E. Arets, P. Van-der-hout, and R. Zagt, Responses of tree populations and forest composition to selective logging in Guyanaed) Long-term changes in tropical tree diversity. Studies from the Guiana Shield, Tropenbos International Wageningen, pp.95-115, 2003.

A. Arostegui, Recopilacion y analisis de studios tecnologicos de maderas peruanas, 1982.

M. Ashby, K. Easterling, R. Harrysson, and S. Maiti, The Fracture and Toughness of Woods, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.398, issue.1815, pp.261-280, 1815.
DOI : 10.1098/rspa.1985.0034

J. Barnett and V. Bonham, Cellulose microfibril angle in the cell wall of wood fibres, Biological Reviews, vol.44, issue.7, pp.461-472, 2004.
DOI : 10.1105/tpc.005801

D. Barthelemy and Y. Caraglio, Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny, Annals of Botany, vol.7, issue.C, pp.375-407, 2007.
DOI : 10.1007/BF01928366

URL : https://hal.archives-ouvertes.fr/halsde-00477471

J. Bossu, J. Beauchêne, Y. Estevez, C. Duplais, and C. B. , New Insights on Wood Dimensional Stability Influenced by Secondary Metabolites: The Case of a Fast-Growing Tropical Species Bagassa guianensis Aubl., PLOS ONE, vol.333, issue.3, 2016.
DOI : 10.1371/journal.pone.0150777.s005

URL : https://hal.archives-ouvertes.fr/hal-01392725

I. Brémaud, P. Cabrolier, J. Gril, C. B. Gérard, J. Minato et al., Identification of anisotropic vibrational properties of Padauk wood with interlocked grain, Wood Science and Technology, vol.41, issue.series II, pp.355-367, 2010.
DOI : 10.1163/22941932-90000317

I. Brémaud, E. Kaïm, Y. Guibal, D. Minato, K. et al., Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types, Annals of Forest Science, vol.41, issue.3, pp.373-386, 2012.
DOI : 10.1515/hfsg.1994.48.6.491

P. Cabrolier, Is interlocked grain an adaptive trait for tropical tree species in rainforest, 6th Plant Biomechanics Conference, 2009.

P. Détienne, Contrefil à rythme annuel dans les faro Daniellia sp, Bois&Forêts des Tropiques, vol.183, pp.67-71, 1979.

D. Falster and M. Westoby, Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession, Oikos, vol.428, issue.1, pp.57-66, 2005.
DOI : 10.1093/icb/16.4.763

R. Fimbel and E. Sjaastad, Wood specific gravity variability in Ceiba pentandra, Wood Fiber Sci, vol.26, issue.1, pp.91-96, 1994.

M. Fournier, J. Dlouhá, G. Jaouen, and T. Almeras, Integrative biomechanics for tree ecology: beyond wood density and strength, Journal of Experimental Botany, vol.20, issue.15, pp.4793-4815, 2013.
DOI : 10.1111/j.1466-8238.2010.00582.x

URL : https://hal.archives-ouvertes.fr/hal-00909904

D. Guitard, Mécanique du matériau bois et composites, Cépaduès, 1987.

Z. Hejnowicz and J. Romberger, The common basis of wood grain figures is the systematically changing orientation of cambial fusiform cells, Wood Science and Technology, vol.26, issue.Suppl. 1, pp.89-96, 1979.
DOI : 10.1007/BF00368602

R. Hernandez and G. Almeida, Effects of wood density and interlocked grain on the shear strength of three Amazonian tropical hardwoods, Wood Fiber Sci, vol.35, issue.2, pp.89-96, 2003.

R. Hernandez and G. Restrepo, Natural variation in wood properties of Alnus acuminata H.B.K. grown in Colombia, Wood and Fiber Sci, vol.27, pp.41-48, 1995.

