
2

] [
∆

(j)
1 0

0 ∆
(j)
2

]
(V (j))T (23)

where U
(j)
1 is the n first columns of U (j), and ∆

(j)
1 the

n upper singular values of ∆(j). The size of the Hankel
matrix is (p + 1)r × qr. The complexity of the SVD does
not depend on N and therefore, the computation is not
cumbersome. The observation matrix Hj is obtained from

the first r rows of O(j)
p . Notice that the extraction of

the transition matrix from one observability matrix is no
longer possible. Indeed, in order to get F , two successive
matrices of Hankel should be computed. For the (j+1)-th

time-invariant subsequence, H(j+1)
p,q writes:

H(j+1)
p,q =


Hj+1

Hj+2F
...

Hj+p+1F
p

[FG(j) · · ·

· · · F qG(j+1−q)
]



Differently from Section 2, the transition matrix F is a
least squares solution of an equation involving two different
observability matrices:

O↑p
(j+1)

F = O↓p
(j)

(24)

where:

O↓p
(j)

=


Hj+1F
Hj+2F

2

...
Hj+pF

p

 ,O↑p(k+1)
=


Hj+1

Hj+2F
...

Hj+p+1F
p−1


Both O(j)

p and O(j+1)
p should be expressed in the same

basis of the state space system. In fact, the left part of
the singular value decomposition gives the observability
matrix up to some invertible (change of basis) matrix.
For instance, in the time-invariant case, the estimated

observability matrix Õp = U1∆1
1
2 = OpT , where T

is a non-singular transformation. In the case of time-
varying systems, two successive SVD are needed. The
corresponding invertible matrices T (j) and T (j+1) will be
different:

Õ(j)
p = U

(j)
1 (∆

(j)
1 )1/2 = O(j)

p T (j) (25)

Õ(j+1)
p = U

(j+1)
1 (∆

(j+1)
1 )1/2 = O(j+1)

p T (j+1) (26)

where none of the matrices T (j) or T (j+1) is known. The
least squares resolution will results in:

F̃ = (Õ↑(j+1)
p )†Õ↓(j)p

= (T (j+1))−1(O↑(j+1)
p )†O↓(j)p T (j) (27)

where the symbol † denotes the Moore-Penrose pseudo-
inverse. The left and the right bases of the identified
transition matrix are not the same. A solution for this
problem is given in Liu [1997]:

Let L(j) and L(j+1) the first l (l ≥ bnr c+ 1) block rows of

Õ(j)
p and Õ(j+1)

p . For l = 2, and without loss of generality:

L(j) =

[
Hj

Hj+1F

]
T (j) (28)

L(j+1) =

[
Hj+1

Hj+2F

]
T (j+1) (29)

The 3 successive observations matrices can be considered
as close: Hj+2 ' Hj+1 ' Hj . Therefore:

(L(j))†L(j+1) = (T (j))−1

([
Hj

Hj+1F

])† [
Hj+1

Hj+2F

]
T (j+1)

' (T (j))−1T (j+1) (30)

The number of block rows l is chosen such that L(j) is full
rank. Finally, an approximate of the state transition ma-
trix, with the same left and right transformation, writes:

F = (L(j))†L(j+1)F̃

' (T (j))−1(O↑(j+1)
p )†O↓(j)p T (j) (31)

Once F and Hj are computed, the modal structure of the
system (17) are obtained from the resolution of det(F −
Iλ) = 0, Fφλ = λφλ and ϕλ = Hkφλ.

Algorithm: To sum up, here are the steps of the suggested
LPTV identification method:

• (NTd + p + 1) output-measurements are available.
The data are set in ensembles of time-invariant series
(yj+iTd)

• compute, for the j-th and the (j+1)-th subsequences,

the two successive Hankel matrices H(j)
p,q and H(j+1)

p,q

using the formula (18)

• compute the SVD’s ofH(j)
p,q andH(j+1)

p,q . Then, retrieve

Õ(j)
p and Õ(j+1)

p as in (25) and (26)
• compute the discrete transition (monodromy) matrix
F , using (31) and (30)

• given F and Hj , compute the eigenstructure of the
system (eigenvalues, observed eigenvectors)

5. ILLUSTRATIVE EXAMPLE

In this section, two illustrative examples are studied in
order to test the suggested identification algorithm.

