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On Multicomponent Signal Denoising and

Mode Reconstruction from Short-Time Fourier

Transform
Sylvain Meignen, and Duong-Hung Pham

Abstract

In this paper, we investigate the reconstruction and denoising of multicomponent signals from their

downsampled short-time Fourier transform. We first recall signal reconstruction techniques based on

short-time Fourier transforms and how to use them for signal denoising. We then investigate how to

adapt the proposed denoising technique to the context of multicomponent signals. Comparisons with

recently developed techniques based on synhrosqueezing conclude the paper.

Index Terms

Time-frequency, signal denoising, short-time Fourier transform, downsampling, reassignment, AM/FM

multicomponent signals.

I. INTRODUCTION

Time-frequency (TF) representations such as the short-time Fourier transform (STFT) or the continuous

wavelet transform (CWT) are widely used to represent multi-component signals (MCSs). Doing some

kind of filtering, they smear the information contained in the signal. A variety of techniques have been

developed to recover the TF signature associated with a MCS, as for instance reassignment methods [1]

of which synchrosqueezing transforms (SST) are among the most popular [2]. Indeed, not only do these

transforms enhance the TF representation but also allow for mode reconstruction. Originally designed

to reassign the TF representations of MCSs containing slightly modulated modes, either in the CWT
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or STFT contexts [2] [3] [4], several extensions were recently proposed to better take into account the

modulation either by demodulating the signal [5], by taking into account phase and amplitude modulations

in the synchrosqueezing operators [6] [7] or both [8].

Despite some theoretical analyses have been carried out [9], the impact of noise on synchrosqueezing

operators still needs to be further studied, in particular in heavy noise situations. From a practical point

of view, different techniques have been developed to handle the noise in the SST context, among which

a very promising one, inspired by multitaper approaches [10], is based on averaging the SSTs obtained

with different kernels [11]. Another issue related to the use of SST is that while the latter is sharper than

the TF representation it is based on, mode reconstruction cannot be carried out from SST downsampled in

time. On the contrary, such a reconstruction can be achieved from a downsampled STFT: in some sense,

SST, by sharpening the frequency representation, annihilates the time redundancy of the TF representation

it is based on. Our goal is thus to show that, using the time redundancy of STFT, the reconstruction of

the modes of a noisy MCS can be performed with a better accuracy and using less STFT coefficients

than when STFT based SST is considered.

For that purpose, in Section II, we recall the different signal reconstruction techniques from shifted

downsampled STFT, and then study how to use these for signal denoising in Section III, assuming the

noise is Gaussian white. Exploiting these findings, we introduce, in Section IV, a novel algorithm, based

on downsampled STFT, for the retrieval of the modes of a MCS, of which we study, in the next section,

the sensitivity to its parameters. We finally carry out a comparison with two other methods based on SST

and recently introduced in [6] [8], on both simulated and real data.

II. SIGNAL RECONSTRUCTION FROM DOWNSAMPLED SHORT-TIME FOURIER TRANSFORM

For a signal f in l2(Z), and a discrete window g also in l2(Z), the STFT downsampled by a factor of

R (a positive integer) and shifted by an integer parameter p ( 0 ≤ p < R) is defined for each ω by:

V g
f (mR+ p, ω) =

∑
n∈Z

f [n]g[n−mR− p]e−i2πω(n−mR−p). (1)

If one assumes the signal is of length L and supported on {0, · · · , L− 1} , the filter g supported on

{−M, · · · ,M} such that Lg := 2M + 1 ≤ N ≤ L/2, where N is the number of frequency bins, one
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may write:

V g
f (mR+ p,

k

N
) =

∑
n∈Z

f [n]g[n−mR− p]e−i2π
k(n−mR−p)

N

=

M∑
n=−M

f [mR+ p+ n]g[n]e−i2π
kn

N

=

2M∑
n=0

f [mR+ p+ n−M ]g[n−M ]e−i2π
k(n−M)

N .

Since g is null on {M + 1, · · · , N − 1−M}, STFT can be rewritten as:

V g
f (mR+ p,

k

N
)e−i2π

kM

N =

N−1∑
n=0

f [mR+ p+ n−M ]g[n−M ]e−i2π
kn

N .

Using the properties of the discrete Fourier transform (DFT), one obtains, for any n ∈ {0, · · · , N − 1}:

f [mR+ p+ n−M ]g[n−M ] =
1

N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(n−M)

N . (2)

When g is non-zero on {−p, · · · , R− 1− p}, one gets, for any q ∈ {0, · · · , R− 1}:

f [mR+ q] =
1

g[q − p]N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−p)
N . (3)

This reconstruction technique will be referred to as the first reconstruction technique (RT1) in the sequel.

Since p varies in {0, · · · , R− 1}, if one wants to use the same filter g whatever p, the former has to be

non-zero on {−R+ 1, · · · , R− 1}.

