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ABSTRACT 
 
This paper presents a practical framework and its applications of motion tracking algorithms 

applied to structural dynamics. Tracking points (“features”) across multiple images is a 

fundamental operation in many computer vision applications. The aim of this work is to show the 

capability of computer vision (CV) for estimating the dynamic characteristics of two mechanical 

systems using a non contact, marker less and simultaneous Single Input Multiple Output (SIMO) 

analysis. KLT (Kanade-Lucas-Tomasi) trackers are used as virtual sensors on mechanical 

systems video from high speed camera. First we introduce the paradigm of virtual sensors in the 

field of modal analysis using video processing. To validate our method, a simple experiment is 

proposed: an Oberst beam test with harmonic excitation (mode 1). Then with the example of 

helicopter blade, Frequency Response Functions (FRFs) reconstruction is carried out by 

introducing several signal processing enhancements (filtering, smoothing). The CV experimental 

results (frequencies, mode shapes) are compared with classical modal approach and FEM model 

showing high correlation. The main interest of this method is that displacements are simply 

measured using only video at FPS (Frame Per Second) respecting the Nyquist frequency.  
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1. INTRODUCTION 

 

In mechanical engineering, modal analysis is widely used to assess mechanical systems by 

means of vibration measurement. Classical modal analysis uses impact hammer or shaker to 

excite the structure and accelerometer to measure the response. It is time and money consuming. 

The goal of the presented work is to develop a method based on instrumentation with an optical 

camera working with intelligent software in order to continuously assess the dynamic parameters 

of the structure. Previous works [2-5] obtained modal parameters by introducing real targets on 

the structure or by studying simple structures in ideal conditions. Real time displacement 

measurement have been done using different approaches of digital image processing techniques 

(texture recognition algorithm) on a flexible bridge [6] or using LED targets (colour filtering) 

[7].   

The original idea of using optical flow to measure vibration has been demonstrated in [8]: 

displacements have been measured on a bridge under harmonic excitation (using openCV 

framework) and then modal parameters were reconstructed from the vibration test results.  Then 

Ji et Chang have also used this concept of optical flow for vibration measurements [9,10]. The 

applications domain is also the civil engineering: the structures  (bridges or cables) are well 

adapted to the methods/experiments as they have low natural frequencies and high displacement 

of several centimetres. This paper introduces completely new developments in aerospace domain 

such as an innovative definition of virtual sensors, or a validation on a complex experiment 

(helicopter blade) and its correlation with broadband modal analysis and Finite Element Analysis 

using new technology (high speed camera). The main innovation deals with signal processing 

enhancements and also in the selection of “stable” virtual sensors. Indeed classical optical flow 

methods calculate the variation of optical intensity of an arbitrary selected region of interest 



 

(ROI) on the image sequence [9,10]. Here we propose to select interesting points that satisfy a 

contrast criteria and use them to measure the displacements at multiple locations simultaneously.  

Intuitively, a good feature (a good virtual sensor in our case) needs at least to be a texture or a 

corner. 

A way to detect moving objects is by investigating the optical flow which is an approximation of 

two dimensional flow field from the image intensities. It is computed by extracting a dense 

velocity field from an image sequence. The optical flow field in the image is calculated on basis 

of the two assumptions that the intensity of any object point is constant over time and that nearby 

points in the image plane move in a similar way [11]. Additionally, the easiest method of finding 

image displacements with optical flow is the feature-based optical flow approach that finds 

features (for example, image edges, corners, and other structures well localized in two 

dimensions) and tracks their displacements from frame to frame. The LK [12] tracker is based 

upon the principle of optical flow and motion fields [13-14] that allows to recover motion 

without assuming a model of motion.  

For practical purposes, the algorithm developed in [15] is employed on the flexible beam 

example in order to track the motion of the target pixels and reconstruct displacement signals. It 

offers various advantages like stable and accurate motion results in a non optimal environment. 

