S. Chiaverini, Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators, IEEE Transactions on Robotics and Automation, vol.13, issue.3, pp.398-410, 1997.
DOI : 10.1109/70.585902

B. Siciliano and J. E. Slotine, The general framework for managing multiple tasks in high redundant robotic systems, International Conference on Advanced Robotics, pp.1211-1216, 1991.

O. Kanoun, F. Lamiraux, and P. Wieber, Kinematic Control of Redundant Manipulators: Generalizing the Task-Priority Framework to Inequality Task, IEEE Transactions on Robotics, vol.27, issue.4, pp.785-792, 2011.
DOI : 10.1109/TRO.2011.2142450

URL : https://hal.archives-ouvertes.fr/hal-00486755

A. Escande, N. Mansard, and P. Wieber, Hierarchical quadratic programming: Fast online humanoid-robot motion generation, The International Journal of Robotics Research, vol.3, issue.1, pp.1006-1028, 2014.
DOI : 10.1109/TRO.2011.2173852

URL : https://hal.archives-ouvertes.fr/hal-00751924

D. Dimitrov, A. Sherikov, and P. Wieber, Efficient resolution of potentially conflicting linear constraints in robotics Available: https, 2015.

Y. Nakamura and H. Hanafusa, Inverse Kinematic Solutions With Singularity Robustness for Robot Manipulator Control, Journal of Dynamic Systems, Measurement, and Control, vol.108, issue.3, pp.163-171, 1986.
DOI : 10.1115/1.3143764

A. A. Maciejewski and C. A. Klein, Numerical filtering for the operation of robotic manipulators through kinematically singular configurations, Journal of Robotic Systems, vol.279, issue.6, pp.527-552, 1988.
DOI : 10.1007/3540070729_26

URL : https://dspace.library.colostate.edu/bitstream/10217/67337/1/ECEaam00004.pdf

S. R. Buss and J. Kim, Selectively Damped Least Squares for Inverse Kinematics, Journal of Graphics Tools, vol.10, issue.3, pp.37-49, 1080.
DOI : 10.1080/2151237X.2005.10129202

URL : http://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/SdlsPaper.ps

W. Wolovich and H. Elliott, A computational technique for inverse kinematics, The 23rd IEEE Conference on Decision and Control, pp.1359-1363, 1984.
DOI : 10.1109/CDC.1984.272258

A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal et al., Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid, Autonomous Robots, vol.2, issue.3, pp.473-491, 2016.
DOI : 10.1007/978-3-540-36119-0_20

URL : http://arxiv.org/pdf/1410.7284

A. S. Deo and I. D. Walker, Adaptive non-linear least squares for inverse kinematics, [1993] Proceedings IEEE International Conference on Robotics and Automation, pp.186-193, 1993.
DOI : 10.1109/ROBOT.1993.291981

P. Wieber, A. Escande, D. Dimitrov, and A. Sherikov, Geometric and Numerical Aspects of Redundancy, Geometric and Numerical Foundations of Movements, 2017. [Online]. Available
DOI : 10.1137/S1052623403422637

URL : https://hal.archives-ouvertes.fr/hal-01418462

J. Nocedal and S. J. Wright, Numerical Optimization, 2006.
DOI : 10.1007/b98874

J. E. Dennis, J. , D. M. Gay, and R. E. Walsh, An Adaptive Nonlinear Least-Squares Algorithm, ACM Transactions on Mathematical Software, vol.7, issue.3, pp.348-368, 1981.
DOI : 10.1145/355958.355965

URL : http://ecommons.cornell.edu/bitstream/1813/7442/1/77-321.pdf

P. L. Toint, On Large Scale Nonlinear Least Squares Calculations, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.3, p.5, 1987.
DOI : 10.1137/0908042

C. G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations, IMA Journal of Applied Mathematics, vol.6, issue.1, pp.76-90, 1970.
DOI : 10.1093/imamat/6.1.76

J. Zhao and N. I. Badler, Inverse kinematics positioning using nonlinear programming for highly articulated figures, ACM Transactions on Graphics, vol.13, issue.4, pp.313-336, 1994.
DOI : 10.1145/195826.195827

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1236&context=hms

T. Sugihara, Solvability-Unconcerned Inverse Kinematics by the Levenberg???Marquardt Method, IEEE Transactions on Robotics, vol.27, issue.5, pp.984-991, 2011.
DOI : 10.1109/TRO.2011.2148230

J. R. Bunch, L. Kaufman, and B. N. Parlett, Decomposition of a symmetric matrix, Numerische Mathematik, vol.10, issue.1, pp.95-109, 1976.
DOI : 10.1007/BF01399088

J. J. Moré and D. C. Sorensen, On the use of directions of negative curvature in a modified newton method, Mathematical Programming, pp.1-20, 1979.

R. Fletcher, A New Low Rank Quasi-Newton Update Scheme for Nonlinear Programming, IFIP TC7 Conference, pp.275-293, 2006.
DOI : 10.1007/0-387-33006-2_25

URL : https://link.springer.com/content/pdf/10.1007%2F0-387-33006-2_25.pdf