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Rational Optimization for Nonlinear Reconstruction

with Approximate ℓ0 Penalization
Marc Castella, Member, IEEE, Jean-Christophe Pesquet, Fellow, IEEE, and Arthur Marmin

Abstract—Recovering nonlinearly degraded signal in the pres-
ence of noise is a challenging problem. In this work, this problem
is tackled by minimizing the sum of a non convex least-squares
fit criterion and a penalty term. We assume that the nonlinearity
of the model can be accounted for by a rational function. In
addition, we suppose that the signal to be sought is sparse and
a rational approximation of the ℓ0 pseudo-norm thus constitutes
a suitable penalization. The resulting composite cost function
belongs to the broad class of semi-algebraic functions. To find
a globally optimal solution to such an optimization problem,
it can be transformed into a generalized moment problem, for
which a hierarchy of semidefinite programming relaxations can

be built. Global optimality comes at the expense of an increased
dimension and, to overcome computational limitations concerning
the number of involved variables, the structure of the problem has
to be carefully addressed. A situation of practical interest is when
the nonlinear model consists of a convolutive transform followed
by a componentwise nonlinear rational saturation. We then
propose to use a sparse relaxation able to deal with up to several
hundreds of optimized variables. In contrast with the naive
approach consisting of linearizing the model, our experiments
show that the proposed approach offers good performance.

Index Terms—signal reconstruction, sparse signal, nonlinear
model, polynomial optimization, semi-definite programming.

I. INTRODUCTION

O
VER the last decade, there has been much progress

made in the area of sparse signal recovery. The results

and techniques have spread over a wide range of signal

processing applications such as denoising, source separation,

image restoration, or image reconstruction. Attention has

been however mostly focused on linear observation models,

for which many efforts have been dedicated to solving the

associated inverse problems. In the basic setup, a vector of

observations d is available, which is obtained from a ground-

truth signal x by a linear transformation H. It is known that

an exact reconstruction of x is possible even when the size

of the latter is greater than the number of observations, a fact

popularized by the celebrated compressed sensing theory [1]

which exploits the structure (i.e. sparsity) of x.

Unfortunately, the linear assumption on the observation

model is often quite inaccurate. For a long time and in

many signal processing applications, attempts have been made

in order to deal with more general nonlinear models. For
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example, one can mention the pioneering works undertaken

with Volterra models [2], which may be useful in some

application areas [3]. More recently, the work in [4] has explic-

itly taken into account a nonlinearity, but the reconstruction

results hold under restrictive assumptions. Similarly, for many

real acquisition devices, the actual degradation model is not

linear as some nonlinear saturation effects often arise. This

situation is closely related to 1-bit compressed sensing [5] and

classification problems. Such nonlinearly distorted convolution

models may also be encountered in blind source separation [6]

and neural networks [7]. A simplified model resulting from a

linearization procedure can then be adopted in order to make

the associated mathematical problem tractable. For example,

standard tools in signal processing such as the Wiener filter are

effective mostly in a linear framework. More specifically, well-

known sparse recovery techniques such as LASSO have been

used in a nonlinear context by overlooking the nonlinearity.

Some results have been obtained in this context [8], [9], [10],

but methods explicitly taking into account the nonlinearity are

likely to provide better results and are crucially lacking. This

paper aims at providing such a method in this still unexplored

area.

A popular approach in many reconstruction problems con-

sists in minimizing the sum of a data fidelity term and a

regularization term incorporating prior information such as

sparsity. In this case, convex potentials related to the ℓ1
norm are often employed as surrogates to the natural sparsity

measure, which is the ℓ0 pseudo-norm (count of the number of

nonzero components in the signal). Although some theoretical

works have promoted the use of the ℓ1 norm [1], its optimality

can only been established under some restrictive assumptions.

In turn, cost functions involving the ℓ0 pseudo-norm lead

to NP-hard problems for which reaching a global minimum

cannot be guaranteed in general [11], [12], [13]. Smooth

approximations of the ℓ0 pseudo-norm may appear to provide

good alternative solutions [14], [15], [16], [17]. Among the

class of possible smoothed ℓ0 functions, the Geman-McClure

ℓ2−ℓ0 potential was observed to give good results in a number

of applications [14], [15], [16]. Yet, in the recent works [18],

[19], [20], [17], promising results have been obtained with a

non differentiable function.

Concerning the minimization of the penalized criterion,

many efforts have been undertaken to derive efficient algo-

rithms able to deal with a large number of variables, while

ensuring convergence to a global minimizer [21], [22], [23].

Many of the available techniques assume that the observation

model is linear and that the noise has a log-concave likelihood.

Then, both the penalty and the data fit terms are convex and
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many optimization techniques may be used. In a more difficult

scenario, a quadratic tangent function can be derived, which

makes efficient majorization-minimization (MM) strategies

usable for optimizing certain penalized criteria (see [24] for

more details). However, for most of the existing optimization

algorithms (e.g. those based on Majorize-Minimize strategies),

only convergence to a local minimum can be expected and

algorithms can get trapped by undesirable local minima due

to the nonconvexity of the criterion. In our context, none of the

two terms of the criterion is convex because of the nonlinear

observation model and because of the chosen approximation

of the ℓ0 pseudo-norm. Developing methods with global

convergence properties is therefore a crucial issue, which we

address in this paper.

An approach recently proposed in the optimization commu-

nity [25], [26], [27], [28] provides theoretical guarantees of

global optimality when only polynomial or rational functions

are involved. The minimization problem is recast as a problem

of moments, for which a hierarchy of semidefinite positive

programming (SDP) relaxations asymptotically provides an

exact solution. This approach is often referred to as the

Lasserre hierarchy [25] and its major advantage is a guaranteed

convergence to the global minimum of the original problem,

which can be accessed by solving successive SDP problems.