P. Hietz, R. Valencia, and S. Wright, Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests, Functional Ecology, vol.97, issue.3, pp.684-704, 2013.
DOI : 10.3732/ajb.0900178

D. King, S. Davies, M. Nursupardi, and S. Tan, Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia, Functional Ecology, vol.6, issue.3, pp.445-453, 2005.
DOI : 10.1002/1521-4036(200203)44:2<161::AID-BIMJ161>3.0.CO;2-N

F. Kollmann, W. Côté, J. Krawczyszyn, and J. Romberger, Principles of wood science and technology. In: Solid wood Cyclical cell length changes in wood in relation to storied structure and interlocked grain, Can J Bot, vol.592, issue.577, pp.787-794, 1968.
DOI : 10.1007/978-3-642-87928-9

D. Kribs, B. Lachenbruch, J. Moore, and R. Evans, Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence Sizeand age-related changes in tree structure and function Rethinking the value of high wood density, Dissertation, pp.701-705, 1950.

R. Lehnebach, H. Morel, J. Bossu, L. Moguédec, G. Amusant et al., Heartwood/sapwood profile and the tradeoff between trunk and crown increment in a natural forest: the case study of a tropical tree (Dicorynia guianensis Amsh., Fabaceae), Trees, vol.91, issue.1, pp.199-214, 2017.
DOI : 10.1007/978-3-662-22627-8

URL : https://hal.archives-ouvertes.fr/hal-01654003

X. Li, H. Wu, and S. Southerton, Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics, BMC Genomics, vol.30, issue.12, p.480, 2011.
DOI : 10.1093/nar/gnf056

S. Marsoem and Y. Kikata, The effect of interlocked grain on the mechanical properties of white meranti, Bull Nagoya Univ, vol.9, pp.51-77, 1987.

J. Mclean, T. Zhang, S. Bardet, J. Beauchêne, A. Thibaut et al., The decreasing radial wood stiffness pattern of some tropical trees growing in the primary forest is reversed and increases when they are grown in a plantation, Annals of Forest Science, vol.16, issue.2, pp.681-688, 2011.
DOI : 10.1007/978-3-642-74069-5

C. Montero, C. B. Alméras, T. Van-der-lee, A. Gril, and J. , Relationship between wood elastic strain under bending and cellulose crystal strain, Composites Science and Technology, vol.72, issue.2, pp.175-181, 2012.
DOI : 10.1016/j.compscitech.2011.10.014

URL : https://hal.archives-ouvertes.fr/hal-00646489

H. Morel, É. Nicolini, J. Bossu, L. Blanc, and J. Beauchêne, Qualit?? et usages du bois de cinq esp??ces foresti??res adapt??es ?? la plantation ?? vocation de bois d?????uvre et test??es en Guyane fran??aise, BOIS & FORETS DES TROPIQUES, vol.334, pp.61-74, 2017.
DOI : 10.19182/bft2017.334.a31492

URL : http://revues.cirad.fr/index.php/BFT/article/download/ID-BFT-170427/31207

H. Morel, R. Lehnebach, J. Cigna, J. Ruelle, E. Nicolini et al., Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree, BOIS & FORETS DES TROPIQUES, vol.335, issue.1, pp.59-69, 2018.
DOI : 10.19182/bft2018.335.a31518

URL : https://hal.archives-ouvertes.fr/hal-01744531

H. Muller-landau, Interspecific and Inter-site Variation in Wood Specific Gravity of Tropical Trees, Biotropica, vol.82, issue.1, pp.20-32, 2004.
DOI : 10.1007/s004420100809

E. Nicolini, J. Beauchêne, B. Leudet-de-la-vallée, J. Ruelle, T. Mangenet et al., Dating branch growth units in a tropical tree using morphological and anatomical markers: the case of Parkia velutina Benoist (Mimoso??deae), Annals of Forest Science, vol.95, issue.5, pp.543-555, 2012.
DOI : 10.3732/ajb.95.3.263

O. Omolodun, B. Cutter, G. Krause, and E. Mcginnes, Wood quality in Hildegardia barteri (Mast.) Kossern?an African tropical pioneer species, Wood Fiber Sci, vol.23, issue.3, pp.419-435, 1991.