5.1 Simulation Model

The studied system herein is a model of a helicopter
with a hinged-blades rotor. The system is modeled as in
Coleman and Feingold [1958] and Sanches et al. [2011].
The helicopter’s fuselage is considered to be a rigid body
with mass M , attached to a flexible LG (landing gear)
which is modeled by two springs Kbx and Kby, and two
viscous dampers Cx and Cy as illustrated in Fig. 2. The

Fig. 2. Mechanical model of a helicopter with 4 blades

rotor spinning with a velocity Ω, is articulated and the
offset between the MR (main rotor) and each articulation
is noted a. The blades are modeled by a concentrated
mass m at a distance b of the articulation point. Torque
stiffness and a viscous damping Kφ and Cφ are present
into each articulation. The moment of inertia around the
articulation point is Iz. The degrees of freedom are the
lateral displacements of the fuselage x and y, and the
out-of-phase angles (φk)k=1···Nb , with Nb the number of

blades. Let Z = [ x y φ1 · · · φNb ]
T

. A linear model for
such rotating systems under free vibrations is defined by
(see Christensen and Santos [2005]):

M(t)Z̈(t) + C(t)Ż(t) +K(t)Z(t) = 0 (32)



whereM(t), C(t) and K(t) are the system’s mass, damping
and stiffness matrices. The system can be written as in

(15), with x =
[
ZT ŻT

]T
and

A(t) =

[
0 I

−M(t)
−1K(t) −M(t)

−1D(t)

]
A(t) = A(t+ 2π

Ω ). It is periodic of period T = 2π
Ω . For the

study herein, the number of blades is fixed to Nb = 4 and
the numerical values used for the application are reported
in Table 1.

Table 1. Structural properties for hinged-
blades helicopter with 4 blades

Structural variable name Numerical value (SI)

m 31.9Kg
M 2902.9Kg
Kφ 200N/m
Kbx 3200N/m
Kby 3200N/m

Cφ 15Ns/m
Cx 300Ns/m
Cy 300Ns/m
a 0.2m
b 2.5m
Iz 259Kg/m2

The helicopter model is simulated for Ω = 10 rad.s−1. To
get precise results, the subspace identification should be
processed on very large dataset, in order to overcome the
problem of bias due to the noise. Data points are generated
over a samples number of 2000.Td, with the discrete period
Td = 100 (the sampling period is τ = T/Td). The order of
the system is known and is equal to n = 12. The suggested
identification algorithm is applied to the data as explained
in Section 4 (with chosen q = p+1 = 11). The summary of
the identified eigenvalues, and the true values (the true val-
ues are computed from a numerical resolution of the state
equation of the system and the corresponding monodromy
matrix, using the Matlab function for ordinary differential
equation’s resolution ode45), are given in Table 2.

Table 2. Identified eigenvalues vs. true ones

Identified eigenvalues True eigenvalues

0.9985 ± 0.0225i 0.9987 ± 0.0218i
0.9988 ± 0.0196i 0.9988 ± 0.0198i
0.9988 ± 0.0138i 0.9995 ± 0.0132i
0.9998 ± 0.0151i 0.9996 ± 0.0150i
0.9992 ± 0.0149i 0.9996 ± 0.0150i
0.9995 ± 0.0142i 0.9995 ± 0.0141i

We get 12 eigenvalues that are conjugate. The differences
between the obtained real parts and the true ones are less
than 0.1 %. For the imaginary parts, the errors are greater.
The identification goes more accurate when the number of
data samples is larger.

The SSI algorithm presented in Section 2 (from equation
(3) to (10)), is also applied in order to compare it to
the new suggested method. A total of 12 non conjugate
modes are identified (see Table 3). Some of the identified
eigenvalues have negative real parts. For a discrete system
these real parts must be positive, because the discrete
state transition matrix is an exponential of the continuous
one. Therefore, applying the time-invariant SSI algorithm
gives irrelevant results. This was predictable because a LTI

algorithm is applied to a set of subsequences that have
different dynamical behaviors.

Table 3. Real parts of the identified eigenvalues
using typical SSI

0.8644 0.8644 -0.1108 -0.1108 -0.1948 0.0383

0.0383 0.2527 0.2527 -0.0698 0.1752 0.0981

Finally, the suggested algorithm in Section (4) is applied
to the case where Ω = 0.1 rad.s−1 in order to compare
the identified eigenvalues to the true eigenvalues of the
system when the rotor is turned off (Ω = 0). In fact,
when Ω = 0, the state matrix is no longer time-dependent
A(t) = A. Therefore, the Fundamental Transition Matrix
is equal to Φ(t) = eAt and R = A. If the rotation velocity
Ω = 0.1 rad.s−1, the identified eigenvalues should then be
close to the ones of eAτ corresponding to the discrete state
transition matrix for Ω = 0.
The helicopter model is simulated for Ω = 0.1 rad.s−1.
Data points are generated over a samples number of
2000.Td, with the discrete period Td = 200. The results
of the identification are reported in Table 4.