Alternatively, the problem of global polynomial or rational

minimization can be tackled from the standpoint of sum of

squares (SOS) hierarchy [26], [28], [29]: both approaches are

linked by duality. One advantage of the moment approach is

the possibility, under some conditions, to extract the optimal

point.

We investigate here the potential offered by these rational

optimization methods for sparse signal recovery from nonlin-

early degraded observations. In the present state of research,

the Lasserre/SOS hierarchies are restricted to small to medium

size problems. In signal processing, one of the main difficulties

we face is the large number of variables which have to be

optimized. A stochastic block-coordinate method has been

proposed as a first solution in one of our previous works [18]:

despite interesting experimental results, global optimality is

lost in this case.

In this work, we propose a novel approach for restoring

sparse signals degraded by a nonlinear model. More precisely,

our contributions in this paper are threefold.

• First, the proposed approach is able to deal with degra-

dation models consisting of a convolution followed by

a pointwise transform. The latter appears as a rational

fraction of the absolute value of its input argument. The

formulation of the problem as a nonconvex optimization

also allows the use of a Geman-McClure like regulariza-

tion term.

• Although SDP relaxations of optimization problems are

popular in signal processing [30], they usually lead to

suboptimal solutions. Our second contribution is to make

use of asymptotically exact SDP relaxations able to

minimize polynomial or rational nonconvex functions of

several variables.

• The last contribution of this work is to devise a sparse

relaxation in the spirit of [31] to cope with the resulting

rational optimization. Exploiting the specific structure of

the problem to obtain sparse SDP relaxations plays a

prominent role in making the Lasserre/SOS hierarchy

applicable to several hundred of variables as it is common

in inverse problems.

The remainder of the paper is organized as follows. The con-

sidered model is described in Section II. Section III describes

the general methodology and Section IV emphasizes the

specificities of our context. Simulations results are provided

in Section V. Finally, Section VI concludes the paper.

Notation: The set of polynomials in the indeterminates

given by vector x = (x1, . . . , xT ) ∈ R
T is denoted by R[x].

For any multi-index α = (α1, . . . , αT ) ∈ N
T , we define

xα = xα1

1 . . . xαT

T and |α| = α1 + · · · + αn. Therefore, any

polynomial can be written as a finite sum over multi-indices

as follows: (∀x ∈ R
T ) p(x) =

∑
α pαx

α. The degree of p
will be denoted by deg p. Such a polynomial can be identified

with the vector of its coefficients p = (pα)α: this will be

used for convenience. Finally, the lowest integer upper bound

of any real-valued number is denoted by ⌈.⌉.

II. MODEL AND CRITERION

A. Observation model

We consider the problem of recovering a set of unknown

samples given by the vector x := (x1, . . . , xT )
⊤. In our

context, this original signal cannot be measured and we have

access only to some measurements related to the original

signal through a linear transformation followed by some

nonlinear effects. More precisely, the observation model reads

d = φ(Hx) + n, (1)

where the vector d = (d1, . . . , dT )
⊤ contains the observation

samples, n = (n1, . . . , nT )
⊤ is a perturbation noise vector,

H ∈ R
T×T is a given matrix, and φ : RT → R

T is a nonlinear

function. It is assumed that φ applies componentwise, that is,

for every u := (u1, . . . , uT )
⊤, the t-th component of φ(u) is

given by [φ(u)]t = φt(ut), where the real-valued function φt
models a saturation effect as in the top plot of Figure 1. In this

paper, the functions (φt)1≤t≤T are assumed to be known and

to be rational, possibly involving absolute values. Actually,

(φt)1≤t≤T being saturation is only a practical example and

other functions could be considered in theory as long as the

function φ in (1) is semi-algebraic (see the comments in

Subsection III-B6).

The linear part in Model (1) can typically describe a convo-

lution. When the matrix H is Toeplitz band as in Section IV-A,

with values defined by the finite impulse response (ht)t of a

filter, and with vanishing boundary conditions, the samples in

(1) indeed stem from a signal given by

(∀t ∈ {1, . . . , T }) dt = φt(ht ⋆ xt) + nt. (2)

In the equation above, ⋆ denotes the sequence convolution

and
(
nt)1≤t≤T is a realization of an additive random noise.

An important contribution in this paper is that this structure

will be exploited in order to reduce the computational cost

of the subsequently proposed global optimization method (see

Section IV). For now, no assumption is made on the matrix

H.
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Fig. 1: Plot of the nonlinear saturation function φt in (28)

with χ = 0.3 and of the sparsity promoting function in (4)

with δ = 0.01.

B. Sparse signal and penalized criterion

The signal (xt)1≤t≤T modelled by vector x is assumed to

be sparse. By saying this, we simply assume that xt 6= 0 only

for a few indices t.
Following a classical approach for estimating x, we mini-

mize a penalized criterion having the following form:

(∀x ∈ R
T ) J (x) = ‖d− φ(Hx)‖2 + λP(x) , (3)

where P is a penalization function whose small values pro-

mote sparse vectors, in accordance with our assumptions

concerning the true x. The positive regularization parameter

λ controls the relative importance given to the squared norm

fit term and to the penalization. In this paper, we have chosen

P(x) =
∑T

t=1 ψδ(xt) where the sparsity promoting function

ψδ has been drawn on the bottom plot of Figure 1 and is given

by

(∀ξ ∈ R) ψδ(ξ) =
|ξ|

δ + |ξ| . (4)