Alternatively, using (2) and assuming
∑
m∈Z

g[n−mR]2 = 1 for all n, we may write:

f [n] =

N−1∑
k=0

∑
m∈Z

V g
f (mR+ p,

k

N
)g[n−mR− p]e

i2π k(n−mR−P )

N

N
. (4)

The proof of (4) is available in Section Appendix. Furthermore, when such a filter is used, one also has

energy conservation, namely:∑
n∈Z

f [n]2 =
∑
m∈Z

1

N

N−1∑
k=0

|V g
f (mR+ p,

k

N
)|2, (5)

the proof being also available in Section Appendix. Note that the reconstruction can still be carried out

by making the appropriate renormalization as follows:

f [n] =

N−1∑
k=0

∑
m∈Z

V g
f (mR+ p, kN )g[n−mR− p] e

i2π
k(n−mR−p)

N

N∑
m∈Z

g[n−mR− p]2
, (6)

provided
∑
m∈Z

g[n − mR]2 6= 0 for all n. This type of reconstruction technique is denoted second

reconstruction technique (RT2) in the sequel.
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Remark 1. It is important to remark that such a reconstruction formula was already studied in [12] but

for infinite signals and assuming a continuous frequency. Here, the signal is finite and the frequencies

are discretized. Also, in our context the number of frequency bins is much smaller than the signal length

for the method to be tractable for long signals.

Alternatively, assuming this time
∑
m∈Z

g[n−mR] = 1 for all n, one similarly has:

f [n] =

N−1∑
k=0

∑
m∈Z

V g
f (mR+ p,

k

N
)
ei2π

k(n−mR−p)
N

N
, (7)

the proof being available in Section Appendix. Note that, as soon as
∑
m∈Z

g[n−mR] 6= 0 for all n, one

can still reconstruct f through:

f [n] =

N−1∑
k=0

∑
m∈Z

V g
f (mR+ p, kN ) e

i2π
k(n−mR−p)

N

N∑
m∈Z

g[n−mR− p]
. (8)

This reconstruction formula is referred to as third reconstruction technique (RT3) in the sequel.

Remark 2. Typical filters g that can be used in RT2 and RT3 are those satisfying the constant overlap

add property [13] with hop-size R (COLA(R)):
∑

m∈Z g[n−mR] = 1, for all n.

For example, the rectangular window defined on {0, · · · , R−1} is COLA(R). Other popular examples

of COLA(R) windows is the Bartlett window: w[n] = wr[n]
[
1− |n|R

]
, for n ∈ {−R, · · · , R} and where

wr is the rectangular window on {−R, · · · , R}, the Hann window defined, for n ∈ {−R, · · · , R}, by:

w[n] = wr[n]
[

1
2 + 1

2 cos(πnR )
]
, or the Hamming window, w[n] = wr[n]

[
0.54 + (1− 0.54) cos(πnR )

]
, for

this time n ∈ {−R, · · · , R−1}, and putting w[R] = 0. One has however to bear in mind that COLA(R)

condition is only sufficient for signal reconstruction from downsampled STFT.

III. SIGNAL DENOISING FROM DOWNSAMPLED STFT

Let us consider a discrete-time noisy signal f̃ = f + σΦ where Φ is a unit variance, zero mean white

Gaussian noise. When the signal samples are complex numbers, the noise is also complex, and Φ is such

that V g
Φ(m, kN ) is also Gaussian with zero mean and satisfies:

Var
(
<
{
V g

Φ(m,
k

N
)

})
= Var

(
=
{
V g

Φ(m,
k

N
)

})
= σ2‖g‖22, (9)

where <{X} (resp. ={X}) denotes the real (resp. imaginary) part of complex number X , and Var the

variance. From this, we deduce that
(
|V g

Φ(m, kN )|2)k,m
)

is χ2 distributed with 2 degrees of freedom.

Because of (9), the expectation of |V g
Φ(m, kN )|2 is 2σ2‖g‖22. Now, the probability of false alarm is less
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than 1% if |V g
Φ(m, kN )|2 is larger than 9× 2σ2‖g‖22. Therefore, assuming the variance of the noise σ2 is

known, we define the following thresholding strategy:

V
g

f̃
(m,

k

N
) =

 V g

f̃
(m, kN ), if |V g

f̃
(m, kN )| ≥ 3

√
2σ‖g‖2

0 otherwise,
(10)

where ‖g‖2 is the l2 norm of filter g. Denoised signals are then obtained using one of the three

reconstruction formulae replacing V g
f by V

g

f̃
. For the sake of simplicity, we will also denote these

techniques by RT1, RT2 and RT3, and fr a reconstructed signal using one of these methods.
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Fig. 1. A: STFT of a linear chirp; B: output SNR corresponding to the reconstruction of signal associated with STFT displayed

in A, when the shift parameter varies, for different input SNR and for RT1, RT2, and RT3; C: STFT of a MCS; D: output SNR

corresponding to the reconstruction of signal associated with STFT displayed in C, when the shift parameter varies, for different

input SNRs and for RT1, RT2, and RT3.