The paper is organized in three parts, the first one introduces the theoretical background of 

motion tracking and discusses the optical flow algorithm in the domain of vibration 

measurement. The second part explains proposed methodology and its validation by a simple 

harmonic Oberst beam test. Finally the structural characterisation of an helicopter blade is 

studied using virtual sensors data processing. The dynamic parameters are extracted from FRF 

reconstruction and experimental results are compared with classical modal analysis and FEM 

solutions.  



 

2. THEORETICAL BACKGROUND 

 

2.1. KLT 

Kanade-Lucas-Tomasi (KLT) features may be used to describe general motions within video 

images.  The KLT algorithm finds several features in each frame of video.  It then attempts to 

find a correspondence between the features in one frame with the features in the next. The 

origins of the Kanade-Lucas-Tomasi Tracker go back to the work of Lucas and Kanade [12]. 

They introduced a way to select features that is explicitly based on the tracking equation. Their 

intention is to select those features that make the tracker work best. They also proposed using an 

affine model of image motion to monitor feature dissimilarity between the first and the current 

frame.  

 

2.2. The KLT tracking equation 

Most of the time, it is impossible to determine the location of a single pixel in the subsequent 

frame based only on local information. Due to this, small windows of pixels are used as features. 

The goal of tracking is to determine the displacement d of a feature window from one frame to 

the next (Figure 1).  

 
 
 
 
 
 
 
 
 
 

I(x,y)       J(x,y) 
 
Fig 1: Optical flow principle. Pixel motion from image I to image J is estimated solving the pixel correspondence 
problem: given a pixel in I, look for nearby pixels of the same color in J. Two key assumptions are needed: color 
constancy (a point in I looks the same in J) and small motion (points do not move very far). 



 

 

The displacement ε is chosen to minimize the dissimilarity between two feature windows, one in 

image I and one in image J: 
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where w is the given feature window, x = [x, y]T are coordinates in the image and d = [dx, dy]T is 

the displacement. The weighting function w(x) is usually set to the constant 1. The aim is to find 

the displacement d that minimizes the dissimilarity. For this, Eq. (1) is differentiated with respect 

to d and equated to zero. 
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Using the Taylor series expansion of J about x, truncated to the linear term, one obtain: 
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Introducing into Eq. (2) yields 
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Rearranging terms yields a linear 2 × 2 system: 

Zd = e             (6) 

where Z is the 2 × 2 matrix: ∫∫=
W

T w(x)dx(x)g(x)g Z  and ∫∫=
W

(x)dxJ(x)]g(x)w-[I(x) e  (7) 

Equation (6) is only approximately satisfied, because of the linearization of Eq. (2). However, 

the correct displacement can be found by minimizing Equation (6) using a Newton-Raphson 

algorithm. An arbitrary feature window does not necessarily contain complete motion 

information. For a horizontal intensity edge only the vertical motion component is determined. In 

addition, a feature window inside a homogeneous region contains no motion information at all. 

This is a fundamental problem regardless of the selected method of tracking. In order to avoid 

this, it is necessary to choose feature windows carefully. Several interesting operators have been 

proposed based on intuitive ideas of what good features should be. Shi and Tomasi [14] propose 

a more principled criterion that is optimal by construction: “A good feature is one that can be 

tracked well”. Thus our virtual sensors should be located on good feature for correct 

displacement measurements. 

 

2.3. Implementation issues 

 

OpenCV means Intel® Open source Computer Vision Library [17]. It is a collection of C 

functions and a few C++ classes that implement some popular computer vision algorithms. The 

cvCalcOpticalFlowPyrLK function implements sparse iterative version of Lucas-Kanade optical 

flow in pyramids [15]. It calculates coordinates of the feature points on the current video frame 

given their coordinates on the previous frame with sub-pixel accuracy. 



 

When choosing the feature window size, there is a trade-off between accuracy and robustness. 

The accuracy component is related to the local sub-pixel accuracy attached to tracking. 