This choice is similar in spirit to the Geman-McClure

potential [14] and, since for every ξ ∈ R, limδ→0 ψδ(ξ) = 0
when ξ = 0 and 1 otherwise, the solution to the ℓ0 penalized

problem is recovered asymptotically as δ → 0 under some

technical assumptions (see [15, Proposition 2]). Note also

that this penalty has recently shown to be effective in image

restoration problems (see [32] and references therin). Finally,

the criterion to be minimized in our approach reads:

(∀x ∈ R
T ) J (x) = ‖d− φ(Hx)‖2 + λ

T∑

t=1

ψδ(xt) . (5)

The minimization is performed over a feasible set K, which

is assumed to be compact. This assumption is required later

in (11) and (14) and it makes no restriction since the signal

values x are bounded in practice. The optimal cost function

value is denoted by

J ⋆ = inf
x∈K

J (x) ,

and the estimated signal generated by our approach is then

x̂ = argminx∈K J (x).
Importantly, our model involves rational functions φ and

ψδ. As a consequence, the criterion J is a rational function

of its arguments (possibly with absolute values). We detail in

next section how recent rational and polynomial optimization

techniques apply in this context.

III. POLYNOMIAL AND RATIONAL OPTIMIZATION

In this section, we explain the basic principles of the

methods in [25], [27] for polynomial and rational optimization.

A. Global optimization and equivalent problem over measure

Consider the problem of determining the global minimum of

a given lower-semicontinuous function f over a given compact

set K ⊂ R
T :

Find f⋆ = inf
x∈K

f(x). (6)

We can introduce an optimization problem equivalent to (6),

where the new optimization variable is a measure belonging

to an infinite dimensional space. Following the terminology

from [27], such problem will be called a generalized problem

of moments (GPM). Denoting by P(K) the set of probability

measures suppported on K, this problem reads as follows:

Find (f⋆)gpm = inf
µ∈P(K)

∫

RT

f(x) dµ(x) . (7)

To see the equivalence between (6) and (7), note first that

(∀x ∈ K) f(x) ≥ f⋆ implies that (f⋆)gpm ≥ f⋆. For the

reverse inequality, it can be noticed that the minimum of f is

reached at a point x⋆ ∈ K because K is compact and the Dirac

measure δx⋆ provides a solution such that (f⋆)gpm = f⋆.

Let us now write more specifically the GPM for rational

functions by assuming that the function f reads:

(∀x ∈ R
T ) f(x) =

p(x)

q(x)
where (∀x ∈ K) q(x) > 0 ,

(8)

where p and q are polynomials. Let us introduce the measure

dν(x) = 1
q(x)dµ(x). With this change of variables, ν is no

longer a probability measure, but, since the total mass of the

probability measure µ is one, it satisfies (10) below. Therefore,

by defining M(K) as the set of finite nonnegative Borel

measures supported on K, Problem (7) can be equivalently

re-expressed as:

Find f⋆ = inf
ν∈M(K)

∫

RT

p(x) dν(x) (9)

s.t.

∫

RT

q(x)dν(x) = 1 . (10)

Importantly, Problem (9)-(10) corresponds to a simple ob-

jective function and an explicit constraint, both terms being

linear with respect to ν. However, the implicit contraint that ν
is a measure in M(K) is more complicated to cope with.

Fortunately, the latter can be handled via a hierarchy of

tractable constraints when p and q are polynomials, as shown

next.
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B. Hierarchy of SDP relaxations

The infinite dimensional optimization problem (9) − (10)

can be approximated by a hierarchy of SDP problems with

increasing sizes when the involved function is given by (8)

with (p, q) ∈ (R[x])2. The main ingredients of this approach

are presented now.

1) Moment sequence: In (9)-(10), the optimization variable

is the measure ν. The first step is to replace this variable by a

more tractable one, i.e. a finite dimensional vector. Since the

measure ν has a compact support, it can be represented by a

moment sequence y = (yα)α∈NT defined as

(∀α ∈ N
T ) yα =

∫

K

xα dν(x). (11)

In so doing, the measure ν in Problem (9)-(10) is represented

by the moment sequence y, which is an infinite dimensional

vector. A hierarchy of finite dimensional optimization prob-

lems will be obtained by considering truncated versions of y

with increasing sizes.

2) Linear objective and constraints: Consider a polynomial

of total degree k represented by its vector of coefficients p =
(pα)|α|≤k:

(∀x ∈ R
T ) p(x) =

∑

|α|≤k

pαx
α. (12)

By linearity and by the definition of the moments (yα)α,

any integral such as the ones arising in (9) and (10) can be

rewritten as∫

RT

p(x) dν(x) =
∑

|α|≤k

pαyα = Lp(y). (13)

The function Lp(·) as defined above is linear. Therefore, the

objective and the explicit constraint in (9) and (10) are linear

funtions of the moment sequence y and the difficulty of the

original problem has therefore been transfered to the implicit

constraint that the sequence y should satisfy (11) for a given

measure ν ∈ M(K).
3) Support/measure constraint: Since an arbitrary sequence

y does not necessarily represent a measure ν on K, some

constraints needs to be taken into account on y. To achieve

this goal, we first need a more precise description of K. In

our context, the set K is defined by polynomial inequalities

of the following form:

K = {x ∈ R
T | (∀i ∈ {1, . . . , I}) gi(x) ≥ 0}, (14)

where, for every i ∈ {1, . . . , I}, gi ∈ R[x]. The constraints

will now be specified on a truncated version of the sequence

y. For a given k ∈ N and for multi-indices α,β such that

|α| ≤ k and |β| ≤ k, the elements of the k-th order moment

matrix Mk(y) of y are given by

[Mk(y)]α,β = yα+β. (15)