To assess the quality of the reconstruction procedure using a shifted downsampled STFT, we remark

that a good reconstruction technique should be very slightly sensitive to the shift parameter p. To measure
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the quality of reconstruction we consider the output SNR corresponding to

SNR(f, fr) = 20 log10

(
‖f‖2

‖f − fr‖2

)
. (11)

Pointing out that the higher the SNR the lower the l2 error ‖f − fr‖2 we remark that, for RT1, we may

write:
R−1∑
q=0

|f [mR+ q]− fr[mR+ q]|2 =

R−1∑
q=0

1

g[q − p]2N2
|
N−1∑
k=0

(
V g
f (mR+ p,

k

N
)− V g

f̃
(mR+ p,

k

N

)
ei2π

k(q−p)
N |2.

(12)

If we define K(p, q) := |
N−1∑
k=0

(
V g
f (mR+ p, kN )− V g

f̃
(mR+ p, kN )

)
ei2π

k(q−p)
N |2, and assume it is inde-

pendent of p and q, then the l2 error is minimal when
R−1∑
q=0

1
g[q−p]2 is minimal for some p. For low-pass,

positive, and symmetric windows (like Hamming or Bartlett windows, for instance), this corresponds

to considering the central taps of filter g, i.e. p = bR/2c. Regarding method RT2, energy conservation

enables us to write:∑
q∈Z
|f [q]− fr[q]|2 =

∑
m∈Z

1

N

N−1∑
k=0

|V g
f (mR+ p,

k

N
)− V g

f̃
(mR+ p,

k

N
)|2, (13)

which is independent of p, provided K(p, p) is independent of p.

To illustrate this, we consider a linear chirp defined for t in {0, ..., L−1} by f(t) = e2iπ(0.05t+(0.10/L)t2),

with L = 4096. The maximal reduced frequency is 0.25, and the Shannon-Nyquist sampling theory tells

us that one needs at least L/2 samples to have perfect reconstruction, meaning the sampling period

is half the critical one (i.e. the signal is oversampled by a factor of 2). Then, we compute the STFT

of the signal using the Hamming window with length Lg = 63 and consider a number N = 256 of

frequency bins, and R = 32 (the largest downsampling factor compatible with the three reconstruction

techniques since M = 32). For p = 0, we obtain the representation of Figure 1 A, corresponding to a

256× 128 matrix and, changing p does not change the matrix size. So, if one compares with the critical

sampling, requiring 2048 values for f , the downsampling factor actually equals 16. Then, for different

noise levels, shift parameter in {0, · · · , R − 1} and input SNRs, we display in Figure 1 B, the output

SNR corresponding to the reconstruction of the linear chirp using either RT1, RT2, or RT3.

For RT1, having numerically checked that K(p, q) is almost independent of p and q, we notice that,

as expected, best reconstruction results are obtained when p = bR/2c. On the contrary, we check that

RT2 is insensitive to p, as a consequence of energy conservation. The behavior of RT3 is very similar

to that of RT2 but is more difficult to analyze. As we are interested in reconstructing the signal from its
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downsampled STFT for any given shift parameter, RT1 should not be used. However, such a reconstruction

should be borne in mind since it is used in the synchrosqueezing techniques discussed at the end of this

paper.

It is also worth mentioning that when the SNR is equal to 10 dB, and no downsampling is applied,

the output SNRs for the linear chirp and with either of the three methods RT1, RT2 and RT3 are 23.39,

23.27 and 22.87 dB respectively: looking at Figure 1 B, we notice that the denoising performance are

not sensitive to downsampling factor since similar results are obtained using downsampled STFT in RT2,

RT3 and also for RT1, provided the shift parameter is optimally chosen for the latter.

This behavior is also observable when applying the reconstruction techniques to a more general signal,

as the MCS whose downsampled STFT is depicted in Figure 1 C, for which the output SNR is displayed

in Figure 1 D. In this example, the reduced frequencies are 400
L + 30

L cos(3π t
L) and 1000

L + 60
L cos(3π t

L)

with L = 4096, meaning that the maximal reduced frequency equals 0.38: the signal is over-sampled

by a factor less than 2 (so with R = 32, the downsampling factor compared with the critical Nyquist

sampling is even bigger than in the previous example). As previously, to use downsampled STFT instead

of the full transform does not result in a significant performance loss. In the following section, we are

going to exploit these findings to propose a novel algorithm for the reconstruction and denoising of the

modes of a MCS.

IV. MODE RECONTRUCTION FROM DOWNSAMPLED STFT OF NOISY MCS

In the following, we study more in details MCSs f defined by:

f [n] =

K∑
l=1

fl[n], with fl[n] = Al[n]ei2πφl[n], (14)

where Al[n] > 0 and φ′l[n] > 0. We also assume the fls, called modes or components, are separated with

resolution ∆ and with bounded modulation M , i.e. for all times n,

∀ 1 ≤ l ≤ K − 1, φ′l+1[n]− φ′l[n] > 2∆

∀ 1 ≤ l ≤ K, |φ′′l [n]| ≤M. (15)

Mode reconstruction in the TF plane is carried out by integrating STFT along the frequency axis

and in the vicinity of so-called ridges, approximating the φ′ls, called instantaneous frequencies (IF) of

the modes. Therefore, we first explain how ridges are detected and then detail how mode retrieval is

performed. In what follows, f̃ will be a noisy version of f as introduced in Section III.