Displacement of individual points in the integration window may vary, especially at occluding 

boundaries. On one hand a small window size is preferable in order not to “smooth out” too 

much detail. A smaller size makes it less likely, that displacements vary within the window too 

much. The robustness component on the other hand, relates to sensitivity of tracking with respect 

to size of image motion, lighting changes, etc… For the tracking equation to work, the 

displacement has to be smaller than the integration window size. Therefore to ensure robustness 

specially when dealing with large image motion, the window should be chosen as large as 

possible. A solution to this dilemma is to use a pyramidal representation of the image. The 

lowest level of the pyramid is the original image, while higher levels contain smaller subsampled 

versions. Features are tracked at the highest level of the pyramid first, to obtain an approximate 

solution. The displacement is then promoted down to the next level where tracking is continued 

to improve on the estimate. This is conducted in a recursive way until the lowest level is reached. 

This effectively permits to deal with large displacements on top of the pyramid, while 

maintaining sub-pixel accuracy at the bottom. The resolution of the topmost pyramid level 

should be selected according to the window size and the maximum expected displacement. The 

number of pyramid levels may be chosen empirically (2 in practice). The subsampling factor 

may be computed accordingly. For instance classical implementation uses 7 × 7 feature windows 

and two pyramid levels subsampled at every fourth pixel. This yields good results for 

displacements up to 15 pixels. 

 



 

 

3. VIRTUAL SENSORS FOR MECHANICAL SYSTEMS MONITORING 

 

3.1. From video motion estimation to dynamic monitoring 

 

An excellent survey [13] explains several classes of optical flow estimation methods and 

compares their performances. There are several benefits of using high frame rate sequences. First 

as frame rate increases, the intensity values along the motion trajectories vary less between 

consecutive frames, when illumination level changes. The frame rate increases the captured 

sequence and exhibits less motion aliasing. To recover the original continuous spatio-temporal 

video signal from its temporally sampled version, it is clear that the temporal sampling frequency 

(or frame rate) fs must be greater than 2Bt (Eq. (8)), in order to avoid aliasing in the temporal 

direction (Nyquist criteria). If global motion is assumed with constant velocities vx and vy (in 

pixels per standard-speed frame) and spatially band limited image with Bx and By as the 

horizontal and vertical spatial bandwidths (in cycles per pixel), then the minimum temporal 

sampling frequency fs (in cycles per speed frame) to avoid motion aliasing is given by 

 

vy2By  vx2Bx  2Bt fs ×+×== .        (8) 

The assumptions of optical ideal conditions and ideal blur filter have been employed. Typical 

high speed camera uses a state-of-the-art CMOS sensor that records images at 1000 FPS (ore 

more) at 1024x768  pixel resolution (ore more).  

 

3.2. Virtual sensors paradigm  

This section explains the implementation of a novel vision-based approach for obtaining direct 

measurements of the absolute displacement time history at selectable locations of mechanical 



 

systems. The first step is to record a video of the mechanical system using a high speed digital 

video camera installed on a fixed point beyond the structure, considered as a fixed point. Then a 

known length is matched with a pixel correspondence (transform pixels in m). Figure 2 presents 

the schematics of displacement measurement system using CV techniques. 
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Fig 2: Virtual sensor paradigm using KLT tracker. The chosen key points are used as virtual sensor to measure 
relative displacement frame after frame (sampling frequency is inverse of fps). In our experiment simple plane 
problems are analyzed in measuring bending displacement (Y in pixel). The true displacement (in m) is obtained 
from the conversion of a known size part of the structure in pixels. 