Note that Mk(y) involves moments up to the order 2k. The

main property of Mk(y) is that for a polynomial of degree

no more than k expressed by (12), we have:
∫

K

p(x)2 dν(x) = p⊤Mk(y)p. (16)

Similarly, for a given polynomial g ∈ R[x], the elements of

the localizing matrix M
g
k(y) associated to g and y are

[Mg
k(y)]α,β

=
∑

γ

gγyγ+α+β, (17)

and we have∫

K

g(x)p(x)2 dν(x) = p⊤Mg
k(y)p. (18)

The positivity of the right hand side of (16) for any vector

of coefficients p shows that the positive semi-definiteness

of matrix Mk(y) is a necessary condition for the sequence

y to be a valid moment sequence. Similarly, according to

(18) and because (∀x ∈ K) gi(x) ≥ 0, we deduce that

M
gi
k (y) � 0 for every i ∈ {1, . . . , I}, if y is the moment

sequence of a measure in M(K). Due to the linear dependence

of Mk(y) and M
g
k(y) on y, these constraints are linear matrix

inequalities.

4) Relaxation: Based on the above developments, we are

now able to introduce a relaxation of Problem (9)-(10). Define,

for every i ∈ {1, . . . , I}, ri = ⌈(deg gi)/2⌉ and, for any order

k ≥ max{maxIi=1 ri, deg p, deg q}, consider the optimization

problem:

Find f⋆
k = inf

y
Lp(y)

s.t. Lq(y) = 1,

Mk(y) � 0,

M
gi
k−ri

(y) � 0 (∀i ∈ {1, . . . , I}).

(19)

The objective function and the equality constraint are directly

derived from Problem (9)-(10) where the integrals have been

represented as in (13). The last two constraints are necessary

constraints for y to be a measure supported by K. Therefore,

we naturally have f⋆
k ≤ f⋆ and f⋆

k is an increasing sequence

with lower bounds of f⋆. Note that since the order in the

last constraints have been limited to k − ri, for every i ∈
{1, . . . , I}, it follows from (15) and (17) that the moments

involved in Problem (19) are (yα)|α|≤2k.

A crucial observation is that (19) is a convex SDP optimiza-

tion problem for which efficient techniques exist and provide

guaranteed global optimal solution [33], [34].

5) Theoretical results and solution extraction:

a) Convergence results: We now detail some existing

theoretical results about the approach. For their validity, the

following technical assumption is required:

A1. There exist polynomials σ0, . . . , σI , which are all

sum of squares, such that the set {x ∈ R
T |σ0(x) +∑I

i=1 σi(x)gi(x) ≥ 0} is compact.

Under Assumption A1, we have [25], [27]

f⋆
k ↑ f⋆ as k → +∞ .

This is a strong result ensuring convergence to the global

optimum of Problem (6) when considering increasing order

SDP relaxations.

Note that, in addition to K being compact, Condition A1

requires that that the polynomials (gi)1≤i≤I describing K in

(14) yield an algebraic certificate of compactness. More details

can be found in [26], [27], [28], [31]. For simplicity, we will
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only consider the practical situation where K = [B,B]T . This

is easily satisfied when lower and upper bounds B,B on the

variables (xt)1≤t≤T are available. By setting I = T and

(∀x ∈ R
T ) gt(x) = (xt −B)(B − xt),

K can be expressed under the form (14). The set K is

obviously compact. In addition,

T∑

t=1

gt(xt) ≥ 0 ⇔ ‖x‖2 − (B +B)

T∑

t=1

xt + TBB ≤ 0

⇔ ‖x− u‖ ≤ T
B −B

2
, (20)

where u = B+B

2 (1, . . . , 1)⊤ ∈ R
T . Therefore, Assump-

tion A1 holds with σ0(x) = 0 and, for every t ∈ {1, . . . , T }
σt(x) = 1.

b) Extraction of the optimal solution: The above con-

vergence results are asymptotic results for increasing orders

of the hierarchy of SDP relaxations. Fortunately, it has been

experimentally observed that low relaxation orders often pro-

vide satisfactory results (see e.g. [25], [31]). In addition, it has

been proven [27], [26] that under certain rank conditions, the

solution given by the SDP relaxation is guaranteed to be the

global minimizer of the original problem. In this case, globally

optimal points can be extracted by the procedure in [35].

Details on the rank conditions and the extraction procedure

are beyond the scope of this paper.

Unfortunately, there are two main difficulties in applying

this methodology to practical situations: first, it is known that

detecting the rank of a matrix can be numerically sensitive. In

addition, because of the complexity of the original problem,

the possible relaxation order that we can choose may be too

small. For both reasons, we have observed that the mentioned

rank conditions are generally not satisfied numerically. Al-

ternatively, considering that the global minimium is likely to

be unique, one can extract from the optimal solution y⋆ to

Problem (19) the moments corresponding to the respective

monomials x1, . . . , xT . This extraction is straightforward and

we have used the vector of these moments as an estimate

denoted by x̂⋆
k of the global minimizer for the original

problem.

6) Extension to semi-algebraic functions/constraints: From

a theoretical viewpoint, the above methodology can be ex-

tended to more complicated functions and constraints than

polynomials or fractions. We briefly explain how the absolute

value, which appears in the nonlinearity and/or in the penalty

function, can be handled. Proceeding similarly, it is actually

possible to handle any semi-algebraic function or constraint.

First, note that polynomial equality constraints such as

g(x) = 0 are possible in the definition of the feasible set

K. This is easily done by introducing the two inequalities

g(x) ≥ 0 and −g(x) ≥ 0 in the equations defining K in (14).

Then, absolute values can be considered as follows: for

each term |v(x)| appearing, where v is a polynomial, one can

introduce an additional variable u and impose the constraints

u ≥ 0, u2 = v(x)2. The methodology of the paper can then

be applied with the extended set of variables (x, u).