January 25, 2018 DRAFT
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A. Ridge Extraction from Noisy Downsampled STFT

We here recall how to compute an estimate of the ridges (n, φ′l[n])l. Assuming knowledge of the

number K of modes, we are going to use an adaption of the algorithm detailled in [2] or [1], which was

originally proposed in [14]. This computes a local minimum of the functional :

Ef̃ (ψ1, · · · , ψK) =

K∑
l=1

L−1∑
n=0

−|V g

f̃
(n, ψl[n])|2 + λψ′l[n]2dt+ βψ′′l [n]2, (16)

so that ψl approximates φ′l. However, equation (16) does not offer any algorithmic means to compute the

ridges and does not take into account the downsampling factor. It was shown in [8] through a numerical

study, that to use regularization terms in the energy functional resulted in less accurate ridge estimation.

Thus, to detect the ridge of a monocomponent signal and in the downsampled STFT context, (16) reduces

to:

ψ[mR+ p] = argmax
0≤k≤N−1

|V g

f̃
(mR+ p,

k

N
)|, (17)

making m vary. The performance of this IF estimator is available in [15].

Algorithm 1 (Ridge extraction from downsampled STFT)
Pick p ∈ {0, · · · , R− 1}

Define Zp,R = {mR+ p,m ∈ bL−1
R c}

∆f = R×M ×N

for l = 1 to K do

1. Pick tm = mR+ p ∈ Zp,R.

2. pm,l := argmax
k
|V g

f̃
(tm,

k
N )|.

3. Im,l := [pm,l −∆f , pm,l + ∆f ]
⋂
{0, ..., N − 1}.

4. pm−1,l := argmax
k∈Im,l

|V g

f̃
(tm−1,

k
N )|, iterate backward.

5. pm+1,l := argmax
k∈Im,l

|V g

f̃
(tm+1,

k
N )|, iterate forward.

6. For tm ∈ Zp,R, set V g

f̃
(tm, k/N) := 0,

for k ∈ [pm,l −∆N, pm,l + ∆N ]

Sort (pm,l)l in increasing order to obtain (p̃m,l)l

(ψl[tm])m = ( p̃m,lN )m

To extract the ridges of a MCS from its downsampled STFT, we generalize (17), using a procedure

summarized in Algorithm 1. The ridges are extracted one by one as follows. One first picks a random time
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and finds the local maximum of the modulus of STFT at that time (steps 1 and 2, this point is supposed to

be on a ridge), then, since mode modulation is bounded by M , one finds neighboring points on the ridge

using the fact that the maximum displacement of a point on a ridge between two successive locations

is ±M × R (which means ±M × R ×N in terms of indices, steps 3–5), and finally iterates backward

and forward (steps 4 and 5). One then removes the detected ridge and corresponding TF neighborhood

(step 6, the ridges are associated with K sufficiently separated local maxima at each time instant), and

proceeds with the remaining ridges.

Note that to improve the quality of ridge detection, for each mode, steps 1 to 5 are iterated and the

retained ridge corresponds to the most energetic one after these iterations. This algorithm is similar to

that proposed in [8] for ridge extraction, except that we take into account the downsampling factor R in

the search for pm−1,l and pm+1,l from pm,l.

B. Mode Reconstruction

Based on RT2 and the signal denoising procedure from downsampled STFT introduced in Section

III, we define a novel technique for the retrieval of the modes of a MCS (to consider RT3 for mode

reconstruction instead would not change the results that much). Let us focus on the reconstruction of the

l-th mode, assuming ψl is known. For that purpose, we recall that a first order approximation of STFT

close to the lth ridge and in the continuous time setting, reads [3]:

V g

f̃ ,c
(t, ω) ≈ Al(t)ĝ(ω − φ′l(t)), (18)

where V g
f,c(t, ω) =

∫
R f(u)g(u−t)e−i2πω(u−t)du (assuming g is a real window) and f̂(ω) =

∫
R f(u)e−i2πωudu.

If the window g is the Gaussian window σ
−1/2
s e

−π x2
σ2s then ĝ(ξ) = σ

1/2
s e−πσ

2
sξ

2

. Using such a window,

considering the approximation of φ′l by ψl, and adapting (18) to our discrete time and frequency settings,

we get at time tm := mR+ p:

V g

f̃
(tm,

k

N
) ≈ |V g

f̃
(tm, ψl[tm])|e−πσ2

s( k
N
−ψl[tm])2 ,

for k
N sufficiently close to ψl[tm]. If, as previously, the noise variance is σ2, the coefficients associated

with mode l one selects at each time tm, following the procedure detailled in Section III, correspond to

the indices k satisfying:

|V g

f̃
(tm, ψl[tm])|e−πσ2

s( k
N
−ψl[tm])2 ≥ 3

√
2σ‖g‖2,
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namely the indices inside the interval Jl,m := [Nψl[tm]− Γl,m, Nψl[tm] + Γl,m], with

Γl,m =
N

σs

√√√√− 1

π
log

(
3
√

2σ‖g‖2
|V g

f̃
(tm, ψk[tm])|

)
.