 
 
Firstly the measurement points are selected on the first frame of the video using the mouse with a 

virtual sensor (i.e. targets; good features to track). The relative displacement of each target is 

calculated using the optical flow algorithm, which requires good points to track. While analysing 

image frames, the displacement of the target is calculated (targets motion is in pixels, user must 

have the true scaling factor). The quantity of information depends on the number of pixels per 

frame and the number of frames per second. The main advantage of this method is the ability to 

measure the displacements of multiple locations simultaneously. Moreover in our case there is no 

aperture problem as the estimated motion is well in the same direction that the real motion (Y 

displacement). An extension of this paradigm from 2D to 3D have been yet demonstrated in 



 

measuring three-dimensional motion of a structure using two in-plane measurement systems, 

which are timely synchronized, and geometrically correlated [18].  

 

3.3. Supervised validation on a simple experiment  

The “Oberst beam” is a classical method to characterize damping in materials. As the base beam 

is made of a rigid and lightly damped material (steel, aluminium), the most critical aspect of this 

method is to properly excite the beam without adding weight or damping. A cantilever beam has 

the same dynamical behaviour as a free-free beam of twice the length, excited at its centre by a 

normal imposed displacement (Fig. 3). In this case, only the first even mode of the free-free 

beam will be excited, and its modal behaviour will be similar to a clamped beam since the slope 

and the relative displacement to the imposed motion are zero at this point. Practically the 

precision of the location of the centre is important to avoid an unbalanced system [19]. 

 
 
 

Fig 3: Oberst beam experimental set-up for the free-free beam excited at its centre. Half-period of the first mode is 
visualized from several successive frames. Virtual sensors are visualized with a small green dot; displacement is 
measured in Y direction (green arrows). 
 



 

Figure 4 shows the measurements estimated by virtual sensors on the two masses at the 

extremities. It shows a pure harmonic sine, resulting from exciting the first resonance of the 

beam. The scale factor associated with this test can be design as 
pixels

m
sf

754

48.0= (1 pixel 

represents 0.636mm). 
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Fig 4: Validation of the algorithm using two virtual sensors on the left (blue line) and right mass (red dot line). The 
displacement (Y) is measured as a function of time. This displacements have an harmonic form according to the 
excitation frequency in this experiment close to the resonant frequency which appears at 3.8Hz  (period of 0.26s). 
 
Figure 5 shows the frequency contents of both virtual sensors which highlight the first resonance 

mode at 3.8 Hz, which verifies the results found previously by an accelerometer.  
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Fig 5: Frequency contents of the virtual sensors which highlight the expected harmonic mode of the beam at 3.8Hz. 
 



 

4. VIRTUAL SENSORS FOR MONITORING AN HELICOPTER BLADE 

4.1. Experimental test-rig and pre-processing 

For virtual and classical measurement, the experimental set-up is composed of a clamped-free 

aluminium helicopter blade which is four meters long (Fig 6). 

 
 
 

X 

Y 

9

1

Impulsion or 
shacker 

 
 

Fig 6: Helicopter blade example: KLT trackers are used to follow 9 targets in bending (Y displacement). The targets 

are numbered from 1 to 9, the blade is excited at its center. 

 

The classical experimental equipment used to obtain the modal parameters discussed in this 

paper is composed on a B&K force sensor 8200 which is then assembled on a shaker supplied by 

Prodera having a maximum force of 100N. The response displacements are measured with the 

help of a Laser Vibrometer OFV-505 provided by Polytec. The shaker, force sensor and the laser 

vibrometer are manipulated with the help of a data acquisition system supplied by LMS Testlab. 

The center of the blade is excited by burst random excitation (broadband on [0-1600 Hz]). The 

signal is averaged 10 times for each measurement point. Hanning windows are used for both the 

output and the input signals. The linearity is checked and a high frequency resolution (∆f = 

0.25Hz) for precise modal parameter estimation is used. Response is measured at 40 points that 

are symmetrically spaced in four rows along the length of the blade. The modal parameters are 

extracted by a frequency domain parameter estimation method (Polymax). 



 

 

 For using KLT trackers the blade is excited at its center by an impulsion and the response 

motion is captured by a high speed camera (Photron Fastcam APX RS3000) at 500 frames/sec. 