IV. EXPLOITING THE PROBLEM STRUCTURE

A. Toeplitz structure and split criterion

In this section, we assume that the convolutional model in

(2) is considered. Additionally, it is assumed that the involved

filter is FIR with impulse response of length L given by the

vector (h1, . . . , hL)
⊤. Under vanishing boundary conditions,

the observation model in (1) holds and involves the following

specific Toeplitz band matrix:

H =




h1 0 . . . . . . . . . . . . 0
...

. . .
. . .

...

hL
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 hL . . . h1




.

Finally, remind that we have assumed that the nonlinearity

φ applies componentwise and that it is given by a rational

function, possibly involving absolute values. The latters can

be discarded by using the trick described above. Thus, for

clarity, and with no loss of generality, we describe the method

when all quantities are nonnegative and hence no absolute

value appears.

We now focus on two specificities of our problem and show

how they can leverage a methodology similar to [31]. Note

that the methodology remains applicable when a subsampling

is performed on the observation vector y (see [36]). First, de-

veloping the squared norm in (5) and substituting all terms, the

criterion J appears as a sum of rational functions. Reducing J
to the same denominator would result in a ratio of high degree

polynomials, making the approach described in Section III

intractable. A remedy consists in introducing one measure (and

hence one moment sequence) for each elementary fraction in

J , and simultaneously imposing constraints which guarantee

equality of identical moments related to different measures.

Going further, the second specificity stems from the Toeplitz

band structure of the matrix H. In this case indeed, each term

of the sum of rational functions in J (x) only involves a small

subset of all variables. This leads to a sparse1 SDP relaxation.

The rationale is explained below and more details are given

in Section IV-B.

Let us introduce, for every t ∈ {1, . . . , T }, the set

It = {min{1, t− L+ 1}, . . . , t}

which is the set of column indices where t-th row of H has

nonzero elements (in particular, I1 = {1}, I2 = {1, 2}, . . . ,

IT = {T −L+1, . . . , T }). Developing the squared norm, we

rewrite Criterion (5) as follows

J (x) =

T∑

t=1

(
dt − φt

( L∑

i=1

hixt−i+1

))2

︸ ︷︷ ︸
pIt

(x)

qIt (x)

+λψδ(xt)︸ ︷︷ ︸
p(xt)
q(xt)

, (21)

1The notion of sparsity here concerns the optimization variables and should
not be confused with the sparsity assumed for the original samples in vector x.
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where by convention xt = 0 for every t /∈ {1, . . . , T }. This

reads equivalently:

J (x) =

T∑

t=1

(
pIt(x)

qIt(x)
+
p(xt)

q(xt)

)
. (22)

In the above equation, pIt , qIt are polynomials that depend

on the variables (xk)k∈It only and p(xt), q(xt) are univariate

polynomials that depend on xt only.

Now, one can see that, by introducing for each fraction

summing up in (21) a relaxation similar to the methodology

introduced in Section III, the original problem involving a

large number T of variables is split in a collection of smaller

problems and relaxations. Proceeding in this way would be

quite natural for a separable criterion where the problem is

decomposed into a sum of subproblems that can be solved

independently. Of course, for a non separable criterion, one

cannot split freely the problem and constraints must be added

between the subproblems to link them. In addition, a technical

condition is required on the subsets of variables of the split

form. This is further explained in the next section.

B. Sparse SDP relaxation

For every t ∈ {1, . . . , T }, each rational function
pIt

(x)

qIt (x)
is

related to the marginal µIt on R
|It| of the original prob-

ability measure µ defined on R
T . By weighting µIt with

the denominator of this rational fraction, as explained in

Section III, we define a measure νIt associated with a sequence

of moments zt, which satisfies the following relations: for any

k ≥ max{1, deg pIt , deg qIt},

Mk(zt) � 0, LqIt
(zt) = 1, M

gt
k−rt

(zt) � 0. (23)

In addition, we have to pay attention to the fact that the same

monomial may appear in consecutive terms
pIt−1

(x)

qIt−1
(x) and

pIt
(x)

qIt (x)

in Summation (22), when t ∈ {2, . . . , T }. Let N
(It∩It−1)

denote the subset of T -tuples α = (α1, . . . , αT ) ∈ N
T such

that αt = 0 for t /∈ It ∩ It−1. In other words, the T -tuples in

N
(It∩It−1) correspond to monomials involving variables with

indices in It ∩ It−1. The latter monomials are precisely the

common monomials in
pIt−1

(x)

qIt−1
(x) and

pIt
(x)

qIt (x)
. We have then,

for every α ∈ N
(It∩It−1),

∫
xαdµIt(x) =

∫
xαdµIt−1

(x)

⇔ LxαqIt (x)
(zt) = LxαqIt−1

(x)(zt−1). (24)

Similarly, for every t ∈ {1, . . . , T }, the rational function
p(xt)
q(xt)

can be associated with a sequence of monovariate moments yt,

for which the following conditions have to be met:

Mk(yt) � 0, Lqt(yt) = 1, M
gt
k−rt

(yt) � 0, (25)

and, for every α ∈ N,

Lxα
t
q(xt)(yt) = Lxα

t
qIt (x)

(zt). (26)

By using these variables (yt, zt)1≤t≤T , we are now in order

to provide a sparse SDP relaxation for the minimization of

(22):

Find f⋆s
k = inf

z,y

T∑

t=1

LpIt
(zt) + Lp(yt)

s.t. (∀t ∈ {1, . . . , T }) :
(23), (25),

(24) for α ∈ N
(It∩It−1) with |α|+ deg qIt ≤ 2k,

(26) for α+ deg qIt ≤ 2k.