O. Osazuwa-peters, S. Wright, and A. Zanne, Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies, American Journal of Botany, vol.101, issue.5, pp.803-811, 2014.
DOI : 10.3732/ajb.1400040

S. Özden, D. Slater, and R. Ennos, Fracture properties of green wood formed within the forks of hazel (Corylus avellana L.). Trees 31:903. https, 2017.

P. Parolin, Radial gradients in wood specific gravity in trees of central Amazonian floodplains, IAWA J, vol.23, issue.4, pp.449-457, 2002.

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

S. Skatter and B. Kucera, Drehwuchs???Eine Anpassung des Baumes an Wind-induzierte Torsionskr??fte zum Vermeiden von Stammbr??chen, Holz als Roh- und Werkstoff, vol.73, issue.1, pp.2-4207, 1997.
DOI : 10.1093/treephys/14.1.49

S. Skatter and B. Kucera, The cause of the prevalent directions of the spiral grain patterns in conifers, Trees, vol.12, issue.5, pp.265-273, 1998.
DOI : 10.1007/s004680050150

S. Skatter and B. Kucera, Tree breakage from torsional wind loading due to crown asymmetry, Forest Ecology and Management, vol.135, issue.1-3, pp.1-397, 2000.
DOI : 10.1016/S0378-1127(00)00301-7

D. Slater and R. Ennos, L.), Arboricultural Journal, vol.37, issue.1, pp.21-32, 2015.
DOI : 10.1139/b78-274

URL : https://hal.archives-ouvertes.fr/in2p3-00454551

C. Thinley, G. Palmer, and J. Vanclay, Spiral and interlocking grain in Eucalyptus dunnii, Holz als Roh- und Werkstoff, vol.12, issue.5, 2005.
DOI : 10.1007/s004680050150

URL : http://espace.library.uq.edu.au/view/UQ:8358/R091_holz_pp.pdf

C. Webb, Variation of interlocked grain in sweetgum (Liquidambar styracifula), For Prod J, vol.19, issue.8, pp.45-48, 1969.

E. Weddell, Influence of interlocked grain on the bending strength of timber, with particular reference to utile and greenheart, J Inst Wood Sci, vol.7, pp.56-72, 1961.

J. Whitmore, Wood density variation in Costa Rican balsa, Wood Sci, vol.5, issue.3, pp.223-229, 1973.

M. Wiemann and G. Williamson, Extreme radial changes in wood specific gravity in some tropical pioneers, Wood Fiber Sci, vol.20, issue.3, pp.344-349, 1988.

M. Wiemann and G. Williamson, Radial gradients in the specific gravity of wood in some tropical and temperate trees, For Sci, vol.35, issue.1, pp.197-210, 1989.

G. Williamson and M. Wiemann, Age-Dependent Radial Increases in Wood Specific Gravity of Tropical Pioneers in Costa Rica, Biotropica, vol.428, issue.5, pp.590-597, 2010.
DOI : 10.1007/978-3-642-72126-7

G. Williamson, M. Wiemann, and J. Geaghan, Radial wood allocation in Schizolobium parahyba, American Journal of Botany, vol.99, issue.6, pp.1010-1019, 2012.
DOI : 10.3732/ajb.1100516

W. W?och, J. Jura-morawiec, P. Kojs, M. Iqbal, and J. Krawczyszyn, Does intrusive growth of fusiform initials really contribute to circumferential growth of vascular cambium?, Botany, vol.44, issue.1, pp.154-163, 2009.
DOI : 10.1139/b84-004

D. Woodcock and A. Shier, Wood specific gravity and its radial variations: the many ways to make a tree, Trees, vol.16, issue.6, pp.437-443, 2002.
DOI : 10.1007/s00468-002-0173-7

H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, A model of anisotropic swelling and shrinking process of wood, Wood Science and Technology, vol.35, issue.1-2, pp.167-181, 2001.
DOI : 10.1007/s002260000074

J. Yao, Influence of growth rate on specific gravity and other selected properties of loblolly pine, Wood Science and Technology, vol.42, issue.5, pp.163-175, 1970.
DOI : 10.1080/03759873.1948.9630618