In this experiment, a pixel represents 2.12 mm using a video at a resolution of1024x256 pixels 

(
pixels 47

m 0.1
 sf = ), so only the first three bending modes (higher displacements than 2.12 mm) can 

be measured. After 30 Hz the others modes (displacements inferior to the resolution) induce only 

noise. The LK optical flow is used to follow 9 targets (green arrows) in bending along Y 

displacement. These targets become virtual displacement sensors which allow doing a SIMO 

analysis in only one test. The main difficulty occurs in signal reconstruction (displacement). 

Target pixels (which move around x axis) create partial modal data, so displacement signals are 

irregular data. Thus the small linear displacement hypothesis is used (Fig. 7) to enhance the 

resolution of the motion and to compensate the missing data. If the absolute value of X (relative 

displacement on abscissa) is less than 3 pixels the data is used, otherwise it is discarded. 

According to the figure 7, the virtual sensors vary only in Y direction excepted a small period for  

KLT 8. So we can say the selected points belong well to a ROI in the image space, so optical 

flow must be stable for this virtual sensors.  
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Fig 7. Stability diagram: variation of the displacement in X direction are very small function of the frame number 
(proportional to time vector). So each target vary only in Y direction excepted for  KLT 8 (in blue). The virtual 
sensors are well “attached” to the virtual structure: the points belong well to a ROI in the image space. 



Window functions (Hanning) and low pass filter are applied to the signals. The transfer functions 

is estimated using tfestimate in Matlab. Figure 8 illustrates the effect of a running moving 

average (size of the window is 5) on the temporal signals. All these signal processing tools aim at 

obtaining smoother FRFs for more precise analysis.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 8: Experimental displacements measured on virtual sensors 1 to 9 sampled at FPS. The zoom on the enhanced 
displacement signaks shows the effect of the moving average function on the temporal signal. This pre-processing 
aims at obtaining smooth FRFs for better modal parameter estimation. 
 
 
The type of excitation (smooth impact) offers a correct bandwidth at low frequency which allows 

the identification of the first three modes. The excitation level which induces the free decay is 

unknown but we assume that the impulse spectrum is flat on [0-20 Hz] where the 2 identified 

modes are found. It is clear on Fig 9. that 2 frequencies composed the KLT trackers temporal 
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signal. Tracker 1 (in blue) at the free end of the blade exhibits higher displacement than tracker 9 

just near the clamped end (in green). 
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Fig 9: KLT trackers show classically damped sinusoids containing two main frequency. Tracker 1 (in blue) at the 
free end of the blade exhibit higher displacement than Tracker 9 just near the clamped end (in green). 
 

Due to difficulty to understand our demonstration showing only a sequence of images, videos of 

this experiment and several others validations are available on the website of the author:  

http://personnel.supaero.fr/morlier-joseph/ 

 

Figure 10  explains the behaviour of KLT trackers showing only  a sequence of images:  frames 

1654-1674-1694-1714 (from top to bottom) of this experiment exhibits one half period of the 

first mode of the blade. Virtual sensors are visualized with a small green dot; displacements are 

measured in Y direction (green dots) and correspond to the initial values of KLT trackers of 

figure 9. 

 

 



 

 

 

 

 

 
 

Fig 10: Half-period  is visualized from several successive frames. Virtual sensors are visualized with a small green 
dot; displacement is measured in Y direction (green dots). 
 
 
4.2. Comparison of KLT results with EMA and FEM 

The results of the FRFs reconstruction permit to realize a classical modal analysis extracting the 

frequencies, damping ratios and mode shapes. These parameters which characterize the dynamic 

behavior of the beam are estimated from FRFs using SDOF frequency method called Rational 

Fraction Polynomial (RFP, [18]) around resonances Hzf i 1± . Results are listed in table 1.  