Remark 1: For the aforementioned approach to be math-

ematically valid, a technical assumption is required: the

so-called Running Intersection Property [31], [27]. For

convenience, let us introduce a notation for the 2T
different index sets corresponding to each fraction in (22):

(∀t ∈ {1, . . . , T }) Jt = It and Jt+T = {t}.

Note that the sets (Jt)1≤t≤2T satisfy
⋃2T

t=1 Jt =
{1, . . . , T } . The Running Intersection Property then

reads

(∀t ∈ {2, . . . , 2T }) Jt
⋂
(

t−1⋃

k=1

Jk

)
⊆ Jj

for some j ≤ t− 1. (27)

It is easy to check that this condition is satisfied in our

case.

C. Comparison between full and sparse relaxations

We detail here the reasons why the specific form of the

latter relaxation is crucial from a computational standpoint.

Using the sparse relaxation indeed allows us to handle a much

higher number of variables T than the non sparse one. The

different numbers of involved variables and matrix sizes are

listed below, in the case when no absolute value appears.

1) Relaxation involving one measure only: For a problem

with T variables and a relaxation order k, the size of the

vector representing the measure/moment sequence is given by

the number of all mutivariate monomials with degree less than

or equal to 2k, which is precisely the binomial coefficient(
T+2k
2k

)
. As a consequence, the number of variables in an SDP

relaxation involving only one measure (such as (19)) scales as

T 2k. In addition, according to the definition of the moment

matrix in (15), the maximum size of the square matrices

defining positive definite constraints is
(
T+k
k

)
, which scales

as T k.

2) Sparse relaxation for a Toeplitz matrix: Concerning

the sparse relaxation with order k, the number of variables

involved is
(
L+2k
2k

)
for each zt and

(
1+2k
2k

)
= 2k+ 1 for each

yt with t ∈ {1, . . . , T }. The total number of variables in the

sparse SDP relaxation is therefore

T

((
L+ 2k

2k

)
+ 2k + 1

)
.

As a consequence, for a given order k, the number of variables

scales as T L2k in the computation of f⋆s
k . The maximum size
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of the moment matrix with positive definite constraint is then(
L+k
k

)
, hence it scales as Lk.

In summary, the gain in terms of size of the sparse relax-

ation is T 2k−1/L2k. In addition, the maximum size of the

semidefinite constraints is of the respective order T k for the

non sparse relaxation and Lk for the sparse one. Considering

these two facts, it follows that the sparse relaxation is highly

advantageous for L ≪ T , that is for H corresponding to a

convolutive matrix with relatively short FIR.

Remark 2: The relaxation order k must be greater than or

equal to the maximal degree appearing in the original

polynomial or rational problem. Consequently, Relax-

ation (19) is intractable after reducing the terms in (22) to

the same denominator, since this would introduce poly-

nomials with a high degree (of order T ). On the contrary,

the sparse relaxation takes explicitly into account that the

criterion is a sum of fractions with low degrees and allows

order k to be set to a much smaller value.

V. SIMULATIONS

A. Experimental setup

1) Generated sparse signal and nonlinearity: In all the

performed experiments, several sets of 100 Monte-Carlo re-

alizations of generated data are processed. Samples x of a

sparse signal are generated, the number of samples being set

to T = 200, T = 100, T = 50, or T = 20. We impose

that exactly 10% of the sample values are nonzero, yielding

respectively 20, 10, 5, and 2 nonzero components in x.

Then, this impulsive signal, considered as the ground truth,

is corrupted following the model in (1), where the noise n is

drawn according to an i.i.d. zero-mean Gaussian distribution

with standard deviation σ = 0.15. The components of the

nonlinear function φ are chosen all identical and given by

(∀t ∈ {1, . . . , T }) φt(u) =
u

χ+ |u| , (28)

where χ = 0.3. Considering the amplitude of the signals,

the above function acts as a nonlinear saturation (see top

plot in Figure 1). Finally, the matrix H is Toeplitz band and

corresponds to FIR filters of length 3.

We test our approach in two scenarios:

a) Nonnegative case: We first consider only a nonneg-

ative original signal x and nonnegative coefficients in the

matrix H. In the Geman-McClure penalty term given by (4),

absolute value are then of no use and they can be discarded.

The amplitudes of the nonzero components of x are drawn

according to a uniform distribution on [2/3, 1]. The impulse

responses of the FIR filters corresponding to H are set to

h(a) = [0.1, 0.8, 0.1] or h(b) = [0.2254, 0.3361, 0.4385].
An additional set of Monte-Carlo simulations is run where

the impulse responses are drawn randomly (nonnegatively)

for each realization. Due to the positivity assumption, the

minimization of J ⋆ is then performed on the hypercube

K = [0, 1]T .

b) Real-valued case: We then consider real valued x and

H, still using the penalty term in (4). The amplitudes of the

nonzero components of x are then drawn according to a uni-

form distribution on [−1,−2/3]∪ [2/3, 1]. In addition, the im-

pulse responses of the FIR filters are given by h(a), h(b) (like

in the first scenario), and h(c) = [−0.1127,−0.0683, 0.8191].
Here again, on one set of Monte-Carlo realizations, the im-

pulse responses are randomly drawn with real-valued coeff-

cients, for each realization. Finally, the criterion is minimized

on the set K = [−1, 1]T .

2) Considered optimization methods: Recall that the opti-

mized criterion is given by (5). In both scenarios, we have

set empirically λ = 0.15 for the regularization parameter and

δ = 0.01 in the penalty function (4).