Knowing interval Jl,m, mode fl is reconstructed through:

fr,l[n] :=
∑
m∈Z

∑
k∈Jl,m

V g

f̃
(tm,

k

N
)g[n− tm]

ei2π
k(n−tm)

N

N
. (19)

This method will be denoted by M1 in the sequel. Doing so, one selects the portion of signal above

noise level in the vicinity of each ridge. However, such a simple expression for Jl,m exists only because

one assumes the window is Gaussian. Also, the width of interval Jl,m only depends on the magnitude

of STFT at local maxima location, but not on the frequency modulation of the corresponding modes.

Therefore, an alternative to compute the frequency interval for mode reconstruction is to define η[1]
l,m and

η
[2]
l,m:

η
[1]
l,m = argmax

k

{
k

N
< ψl[tm], |V g

f̃
(tm,

k

N
)| < 3

√
2σ‖g‖2

}
η

[2]
l,m = argmin

k

{
k

N
> ψl[tm], |V g

f̃
(tm,

k

N
)| < 3

√
2σ‖g‖2

}
,

and then set :

Jl,m :=
[
Nψl[tm]− η[1]

l,m, Nψl[tm] + η
[2]
l,m

]
. (20)

In such a case, the interval is no longer symmetric with respect to the maximum amplitude location

and adapts to frequency modulation. This method will be denoted by M2 in the sequel. The comparison

between methods M1 and M2 will be carried out in the Section Numerical Applications.

V. PARAMETERS ESTIMATION

A. Estimation of the Threshold for Denoising and Mode Reconstruction

To perform coefficients selection for STFT denoising prior to mode reconstruction, one needs to

estimate γ := σ‖g‖2 from the STFT of f̃ . This is done by considering the median absolute deviation

approach [16], which we adapt to our discrete STFT context. Indeed, as shown in [17] but for wavelet

decompositions, since there are very few STFT coefficients associated with the signal and since the real

part of STFT of the noise is a zero mean Gaussian variable, γ can be estimated through:

γ̂p =
median |<

(
V g

f̃
(mR+ p, kN )

)
m,k
|

0.6745
. (21)

January 25, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 11

Computing the estimation γ̂p given by formula (21) on the linear chirp associated with Figure 1 A,

when the SNR equals 10 dB, we get an estimate fluctuating around 1.22 (the ground truth being 1.14),

the amplitude of the variations are less than 1% when both the shift parameter p and the downsampling

factor R vary (tested values for R were 8, 16, 32 and 64, while 0 ≤ p ≤ R − 1). Similar conclusions

could be obtained with another SNR. Finally, the same type of results are derived with more complicated

signals like the one associated with Figure 1 C.

B. Optimal Window Length Determination

An important parameter in all these TF methods is the length of the analysis window. Our approach

is to use, as in [8] [18], the Rényi entropy to determine an optimal window length. For the Gaussian

window, this corresponds to the determination of an optimal window parameter σs, and an optimal Lg

for the Hamming window. In our framework, the optimal window length is the one leading to the most

concentrated representation, i.e. associated with the lowest Rényi entropy defined by:

H(σ) =
1

1− α
log2

N−1∑
k=0

L−1∑
n=0

 |V g

f̃
(n, kN )|

‖V g

f̃
‖1

α . (22)

Here, we measure the Rényi entropy on the full STFT, but the conclusions would be the same on a

downsampled STFT. Parameter α is set to 3 but another value would lead to similar results. In Figure 2
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Fig. 2. A: Computation of Rényi entropy with respect to σs when the Gaussian window is used to compute STFT, for different

noise level ; B: same as A but when the Hamming window is used instead

A and B, we display the Rényi entropy of the STFT of the signal associated with Figure 1 C, for various

input SNRs, and with respect to the filter length parameter, for the Gaussian and Hamming windows
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respectively. Looking at these figures, and as already noticed in [8], the minimum entropy clearly puts

forward an optimal window length which varies very little with the noise level. In these simulations, we

took N = 512 and then the optimal window parameter σs equals 0.15 and the optimal Lg equals 161

for the Hamming window.

VI. NUMERICAL APPLICATIONS

In this section, we first investigate the quality of mode reconstruction with respect to the type of

reconstruction method, i.e. M1 or M2, type of filter, downsampling factor and shift parameter. Then,

we compare the proposed mode reconstruction methods with other ones based on synchrosqueezing

transform [6] [8]. In this regard, a particular emphasis is put on the amount of information needed

to perform mode reconstruction (the MATLAB code to reproduce the different figures of this paper is

available at https://github.com/meignen/STFT MCS DENOISING).