)f(E  )f(σ  )(E ξ  )(ξσ  
2.32(Hz) 0.2 1.3 (%) 0.02 

15.02(Hz) 0.04 0.36 (%) 0.04  

Table 1: Estimated mean E and standard deviation σ for frequencies f and damping ratios ξ for two modes (RFP). 



 

Figure 11 presents filtered FRFs (9 measurement points) and the result of the identification of the 

first resonance at 3.32 Hz for each transfer functions under the hypothesis of flat excitation 

spectrum. Thus, the FRF correlation between experimental data and identified data is very good 

for each virtual sensor.  
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Fig 11: Filtered FRFs form 9 measurement points and identification of the second resonance at 15 Hz using SDOF 
RFP method. 
 
The previous method is compared with classical experimental modal analysis and Finite Element 

Model. The results are compared Table 2. 

 
KLT Tracker (Hz) EMA (Hz) FEA (Hz) Mode shapes 

2.31 na 2.37 First bending 
15 15.11 14.79 Second bending (1 node) 
na 41.89 41.26 Third bending (2 nodes) 

na 56.04 61.25 Torsion 

Table 2: Comparison of the estimated frequencies using optical method, classical EMA with burst random excitation 
(Force sensor not able to detect very low frequency) and Finite Element Analysis using CATIA. 

 



 

 

Using the results of table 2 we can see that KLT tracker method are limited in bandwidth 

compared to classical  EMA (Experimental Modal Analysis) but it offers a simple measurement 

tool to understand and visualize structural dynamics engineering problems. 

The mode shape describes the structure’s motion when it is vibrating at a particular frequency. In 

the context of SHM mode shape analysis is widely used [22-24] as mode shape is a local 

parameter which contains spatial information and appears to be more sensitive to the presence of 

damage zones than natural frequencies. It is also interesting in the boundary conditions analysis 

or joint characterization [24-26]. The vertical sensitivity is low due to the size of the deflection 

compared to the length of the beam. It simply allows us to identify only the two first modes with 

accuracy (Fig. 12); the others displacements are inferior to the pixel resolution. 
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Fig 12: Two first mode shapes extracted using KLT on experimental data in black continuous line: The global 
content of these modes is very close to the two first mode computed using CATIA (red dotted line). Mode 1 is on 
top of the figure, mode 2 on bottom. The mode shape are normalized in order to be compared to FE modal analysis. 
 

This method can be used according to two other important hypothesis; firstly the number of 

Frame Per Second (FPS) verifies the Nyquist frequency criteria, secondly the camera axis is 

perpendicular to the studied 2D structure (to avoid angular errors). One of the limitations is that 

the influence of the camera viewpoint and calibration has not been taken into account in this 

study. The other disadvantage is that in some applications the small linear displacement 

hypothesis is not verified. It induces instabilities of the targets which lead to several partial 



 

displacement measurements instead of one fixed (x direction) virtual sensor displacement (in 

bending; y displacement). Nevertheless it offers a simple measurement tool to understand and 

visualize structural dynamics problems: no targets need to be placed on the structure and several 

virtual sensors can be tracked simultaneously.  

 

5. CONCLUSIONS 

 

The main goal of this paper is to introduce a practical vibration measurement system developed 

using available CV tools. KLT trackers are simply used as virtual sensors to measure 

displacement on video choosing good features to track on the image. The developed method was 

first validated by using a simple Oberst beam example. Then using several virtual sensors we 

succeed to estimate the first two main modes of a helicopter blade under impulse excitation. This 

application can also be used with the help of less expensive tools than high speed camera, e.g. 

with a classical camera (frequency max is 12.5Hz at image resolution of 1024*768 pixels). One 

advantage of this non contact measurement method (versus Laser Doppler Vibrometer) is that we 

can measure in one test several simultaneous outputs for SIMO modal analysis. In order to 

correct the limitations of KLT tracker, an enhanced version of SIFT (Scale Invariant Feature 