To obtain an estimate of x, we have built the sparse

SDP relaxation from Section IV-B with orders k = 2 and

k = 3 using the software [37]. The SDP has then been solved

using SDPT3 [33]. Finally, the corresponding estimate x⋆s
k is

determined as described in Section III-B.

We are not aware of any other method able to find the global

minimum of (5). For comparison with a globally convergent

approach, we have used a linearized model for reconstruction

purposes: based on Model (1), we have linearized around

zero the nonlinearity (28) and have used the well-known ℓ1
penalization. The cost function then reads

(∀x ∈ R
T ) Jℓ1(x) =

∥∥∥d− 1

χ
Hx

∥∥∥
2

+ λ1

T∑

t=1

|xt|, λ1 > 0

and it can thus be minimized efficiently by standard convex

optimization techniques [21], [38].

Finally, we have also implemented a proximal gradient

algorithm corresponding to the well-known Iterative Hard

Thresholding (IHT) [12]. Since the function φ is Lipschitz-

differentiable, the standard IHT algorithm can be extended to

the nonlinear observation model. This leads to the following

iterative algorithm:

(∀n ∈ N) x(n+1) =

S√
λ0η

(
x(n) − ηH⊤∇φ(Hx(n))

(
φ(Hx(n)

)
− d)

)

where the Jacobian matrix ∇φ(Hx(n)) is diagonal and S√
λ0η

is the hard thresholder with threshold value
√
λ0η, λ0 > 0. It

can be shown that any value of the stepsize η in ]0, ηmax] is

valid, where 1/ηmax = ‖H‖2S(1 + 2max1≤t≤T} |dt|)/χ2 is a

Lipschitz constant of the above gradient term (‖H‖S denotes

the spectral norm of H). The latter algorithm however only

certifies convergence to a local minimum of the criterion [39].

Due to non convexity, the local minima are likely to differ

from the global minimum [11].

B. Results

1) Performance of the proposed relaxation : Figures 2 and

3 show the objective values J (x⋆s
k ) and the lower-bounds f⋆s

k

provided by our method for relaxation orders k = 2 and k = 3,

and for two different sample sizes. The value of the objective

function J obtained after minimizing Jℓ1 is also plotted. For

readability, the Monte-Carlo realizations have been sorted by
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Fig. 2: Objective value and lower-bound given by our method

(randomly driven filters, nonnegative case, T = 20).

increasing value of f⋆s
3 . The poor performance of the convex

formulation may be accounted for by the fact that the lin-

earized model leads to a rough approximation. In accordance

with the theory, we have f⋆s
2 ≤ f⋆s

3 and the latter value is

indeed a lower-bound on the corresponding obtained criterion

values, which are obviously such that J (x⋆s
3 ) ≤ J (x⋆s

2 ).
Moreover, the gap between f⋆s

k and J (x⋆s
k ) is an evidence

of the effectiveness of our method. A strictly positive value,

as observed for k = 2 indicates that the relaxation order is too

small. As illustrated in Figures 2 and 3 the gap value reduces

for k = 3, and with T = 20 a gap numerically close to zero

certifies that the global minimum is perfectly attained in more

than 80% of the cases. For the more involved case T = 200,

the gap value is small with k = 3 but nonzero: this gives

evidence in favor of closeness to the global solution, although

a higher relaxation order would probably be necessary. Due to

memory limitations, increasing further the relaxation order is

unfortunately impossible so far. In the next section, we show

how to combine our method with IHT, so as to alleviate this

issue.

2) Dealing with local minimas: Because of the difficulty of

the rational optimization task, we propose to complement our

method with the IHT optimization method, which is known to

be efficient, but only locally. For better emphasizing the benefit

of our approach, several initializations of IHT are considered:

x⋆s
3 , the result from the linearized model and ℓ1 penalization,

d, an all-zero vector, and the true x. Obviously, the latter

initialization would be impossible to use in real applications.

The average values over all Monte-Carlo realizations are

provided in Tables I (nonnegative case) and II (real-valued

case) for T = 200. Some more detailed plots, corresponding

to randomly drawn filter coefficients, are shown in Figures 4

(nonnegative case) and 5 (real-valued case).

The final objective values after convergence of IHT clearly

depend on the initialization, which witnesses the existence

of several local optima and emphasizes the importance of

addressing the problem from a global optimization standpoint.

In average, the lowest objective value is obtained by a local

0 20 40 60 80 100
Monte-Carlo realization

4

6

8

10

12

14

16

18
Objective value

x⋆
3

x⋆
2

Lower-bound k= 2
Lower-bound k= 3
linearization ⋆ ℓ1

Fig. 3: Objective value and lower-bound given by our method

(randomly driven filters, nonnegative case, T = 200).

0 20 40 60 80 100
Monte-Carlo realiza ion

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0
Objec ive value

IHT ini  x⋆s
3

IHT ini . ℓ1
Lower⋆bound

Fig. 4: Objective value for IHT with different initializations

(randomly driven filters, nonnegative case, T = 200). .

optimization initialized either at x⋆s
3 or at the true x, the two

choices leading to very similar results. More importantly, as

shown in Tables III (nonnegative case) and IV (real-valued

case), IHT is not reliable for finding the global minimum.

These two tables compare different initializations of IHT and

provide for each initialization the number of times it leads

to the smallest objective value among the 100 Monte-Carlo

realizations (a sum greater than 100 on a row occurs for

T = 20 and indicates that different initializations have reached

the same minimum value). In the overwhelming majority

of cases, the initialization with x⋆s
3 provides the smallest

objective. As soon as T is more than a few tens, IHT is almost

unable to reach the global minimum with any of the standard

initializations (ℓ1, d, all-zero vector). This demonstrates the

fact that the proposed relaxation is useful in providing a good

initial point for a local optimization algorithm.