A. Sensitivity of Mode Reconstruction to Filter Choice, Downsampling Factor and Shift Parameter

We here study the sensitivity of mode reconstruction techniques M1 and M2, to the choice of downsam-

pling factor, shift parameter, and filter g. Our experiments are again based on noisy versions of the signal

associated with Figure 1 C, with N = 512, and the optimal filter is chosen as explained in the previous

subsection (we only consider Hamming or Gaussian filter in our simulations). Taken into account the

optimal length associated with each of these filters, the largest downsampling factor one can consider is

R = 128, but to take R ≤ 64 is sufficiently informative on the behaviors of the proposed techniques.

To measure the performance of the different reconstruction techniques we compute the output SNRs

associated with the reconstruction of each mode, i.e. SNR(fl, fr,l), where the output SNR is defined in

(11) and fr,l in (19).

As for the whole signal reconstruction procedure studied in section III, the output SNR, when consider-

ing mode reconstruction, is almost insensitive to the shift parameter. Therefore, for the sake of simplicity,

we omit this parameter in the simulations and consider p = 0. The results depicted in Figure 3 A, for

an input SNR equal to 0 dB or 10dB, show that the quality of reconstruction for f1 worsens when the

downsampling factor increases, whatever the type of reconstruction method used, but the performance

loss is not significant at least for M2. On that example, M1 behaves slightly better than M2 but the

discrepancy between the results provided by the two methods remains within a range of 1 dB. Finally,

to use the Hamming or the Gaussian window makes very little difference.
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Fig. 3. A: output SNR associated with the reconstruction of mode f1 of the signal associated with Figure 1 C, for different

Rs, different optimized filters, for either reconstruction technique M1 or M2, and when the input SNR is 0 dB or 10 dB; B:

same as A but for mode f2

If one carries out the same study on mode f2, which is much more modulated than f1, the importance

of taking into account the modulation in the reconstruction procedure transpires. The gain obtained by

using M2 rather than M1 is at least 2 dB at high noise level, and the benefits of using the former technique

is even greater when the noise level is low. Based on these results, we will use M2 in the comparison

with synchrosqueezing techniques that follows.

B. Comparison with Synchrosqueezing Transform Based Methods

Recently, a technique extending STFT-based synchrosqueezing transform (FSST) to MCSs containing

strongly frequency modulated modes was proposed in [6] [19], and was called second order syn-

chrosqueezing (VSST) (original description of STFT-based synchrosqueezing transform can be found

in [3] [20]). Such a method was also used in a demodulation algorithm, still for the purpose of mode

retrieval [8]. After having recalled the principle of VSST and of the algorithm based on VSST and

demodulation for mode retrieval [8], we are going to carry out comparisons between these techniques

and M2.

The principle of VSST is to reassign the TF representation given by STFT, along the frequency axis,

using the following complex estimate of the second order derivative of the phase of f̃ , defined as follows:

q̃f̃ (n,
k

N
) =

1

2iπ

V g′′

f̃
(n, kN )V g

f̃
(n, kN )− (V g′

f̃
(n, kN ))2

V tg

f̃
(n, kN )V g′

f̃
(n, kN )− V tg′

f̃
(n, kN )V g

f̃
(n, kN )

.
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Introducing ω̃f̃ (n, kN ) =
∂tV

g

f̃
(n, k

N
)

2iπV g
f̃

(n, k
N

)
and t̃f̃ (n, kN ) = n −

∂ηV
g

f̃
(n, k

N
)

2iπV g
f̃

(n, k
N

)
, enables the definition of an IF

estimate of f̃ as [19]:

ω̂
(2)

f̃
(n,

k

N
) =


<{ω̃f̃ (n, kN ) + q̃f̃ (n, kN )(n− t̃f̃ (n, kN ))}

if ∂tt̃f̃ (n, kN ) 6= 0

<{ω̃f̃ (n, kN )} otherwise,

which is proved to be exact for a noise-free Gaussian modulated linear chirp [19]. VSST then consists

of reassigning the STFT of f through:

TV g

f̃
(n,

k

N
) =

1

g[0]

∑
|V g

f̃
(n, q

N )| ≥ γ

round(Nω̂
(2)

f̃
(n, q

N )) = k

V g

f̃
(n,

q

N
), (23)

where round(X) denotes the nearest integer to X and γ is the threshold introduced in Section III. Note

that (23) can be viewed as a local version of RT1 (with R = 1) , the coefficient being summed up at

their reallocation point.

The reconstruction of fl is subsequently performed by means of the following formula:

fl[n] ≈
∑

|k−round(Nφ′l[n])|<d

TV g

f̃
(n,

k

N
). (24)

We shall remark that d is an integer that enables to compensate for reassignment and ridge estimation

errors. It can be increased up to ∆ and, in the absence of noise, and, if one uses a large d, one ends up

with a reconstruction close to RT1 (except that one performs the reconstruction mode by mode) so that

output SNR is better. In noisy situations, this appears to be numerically also the case since most of the

noise has been removed by the thresholding procedure. In practice φ′l is unknown and is replaced by its

approximation ψl computed on TV g

f̃
, using the same approach as the one developed in Algorithm 1 but

with R = 1.

