[OMTE 2008/2009] GPU speed-up of a 3D Bayesian CT algorithm: reconstruction of a real foam
Nicolas Gac, Asier Rabanal, Alexandre Vabre, Ali Mohammad-Djafari

To cite this version:

HAL Id: hal-01851994
https://hal.archives-ouvertes.fr/hal-01851994
Submitted on 31 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Reconstruction with a non-bayesian method

Segmentation obtained

1) Reconstruction step: Updating f

Steps of the Iterative method:

- Inverse problem: Getting the object f from the projections data g collected from a cone beam 3D CT:
 \[g = H f + \epsilon \] (1)

- Prior model: Object $f(r)$ is composed of K regions R_k, corresponding to K materials labeled with a hidden variable $z(r)=k$. A Markov/Potts model corresponding to the homogeneity of materials is used for each region R_k.
 \[p(f(r)/z(r)=k) = \mathcal{N}(m_k, \sigma_k) \] (2)

Steps of the Iterative method:

1. Reconstruction step: Updating f by computing $f^{(i+1)} = \arg \max_f \{ p(f|x, \theta, g) \}$. This is done by using a gradient type optimization algorithm:
 \[f^{(i+1)} = f^{(i)} + \alpha \left[H^T (g - H f^{(i)}) + \lambda D^T D f^{(i)} \right] \] (3)

2. Segmentation step: Updating z by generating a sample from $p(z|f, x, g)$ with a sampling algorithm from a Potts-Markov model.

3. Characterization step: Updating the hyperparameters using $p(\theta|f, z, g)$.

2) Segmentation step: Updating z

A Gaussian model corresponding to the compactness of materials is used for z. It’s a Markov/Potts model corresponding to the homogeneity of materials.

Beyond limitations: Parallelization on a 8 GPUs server has allowed us to go beyond the computing time limitations.

3) Characterization step: Updating the hyperparameters using $p(\theta|f, z, g)$.

A Markov/Potts model corresponding to the compactness of materials is used for z. It’s a Gaussian model corresponding to the homogeneity of materials.

Reconstruction time on a GTX 295 (96×256^3 data):

- Projector: 755 ms (128 ms for CPU/GPU memory transfer)
- Backproector: 234 ms (133 ms for CPU/GPU memory transfer)

On GPU, we reach a two orders of magnitude acceleration.

Reconstruction time on a GTX 295 (96×256^3 data):

- Projector: 755 ms (128 ms for CPU/GPU memory transfer)
- Backproector: 234 ms (133 ms for CPU/GPU memory transfer)

5 Future works:

- Optimization of our Gauss/Markov/Potts method
- Optimization of the GPU memory transfer
- Parallelization on the 8 GPU server of other operators (3D convolution, Potts sampling...)
- Semi automatic setting of the regularization parameters
- Technologic transfer with an industrial partner