3) Signal recovery performance: Finally, we illustrate the

merits of our method in terms of estimation and peak detection
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Fig. 5: Objective value for IHT with different initializations

(randomly driven filters, real-valued case, T = 200). .

TABLE I: Final values of the objective function J for various

optimization methods (nonnegative case, T = 200).

Opt. method
Filters

h
(a)

h
(b) random

x⋆s

3 7.3185 7.1317 7.1528
linearized ℓ1 15.749 13.794 14.406

IHT, init. x⋆s

3 7.0970 7.0424 6.9981
IHT, init. ℓ1 8.7043 8.6388 8.5518
IHT, init. d 8.8508 8.8928 9.1245
IHT, init. zero 11.798 10.014 13.988
IHT, init. x 7.1441 7.1476 7.1060

TABLE II: Final values of the objective function J for various

optimization methods (real-valued case, T = 200).

Opt. method
Filters

h(a) h(b) h(c) random

x
⋆s

3 12.0845 17.3860 12.2985 16.389
linearized ℓ1 21.837 20.0003 21.7529 20.786

IHT, init. x⋆s

3 7.2254 8.2095 7.2131 7.7278
IHT, init. ℓ1 10.048 11.7268 9.3964 10.281
IHT, init. d 10.024 11.2028 11.9485 12.934
IHT, init. zero 12.079 15.5946 10.4484 12.8234
IHT, init. x 7.1323 7.1113 7.1363 7.1151

errors. A typical example of true signal x, of observation vec-

tor d and of reconstructed signal is displayed in Figure 6. The

estimation error on x has been quantified by the mean square

error 1
T
‖x̂ − x‖2 for a given estimate x̂. The average error

and objective values are gathered in Tables V (nonnegative

case) and VI (real-valued case). It can be observed that the

results obtained with the ℓ1 penalization followed by IHT

are significantly improved when the initialization of IHT is

performed by the proposed rational optimization approach.

Finally, we have compared our method for detecting the

peaks in the original signal. Nonzero values of x have been

estimated by comparing |x̂| to a threshold. The so-called

receiver operating characteristic (ROC) curves are plotted on

Figure 7 by increasing the threshold value: it represents the

detection rate versus the false alarm rate. Clearly, using x⋆s
3

gives the best results. On the contrary, the linearized model

TABLE III: Out of 100 Monte-Carlo realizations, number

of times each initialization of IHT provides the smallest

objective value (nonnegative case, filter random (top) and h(a)

(bottom)).

Num.
samples

Initialization
x⋆s

3 ℓ1 d zero

random filter
20 87 6 4 11
50 100 0 0 0

100 100 0 0 0
200 100 0 0 0

filter h
(a)

20 86 1 4 17
50 99 0 0 1

100 100 0 0 0
200 100 0 0 0

filter h(b)

20 94 6 4 5
50 100 0 0 0

100 100 0 0 0
200 100 0 0 0

TABLE IV: Out of 100 Monte-Carlo realizations, number of

times each initialization of IHT provides the smallest objective

value (real-valued case, filters h(a) and h(b)).

Num.
samples

Initialization
x
⋆s

3 ℓ1 d zero

random filter
20 74 7 6 18
50 97 0 1 2

100 99 1 0 0
200 100 0 0 0

filter h(a)

20 79 2 5 18
50 100 0 0 0

100 100 0 0 0
200 100 0 0 0

filter h
(b)

20 87 2 7 4
50 100 0 0 0

100 100 0 0 0
200 100 0 0 0

filter h(c)

20 62 6 8 32
50 97 1 0 2

100 99 0 0 1
200 100 0 0 0

TABLE V: Final average MSE for the proposed optimization

method (nonnegative case, T = 200).

Opt. method
Filters

h
(a)

h
(b) random

IHT, init. x⋆s

3 9.23e-03 1.16e-2 1.12e-2
IHT, init. ℓ1 1.17e-02 1.42e-2 1.34e-2
IHT, init. d 1.73e-02 1.43e-2 1.59e-2
IHT, init. zero 5.06e-02 6.47e-2 5.89e-2

TABLE VI: Final average MSE for the proposed optimization

method (real-valued case, T = 200).

Opt. method
Filters

h(a) h(b) h(c) random

IHT, init. x⋆s

3 9.50e-3 1.58e-2 9.27e-3 1.08e-2
IHT, init. ℓ1 1.35e-2 3.09e-2 1.22e-2 1.73e-2
IHT, init. d 2.66e-2 2.91e-2 4.43e-2 3.34e-2
IHT, init. zero 5.30e-2 6.66e-2 4.23e-2 5.17e-2
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Fig. 6: Typical original signal x, observations d and recovered

signal. These results have been obtained with IHT initialized

either by our method or by using a linearized model and ℓ1
penalty.

with ℓ1 penalty leads to poor results, even when it is associated

with an IHT algorithm.

VI. CONCLUSION

In this paper, we have presented a global optimization

approach for addressing a wide range of variational poblems

arising in signal processing. More specifically, the proposed

method is able to deal with nonlinear models and regulariza-

tion functions, provided that they can be approximated under

a rational form. The validity of the proposed sparse SDP

relaxation has been demonstrated on a sparse signal restoration

problem where the observations are degraded by a convolution

followed by a saturation effect.

This work opens up new perspectives for solving signal

recovery and estimation problems where standard optimization

algorithms may fail due to the presence of spurious local

minimas. On common computer architectures, using existing

SDP solvers, the implementation of this approach is however
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Fig. 7: ROC curve (randomly driven filters, real-valued case,

T = 200).

currently limited to relatively small signal dimensions and low

filter orders.
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