Alternatively, one can use a demodulation algorithm prior to reconstruction as proposed in [8], by

using the ridge estimate given by (ψl)l=1,··· ,K , and reconstruct the modes through Algorithm 2 (in which

b0 is a constant and Ψl a primitive of ψl null at 0). This method was shown, in [8], to behave better in

terms of mode retrieval.

At first glance, since with VSST techniques, the information is reassigned in the vicinity of the ridge

associated with one mode, for a given time, mode reconstruction involves much less coefficients than

with STFT [6]. Nevertheless, we have just proven that we could still perform mode reconstruction from a

downsampled version of STFT which is not the case with VSST. So, even though VSST leads to a much
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Algorithm 2 (mode reconstruction using demodulation and VSST)

Compute ridge estimates (ψ1, · · · , ψK) from VSST of f̃

for l = 1 to K do

1. Compute f̃D,l[n] = f̃ [n]e−i2π(Ψl[n]−b0n)

2. Extract ridge ψD,l from VSST of f̃D,l using

single ridge detection in [b0 −∆, b0 + ∆].

3. Reconstruct fl through:

fl[n] ≈

( ∑
|k−NψD,l(t)|<d

TV g

f̃D,l
(n, kN )

)
ei2π(Ψl[n]−b0n).

sharper representation than STFT, if one is interested in signal reconstruction using the least amount of

information as possible, we are going to show that the reconstruction based on STFT performs better

than those based on VSST.
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Fig. 4. A: output SNR associated with the reconstruction of mode f1 of the signal associated with Figure 1 C, using different

VSST techniques and with respect to parameter d, or M2 with optimized Hamming filter and different downsampling factors R

(SNR 0 dB); B: same as A but for mode f2; C: same as A but with SNR 10 dB; D: same as B but with SNR 10 dB.

To quantify this, we compute the mode reconstruction performance for the signal associated with Figure

1 C. We investigate the behavior of the just recalled VSST techniques (either based on direct reconstruction

or using demodulation beforehand) with respect to parameter d, along with mode reconstruction based

on method M2, using the optimized Hamming filter and when the downsampling parameter R varies.

The output SNRs are displayed in Figure 4 A-D, and correspond to input SNRs 0 or 10 dB (the results

are averaged over 5 realizations, Algo 2 denoting the reconstruction technique associated with Algorithm

2). As the reconstruction with M2 does not depend on d, in these figures, the mode reconstruction results

January 25, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 16

with this technique are displayed as constant functions. As already noticed, M2 is not much sensitive to

the downsampling factor when the latter goes from R = 16 to R = 64, for both f1 and f2.

Analyzing the results regarding VSST techniques, and as reported in [8], to demodulate the signal

as proposed in Algorithm 2, results in better mode reconstruction than when using VSST directly. Now

comparing M2 with VSST based techniques, M2 leads better results when only the information on the

ridge is considered for VSST (d = 0), but when d increases, typically d = 5, mode reconstruction

performed with Algorithm 2 seems to perform similarly to M2 in most cases.

However, there is one key issue which is hidden in the just computed output SNRs, which is the

number of coefficients used to perform the reconstruction with each method. Indeed, for a fair compar-

ison, we compute the number of coefficients required by the different reconstruction procedures. If the

reconstruction procedure is based on Algorithm 2 or on VSST, the total number of coefficients to be

stored is NV SST = K(2d+ 1)L. On the contrary, the number of coefficients used by M2 corresponds to:

NM2
=

K∑
l=1

∑
m

#
{
Jl,m

⋂
Z
}
, (25)

where Jl,m is the interval defined in (20) and # {X} the cardinal of set X . Note that the range for m

depends on the downsampling factor R. In Figure 5, we depict for input SNRs equal to 0 or 10 dB,

the output SNRs associated with mode reconstruction with respect to the number of coefficients kept,

i.e. NV SST or NM2
, divided by signal length L. Doing so, we highlight the very different nature of

the mode reconstruction techniques based on Algorithm 2 and M2. Indeed, whatever the type of modes

considered, for a given output SNR, mode retrieval is performed using much less information using the

latter technique than the former. But more than that: the latter technique, while denoising the modes,

can also compress the whole signal, since the number of coefficients kept over the signal length L is

lesser than one when R ≥ 64. On the contrary, VSST based denoising techniques always require more

than L coefficients. In this example, the amount of information needed to get the same output SNR is

about 15 times larger with the technique associated with Algorithm 2 than with M2. Note finally that for

the former technique the results are not sensitive to the modulation (f1 reconstruction versus that of f2),

which is expected because this algorithm demodulates each mode before proceeding with reconstruction

( see step 1 of Algorithm 2).