Transform, [27]) should be developed for 2D structural dynamics application. Finally by the 

assumptions of high contrast, high vertical resolution (to obtain sufficient deflection) and camera 

stability, our method coupled with operational modal analysis [28] could also be used to study 

the flutter behaviour of airplanes under ambient excitation or at a different scale to assess the 

dynamic parameters of MEMS. Currently work is in progress is to analyse three synchronized 

video (Multiple camera) for 3D marker less dynamic reconstruction. 
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Listing of Figures 
 
Fig 1: Optical flow principle. Pixel motion from image I to image J is estimated solving the pixel correspondence 
problem: given a pixel in I, look for nearby pixels of the same color in J. Two key assumptions are needed: color 
constancy (a point in I looks the same in J) and small motion (points do not move very far). 
 
Fig 2: Virtual sensor paradigm using KLT tracker. The chosen key points are used as virtual sensor to measure 
relative displacement frame after frame (sampling frequency is inverse of fps). In our experiment simple plane 
problems are analyzed in measuring bending displacement (Y in pixel). The true displacement (in m) is obtained 
from the conversion of a known size part of the structure in pixels. 
 
Fig 3: Oberst beam experimental set-up for the free-free beam excited at its centre. Half-period of the first mode is 
visualized from several successive frames. Virtual sensors are visualized with a small green dot; displacement is 
measured in Y direction (green arrows). 
 
Fig 4: Validation of the algorithm using two virtual sensors on the left (blue line) and right mass (red dot line). The 
displacement (Y) is measured as a function of time. This displacements have an harmonic form according to the 
excitation frequency in this experiment close to the resonant frequency which appears at 3.8Hz  (period of 0.26s). 
 
Fig 5: Frequency contents of the virtual sensors which highlight the expected harmonic mode of the beam at 3.8Hz. 
 
Fig 6: Helicopter blade example: KLT trackers are used to follow 9 targets in bending (Y displacement). The targets 
are numbered from 1 to 9, the blade is excited at its center. 
 
Fig 7. Stability diagram: variation of the displacement in X direction are very small function of the frame number 
(proportional to time vector). So each target vary only in Y direction excepted for  KLT 8 (in blue). The virtual 
sensors are well “attached” to the virtual structure: the points belong well to a ROI in the image space. 
 
Fig 8: Experimental displacements measured on virtual sensors 1 to 9 sampled at FPS. The zoom on the enhanced 
displacement signaks shows the effect of the moving average function on the temporal signal. This pre-processing 
aims at obtaining smooth FRFs for better modal parameter estimation. 
 
Fig 9: KLT trackers show classically damped sinusoids containing two main frequency. Tracker 1 (in blue) at the 
free end of the blade exhibit higher displacement than Tracker 9 just near the clamped end (in green). 
 
Fig 10: Half-period  is visualized from several successive frames. Virtual sensors are visualized with a small green 
dot; displacement is measured in Y direction (green dots). 
 
Fig 11: Filtered FRFs form 9 measurement points and identification of the second resonance at 15 Hz using SDOF 
RFP method. 
 
Fig 12: Two first mode shapes extracted using KLT on experimental data in black continuous line: The global 
content of these modes is very close to the two first mode computed using CATIA (red dotted line). Mode 1 is on 
top of the figure, mode 2 on bottom. The mode shape are normalized in order to be compared to FE modal analysis. 



 

 

Listing of Tables 
 

Table 1: Estimated mean E and standard deviation σ for frequencies f and damping ratios ξ for two modes (RFP). 

Table 2: Comparison of the estimated frequencies using optical method, classical EMA with burst random excitation 
(Force sensor not able to detect very low frequency) and Finite Element Analysis using CATIA. 

 


	Morlier_3040
	To link to this article: DOI: 10.1115/1.4000070

	Morlier_3040.pdf
	Morlier_3040
	To link to this article: DOI: org/10.1115/1.4000070

	Morlier_3040.pdf
	Morlier_3040
	Morlier_3040.pdf