Table 4. Identified eigenvalues at Ω =
0.1 rad.s−1 vs. True eigenvalues at Ω = 0

Identified eigenvalues True eigenvalues
for Ω = 0.1 for Ω = 0

0.5374 ± i0.7769 0.552 ± i0.7663
0.5428 ± i0.7654 0.552 ± i0.7663
0.8798 ± i0.4441 0.879 ± i0.4468
0.8766 ± i0.4469 0.879 ± i0.4468
0.8770 ± i0.4507 0.8786 ± i0.4474
0.8759 ± i0.4489 0.8786 ± i0.4474

The identified eigenvalues for Ω = 0.1 rad.s−1 are, indeed,
close to the true ones when the rotor is turned off. When
Ω converges to 0, the results of the identification in the
periodic case converges to the true time-invariant system.

Another feature of interest is to show that the identified
state transition matrix is, indeed, invariant with respect
to time. To verify it, the system is identified at different
instants of time. The variations of the real parts and the
imaginary parts of the identified eigenvalues with respect
to time are reported in Fig. 3 and Fig. 4. These values are,
as shown in the figure, constant over time. Therefore, the
identified state transition matrix is constant as stated in
(17).

Fig. 3. Eigenvalues variations: real parts of the eigenvalues
vs. sample number



Fig. 4. Eigenvalues variations: imaginary parts of the
eigenvalues vs. sample number

6. CONCLUSION

The problem of identification for linear periodically time-
varying is addressed. It has been shown that, in order to
get an information about the stability of such systems,
a so-called monodromy matrix should be identified. This
matrix is derived from the Floquet transformation which
gives an equivalent description of periodic systems. Based
on this description, an extension of the covariance-driven
SSI algorithm is suggested. The algorithm was successfully
tested for simulation data.

Future works encompasses the estimation of the uncer-
tainties about the identified parameters for the suggested
identification algorithm, given herein.
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Appendix A. PROOF OF PROPOSITION 2

The elements of the Hankel matrix in (18) are products
between lagged outputs yk+j and yk−l. These products
write:

yk+jy
T
k−l =Hk+jF

j+lzk−ly
T
k−l

+Hk+jF
j+l−1Γk−l+1wk−l+1y

T
k−l

+Hk+jF
j+l−2Γk−l+2wk−l+2y

T
k−l

+ · · ·
+Hk+jFΓk+j−1wk+j−1y

T
k−l

+Hk+jΓk+jwk+jy
T
k−l

+ vk+jy
T
k−l (A.1)

The observation and the control matrices are periodic.
Then Hk+iTd = Hk and Γk+iTd = Γk ∀i > 0. Now, let
compute the sum:

N−1∑
i=0

yk+j+iTdy
T
k−l+iTd = Hk+jF

j+l
N−1∑
i=0

zk−l+iTdy
T
k−l+iTd

+Hk+jF
j+l−1Γk−l+1

N−1∑
i=0

wk−l+1+iTdy
T
k−l+iTd

+ · · ·

+Hk+jFΓk+j−1

N−1∑
i=0

wk+j−1+iTdy
T
k−l+iTd

+Hk+jΓk+j

N−1∑
i=0

wk+j+iTdy
T
k−l+iTd

+

N−1∑
i=0

vk+j+iTdy
T
k−l+iTd (A.2)

Dividing by N , leads to:

• Hk+jF
j+l 1

N

∑N−1
i=0 zk−l+iTdy

T
k−l+iTd converges to

Hk+jF
j+lG(k−l) when N goes large, where G(k−l) is

the correlation between the (k − l)-th time-invariant
subsequences of the state vector and the output
vector
• Hk+jF

j+l−1Γk−l+1
1
N

∑N−1
i=0 wk−l+1+iTdy

T
k−l+iTd con-

verges to 0 when N goes large, because w is a white
noise which is uncorrelated of any time-invariant sub-
sequence of the output, idem for

Hk+jF
j+l−2Γk−l+2

1
N

∑N−1
i=0 wk−l+2+iTdy

T
k−l+iTd , · · · ,

Hk+jFΓk+j−1
1
N

∑N−1
i=0 wk+j−1+iTdy

T
k−l+iTd and

Hk+jΓk+j
1
N

∑N−1
i=0 wk+j+iTdy

T
k−l+iTd

• 1
N

∑N−1
i=0 vk+j+iTdy

T
k−l+iTd converges to 0 too (unless

when j = l = 0, which is not the case herein), for the
same reason of uncorrelation