C. Application to Real Data

In this section, we investigate the behavior of our new method for the denoising of a bat echolocation

call, whose noise-free STFT is depicted in Figure 6 A. As one does not know the ground truth in terms

January 25, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 17

number of coefficients kept / L
0 1 2 4 6 8 10 15

o
u
tp

u
t 
S

N
R

6

8

10

12

14

16

18

20

22

24

Algo 2, f
1
, 0 dB

M
2
,f

1
, 0 dB

Algo 2, f
2
, 0 dB

M
2
, f

2
, 0 dB

Algo 2, f
1
, 10 dB

M
2
, f

1
, 10 dB

Algo 2, f
2
, 10 dB

M
2
, f

2
, 10 dB

Fig. 5. Output SNR associated with the reconstruction of the signal associated with Figure 1 C with respect to the number of

coefficients kept divided by the signal length (input SNR 0 or 10 dB)

of the modes to be extracted, one cannot compute output SNR for each mode ; the only thing one can

do is to compute a global output SNR, as defined in (11). In this regard, we are going to check that

we do not lose much information by considering mode extraction as in M2. Another difference between

this signal and the one associated with Figure 1 C is that the modes only last for a certain amount of

time, which makes ridge extraction more complicated. For denoising purpose, we thus investigate three

different strategies: we either use M2, the technique based on Algorithm 2, or the denoising procedure

introduced in Section III, which does not perform ridge extraction before denoising.
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Fig. 6. A: STFT of a bat echolocation call, B: output SNR associated with the reconstruction of the signal associated with A

with respect to the number of coefficients kept divided by the signal length (input SNR 0 dB), the sensitivity to the number K

of modes is also tested; C: same as B but with an input SNR of 10 dB.
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We again analyze the quality of denoising with respect to the number of coefficient kept over the

length of the signal, the results depicted in Figure 6 B and C, respectively correspond to a noise level of

0 and 10 dB. The number K of modes is set to 3 or 4 in M2 and also in Algorithm 2 . We first remark

that while the latter technique is sensitive to the number of modes (NV sst is linear with respect to K),

M2 is not. Indeed, if one considers an irrelevant mode number with M2, the corresponding coefficients

will be mostly below the noise level and will thus not be considered. Another interesting fact is that, in

such a context, to extract the mode for denoising purpose may be useless, because the coefficients above

the noise threshold are almost all located in the vicinity of the different ridges: given a downsampling

factor, the number of selected coefficients is almost the same with M2 or with the denoising procedure

introduced in Section III (denoted by ”No ridge” in Figures 6 B and C). Finally, we also remark that when

the downsampling factor is large, the denoising performance becomes worse when extracting the ridges

in the denoising process: if one wants to denoise the signal while compressing it, in such a situation,

ridge extraction should be precluded.

VII. CONCLUSION

In this paper, we first recalled different signal reconstruction procedure using downsampled versions of

short-time Fourier transform. From this, we have derived a new algorithm for signal denoising which we

have then adapted to the denoising of multicomponent signals and mode extraction. We then showed that

the proposed new technique compares favorably, on simulated and real data, with the most recent denoising

techniques based on synchrosqueezing in terms of the number of coefficients used in the reconstruction

procedure. Future work should involve the generalization of the proposed denoising approach to non

Gaussian noises.

APPENDIX

If g is such that, for any n,
∑
m∈Z

g[n −mR]2 = 1, from (2) and putting q = n + mR + p −M , we

may write:

f [q]g[q −mR− p] =
1

N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−mR−p)
N .
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From this we deduce:

f [q]
∑
m∈Z

g[q −mR− p]2 =
∑
m∈Z

1

N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−mR−p)
N g[q −mR− p]

⇔ f [q] =

∑
m∈Z

1
N

N−1∑
k=0

V g
f (mR+ p, kN )ei2π

k(q−mR−p)
N g[q −mR− p]∑

m∈Z
g[q −mR− p]2

.

If
∑
m∈Z

g[n−mR]2 = 1, we get (4), and if it is only non-zero for any n, (6) follows.

Regarding energy conservation, from (2) we may write:∑
m∈Z

N−1+mR+p−M∑
q=mR+p−M

f [q]2g[q −mR− p]2 =
∑
m∈Z

N−1+mR+p−M∑
q=mR+p−M

| 1
N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−mR−p)
N |2

⇔
∑
m∈Z

∑
q∈Z

f [q]2g[q −mR− p]2 =
∑
m∈Z

1

N

N−1∑
k=0

|V g
f (mR+ p,

k

N
)|2

⇔
∑
q∈Z

f [q]2 =
∑
m∈Z

1

N

N−1∑
k=0

|V g
f (mR+ p,

k

N
)|2.

The proof of (7) is similar to that of (4). Indeed, we have:

f [q]
∑
m∈Z

g[q −mR− p] =
∑
m∈Z

1

N

N−1∑
k=0

V g
f (mR+ p,

k

N
)ei2π

k(q−mR−p)
N

⇔ f [q] =

∑
m∈Z

1
N

N−1∑
k=0

V g
f (mR+ p, kN )ei2π

k(q−mR−p)
N∑

m∈Z
g[q −mR− p]

.

If
∑
m∈Z

g[n − mR] = 1 for any n, then one obtains (7) and otherwise if the sum is only non-zero (8)

follows.
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